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Abstract
In this paper, we obtain some Suzuki-type fixed point theorems for generalized
mappings in partial cone metric spaces over a solid cone. Our results unify and
generalize various known comparable results in the literature. We also provide
illustrative examples in support of our new results.

MSC: 47H10; 54H25

Keywords: partial cone metric spaces; solid cone; Suzuki type; fixed point

1 Introduction and preliminaries
In , Matthews [] introduced the notion of a partial metric space as a part of the study
of denotational semantics of data for networks, showing that the Banach contraction map-
ping principle can be generalized to the partial metric context for applications in program
verification. After that, many fixed point theorems for mappings satisfying different con-
tractive conditions in (ordered) partial metric spaces have been proved (see [–]).

In , Huang and Zhang [] introduced the concept of cone metric spaces and ex-
tended the Banach contraction principle to cone spaces over a normal solid cone. More-
over, they defined the convergence via interior points of the cone. Such an approach allows
the investigation of the case that the cone is not necessarily normal. Since then, there were
many references concerned with fixed point results in (ordered) cone spaces (see [–]).
In , based on the definition of cone metric spaces and partial metric spaces, Sonmez
[, ] defined a partial cone metric space and proved some fixed point theorems for
contractive type mappings in complete partial cone metric spaces.

Recently, without using the normality of the cone, Malhotra et al. [] and Jiang and Li
[] extended the results of [, ] to θ -complete partial cone metric spaces.

First, we recall the definition of partial metric spaces (see []).

Definition . ([]) Let X be a nonempty set. A function p : X × X → R
+ is said to be a

partial metric if for all x, y, z ∈ X, the following conditions are satisfied:

(p) p(x, x) = p(x, y) = p(y, y) if and only if x = y;
(p) p(x, x) ≤ p(x, y);
(p) p(x, y) = p(y, x);
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(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

The pair (X, p) is called a partial metric space. If p(x, y) = , then the (p) and (p) imply
that x = y, but the converse does not hold in general. A trivial example of a partial metric
space is the pair (R+, p), where p : R+ × R

+ → R
+ is defined as p(x, y) = max{x, y}; see

also [].

Let E be a topological vector space. A cone of E is a nonempty closed subset P of E such
that

(i) ax + by ∈ P for all x, y ∈ P and a, b ≥ , and
(ii) P ∩ (–P) = {θ}, where θ is the zero element of E.
Each cone P of E determines a partial order � on E by x � y if and only if y – x ∈ P for

all x, y ∈ E. We shall write x ≺ y if x � y and x 	= y.
A cone P of a topological vector space E is solid if int P 	= ∅, where int P is the interior

of P. For all x, y ∈ E with y – x ∈ int P, we write x 
 y. Let P be a solid cone of a topological
vector space E. A sequence {un} of E weakly converges [] to u ∈ E (denoted un

w→ u)
if for each c ∈ int P, there exists a positive integer n such that u – c 
 un 
 u + c for all
n ≥ n. A cone P of a normed vector space (E,‖ · ‖) is normal if there exists K >  such that
θ � x � y implies that ‖x‖ ≤ K‖y‖ for all x, y ∈ P, and the minimal K is called a normal
constant of P. Next, we state the definitions of cone metric and partial cone metric spaces
and some of their properties (see [, –]).

Definition . ([]) Let X be a nonempty set, and let P be a cone of a topological vector
space E. A cone metric on X is a mapping d : X × X → P such that, for all x, y, z ∈ X:

(d) d(x, y) = θ if and only if x = y;
(d) d(x, y) = d(y, x);
(d) d(x, y) � d(x, z) + d(z, y).

The pair (X, d) is called a cone metric space over P.

Definition . ([, ]) Let X be a nonempty set, and let P be a cone of a topological
vector space E. A partial cone metric on X is a mapping p : X × X → P such that, for all
x, y, z ∈ X:

(p) p(x, x) = p(x, y) = p(y, y) if and only if x = y;
(p) p(x, x) � p(x, y);
(p) p(x, y) = p(y, x);
(p) p(x, y) � p(x, z) + p(z, y) – p(z, z).

In this case, the pair (X, p) is called a partial cone metric space over P.

Note that each cone metric is certainly a partial cone metric. The following example
shows that there do exist partial cone metrics that are not cone metrics.

Example . ([]) Let E = C
R[, ] with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞, and X = P = {u ∈

E : u(t) ≥ , t ∈ [, ]}, which is a nonnormal solid cone. Define the mapping p : X ×X → P
by
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p(x, y) =

⎧
⎨

⎩

x, x = y,

x + y otherwise.

Then p is a partial cone metric, but not a cone metric, since p(x, x) 	= θ for all x ∈ X with
x 	= θ .

A partial cone metric p on X over a solid cone P generates a topology τp on X, which
has a base of the family of open p-balls {Bp(x, c) : x ∈ X, θ 
 c}, where Bp(x, c) = {y ∈ X :
p(x, y) 
 p(x, x) + c} for x ∈ X and c ∈ int P.

Definition . ([]) Let (X, p) be a partial cone metric space over a solid cone P of a
topological vector space E.

(i) A sequence {xn} in X converges to x ∈ X (denoted by xn
τp→ x) if for each c ∈ int P,

there exists a positive integer n such that p(xn, x) 
 p(x, x) + c for each n ≥ n (that
is, p(xn, x) w→ p(x, x)).

(ii) A sequence {xn} in X is θ -Cauchy if for each c ∈ int P, there exists a positive integer
n such that p(xn, xm) 
 c for all m, n ≥ n. The partial cone metric space (X, p) is
θ -complete if each θ -Cauchy sequence {xn} of X converges to a point x ∈ X such
that p(x, x) = θ .

Definition . ([, ]) Let (X, p) be a partial cone metric space over a solid cone P of a
topological vector space (E,‖ · ‖).

(i) A sequence {xn} in X strongly converges to x ∈ X (denoted by xn
s–τp→ x) if

lim
n→∞ p(xn, x) = lim

n→∞ p(xn, xn) = p(x, x).

(ii) A sequence {xn} in X is Cauchy if there exists u ∈ P with ‖u‖ < ∞ such that
limm,n→∞ p(xm, xn) = u. The partial cone metric space (X, p) is complete if each
Cauchy sequence {xn} of X strongly converges to a point x ∈ X such that p(x, x) = u.

Note that if P is a normal solid cone of a normed vector space (E,‖ · ‖), then each com-
plete partial cone metric space is θ -complete. But the converse is not true. The following
example ([], Example ) shows that a θ -complete partial cone metric space is not nec-
essarily complete.

Example . ([]) Let X = {(x, x, . . . , xk) : xi ≥ , xi ∈ Q, i = , , . . . , k}, and E = Rk with
the norm ‖x‖ =

√
∑k

i= x
i , P = Rk

+, where Q denotes the set of rational numbers. Define the
mapping p : X × X → P by

p(x, y) = (x ∨ y, x ∨ y, . . . , xk ∨ yk) for all x, y ∈ X,

where the symbol ∨ denotes the maximum, that is, x ∨ y = max{x, y}. Clearly, (X, p) is a
partial cone metric space, p(x, x) = x for each x ∈ X, p(x, θ ) = θ if and only if x = θ , and P is
normal. On the other hand, (X, p) is θ -complete but not complete.

Let X be a nonempty set, and S, T : X → X be two mappings. A point x ∈ X is said to
be a coincidence point of S and T if Sx = Tx. A point y ∈ X is called point of coincidence
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of S and T if there exists a point x ∈ X such that y = Sx = Tx. The mappings S, T are said
to be weakly compatible if they commute at their coincidence points (that is, