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Abstract

Very recently, Hussain et al. (Fixed Point Theory Appl. 2015:185, 2015) introduced the
concept of JS-contraction and established some fixed point theorems for such
contractions. In this paper, we introduce a new method of proofs that allows us to
prove fixed point theorems for JS-contraction in complete metric spaces by removing
two conditions in theorems of Hussain et al. Thus, we prove that fixed point
Theorems 2.3-2.8 and Corollary 2.9 of Hussain et al. actually are consequences, and
not generalizations, of the corresponding theorems of Ciri¢, Chatterjea, Kannan, and
Reich.
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1 Introduction
The Banach contraction principle [2] is the first important result on fixed points for
contractive-type mappings, which states that each Banach contraction 7: X — X (i.e,
there exists A € [0,1) such that d(Tx, Ty) < Ad(x,y) for each x,y € X) has a unique fixed
point, provided that (X, d) is a complete metric space. This well-known theorem, which is
an essential tool in many branches of mathematical analysis, first appeared in an explicit
form in Banach’s thesis in 1922, where it was used to establish the existence of a solution
of an integral equation. So far, according to its importance and simplicity, many authors
have obtained interesting extensions and generalizations of the Banach contraction prin-
ciple (see [1, 3-11]).

The concepts of Ciri¢ contraction and JS-contraction have been introduced, respec-
tively, by Ciri¢ [6] and Hussain et al. [1] as follows.

Definition 1 Let (X, d) be a metric space. A mapping 7 : X — X is said to be:
(i) a Ciri¢ contraction (see [6]) if there exist nonnegative numbers g, r, s, t with

q +r+s+2t<1such that

d(Tx, Ty) < qd(x,y) + rd(x, Tx) + sd(y, Ty) + t[d(x, Ty) + d(y, Tx)],

Vx,y € X; @)
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(i) aJS-contraction (see [1]) if there exist ¢ € ¥ and nonnegative numbers g, 7, s, ¢
with g + r + s + 2¢ < 1 such that

W (d(Tx, Ty)) < ¥ () v (dlx, ) ¥ (dly, T) v (dlx, T9) + d(y, To)),
Vx,y € X, (2)

where W is the set of all functions ¥ : [0, +00) — [1, +00) satisfying the following

conditions:

(Y1) ¥ is nondecreasing, and ¥(¢) =1 if and only if £ = 0;
(Y,) for each sequence {t,} C (0, +00), lim,_, o ¥ (%,) =1 ifand only if lim,, » £, = 0;
(r3) there exist r € (0,1) and [ € (0, +00] such that lim,_, g+ ‘/’(2’1 =1
(W4) Y(a+b)<y(a)y()foralla,b>0.

For convenience, we denote by ¥, the set of all nondecreasing functions  : (0, +00) —
(1, +oo) satisfying (o) and (y3) and by W, the set of all functions ¢ : [0, +o0) — [1, +00)
satiSfying (WI)l (wZ)r and (W4)

Remark 1
() Iff(t) =eY for £ > 0, thenf € W N Wy NW,. If g(£) = ¢ for t > 0, then g € Wy, but

g ¢ WUV since lim,_, o+ % =0 for each r € (0,1), that is, (y/3) is not satisfied. If
h(t) = eV fort > 0, then i1 € Wy, but 1 ¢ & U W, since
eV (to+50)e0%0) _ o/ o 26 _ pa/t0€0 em whenever ¢y = s¢ = 1, that is, (¥4) is not
satisfied.

(ii) Clearly, ¥ € W, and ¥ C W,. Moreover, from (i) it follows that W C W; and
v C W,

(iii) From (i) we conclude that ¥; ¢ W, Wy ¢ Wy, and W, NV, # @.

In 1971, Ciri¢ [6] established the following fixed point theorem.

Theorem 1 ([6]) Let (X,d) be a complete metric space, and T : X — X be a Ciri¢ contrac-
tion. Then T has a unique fixed point in X.

Recently, Jleli and Samet [8] proved the following fixed point theorem, which is a real
generalization of the Banach contraction principle.

Theorem 2 ([8], Corollary 2.1) Let (X,d) be a complete metric space, and T : X — X.
Assume that there exist € V1 and k € (0,1) such that

VayeX, dTxT)#0 = ¢ (d(Tx, T) < ¥ (dxy)". 3)
Then T has a unique fixed point in X.

The Banach contraction principle follows immediately from Theorem 2. Indeed, let T":
X — X and k € (0,1) be such that (3) holds. Then, if we choose v (£) = eV e W and k = /A

in (3), then we get /d(Tx, Ty) < ~/A\/d(x,y), that is,

d(Tx, Ty) < Md(x,y), Vx,y€X,
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which means that T is a Banach contraction. Note that Theorem 2 is a real generaliza-
tion of the Banach contraction principle (see Example in [8]), but the Banach contraction
principle is not a particular case of Theorem 2 with ¥/ (¢) = € since e’ ¢ .

Very recently, Hussain et al. [1] presented the following extension of Theorem 2.

Theorem 3 ([1], Theorem 2.3) Let (X,d) be a complete metric space, and T : X — X a
continuous JS-contraction. Then T has a unique fixed point in X.

Remark 2 It is clear that Theorem 1 is not a particular case of Theorem 3 since in Theo-

rem 1 the mapping T does not have to be continuous. In addition, even letting v (£) = eVt

in (2), we only obtain

VA(Tx, Ty) < g/d(x,y) + rv/d(x, Tx) + s\/d(y, Ty) + t/d(x, Ty) + d(y, Tx), Vx,y€ X,

which does not imply (1) whenever gr + rs+ st # 0, and hence Theorem 1 cannot be derived
from Theorem 3 by using the method used in [8]. Therefore, Theorem 3 may not be a real
generalization of Theorem 1.

The main purpose of this paper is to show that the results concerned in metric spaces
with JS-contractions in [1] are immediate consequences of Theorem 1. Note that in [1]
b-complete b-metric spaces are also considered.

In this paper, we first introduce a new metric D in a given metric space (X, d) induced
by the metric d, and then we prove that (X, D) is complete if and only if (X, d) is complete.
Then we show that each JS-contraction with v € W, in (X, d) is certainly a Ciri¢ contrac-
tion in (X, D). By using a new method we prove that Theorem 3 remains valid without
assumption (y3) and the continuity of T, which appear in Theorem 3. Therefore, The-
orem 3 and Theorems 2.3-2.8 and Corollary 2.9 in [1] are not generalizations of Ciri¢,
Chatterjea, Kannan, and Reich theorems, as asserted in [1].

2 Main results
For ¢ € Wy and ¢ € [0, +00), set n(¢) = In(y¥ (¢)). Then it is easy to check that 7 : [0, +00) —
[0, +00) has the following properties:

(m) n is nondecreasing, and n(z) = 0 if and only if £ = 0;
(n2) for each sequence {¢,} C (0, +00), lim,_. oo 1(£,) = 0 if and only if lim,, . oo £, = 0;
(n3) n(a+b) <n(a)+n(b) foralla,b > 0.

Since (1) and (1) are clear, we only show (73). We have

n(a +b) =In(y(a+b)) <In(y(@)y (b)) = In(y (@) + In(y (b)) = na) + n(b).

Lemma 1 Let (X,d) be a metric space, and € V,. Then (X, D) is a metric space, where
D(x,y) = n(d(x,y)) = In(y (d(x, y))).

Proof For each x € X, we have D(x,x) = n(d(x,x)) = 0 by (m). For all x,y € X with D(x,y) =
0, we have n(d(x,y)) = 0 and hence d(x,y) = 0 by (11). Hence, for all x,y € X, D(x,y) = 0 if
and only ifx = y.

For all x,y € X, we have D(x,y) = n(d(x, y)) = n(d(y, x)) = D(y, x).
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For all x,y,z € X with z # x and z # y, by (1) and (n3) we have D(x,y) = n(d(x,y)) <
n(d(x,z) + d(z,y)) < n(d(x,z)) + n(d(z,y)) = D(x,z) + D(z,y). Forallx € X and y =z € X, we
have D(x,y) = D(x,z) = D(x,z) + D(y,2z) by (i11). For allx = z € X and y € X, we have D(x,y) =
D(z,y) = D(x,z) + D(z,y) by (n1). For all x = y = z € X, we have D(x,y) = 0 = D(x,z) + D(y,2)
by (n1). Hence, for all x,y, z € X, we always have D(x, y) < D(x,z) + D(z,y). This shows that
(X, D) is a metric space. The proof is complete. g

Lemma 2 Let (X, d) be a metric space, and y € Vy. Then (X, D) is complete if and only if
(X,d) is complete, where D(x,y) = n(d(x,y)) = In(yr(d(x,7))).

Proof Suppose that (X,d) is complete and {x,} is a Cauchy sequence of (X, D), that is,
limy,; 00 D(%y, %4,,) = 0. Then we have lim,,, ,— o (d(x4, X,,)) = 0, and hence lim,,, ;,—, o0 d(x,
%m) = 0 by (n2). Moreover, by the completeness of (X,d) there exists x € X such that
limy,—, o0 d(%,1, %) = 0, and s0 limy,_, 0o D(xy, ) = limy,—, o0 7(d (x4, %)) = 0 by (12). Hence, (X, D)
is complete. Similarly, we can show that if (X, D) is complete, then (X, d) is complete. The

proof is complete. 0

Lemma 3 Let (X,d) be a metric space, and T : X — X be a JS-contraction with € V.
Then T is a Ciri¢ contraction in (X, D), where D(x,y) = n(d(x, y)) = In(y (d(x,))).

Proof It follows from (2) that, for all x,y € X,
D(Tx, Ty) = n(d(Tx, Ty)) = In(y (d(Tx, Ty)))
< In(v (d,2)) "y (dx, T) " (d(y, T5))' ¥ (dx, Ty) + d(y, Tx))")
= qIn(y (d(x,9))) + rin(y (d(x, Tx))) + sIn(y (d(, T)))

+t[In(y (d(x, T9))) + In(¥ (d(y, T¥))) ]
= qD(x,y) + rD(x, Tx) + sD(y, Ty) + t[D(x, Ty) + D(y, Tx)],

that is, (1) is satisfied with respect to the metric D, and hence T is a Ciri¢ contraction in
(X, D). The proof is complete. 0

Theorem 4 Let (X,d) be a complete metric space, and T : X — X be a JS-contraction with
Y € Wy. Then T has a unique fixed point in X.

Proof Since (X, d) is a complete metric space, (X, D) is also a complete metric space by
Lemma 2. Note that 7 is a Ciri¢ contraction in (X, D) by Lemma 3. Therefore, T has a
unique fixed point in X by Theorem 1. The proof is complete. O

Remark 3 In comparison with Theorem 3, assumption (y3) and the continuity of 7" have
been removed from Theorem 4. Hence, Theorem 4 indeed improves Theorem 3.

Theorem 5 Theorem 4 implies Theorem 1.

Proof Let y(¢) = €' for £ > 0. Clearly, ' € ¥, by Remark 1. By (2) we have

d(Tx, Ty) < qd(x,y) + rd(x, Tx) + sd(y, Ty) + t[d(x, Ty) + d(y, Tx)], Vx,y € X,
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which implies that a Ciri¢ contraction T : X — X is certainly a JS-contraction with
¥ (£) = e'. Thus, Theorem 1 immediately follows from Theorem 4. The proof is complete.
O

Remark 4 It follows from Theorem 5 and the proof of Theorem 4 that Theorem 1 is
equivalent to Theorem 4.

Remark5 Itis clear that Theorems 2.3-2.8 and Corollary 2.9 are immediate consequences
of Theorem 1 but the converse is not true by Remark 2, and hence they are not real gener-
alizations of Theorem 1. Note that Hussain et al. [1] also considered sufficient conditions

for the existence of a fixed point of a JS-contraction in b-complete b-metric spaces.
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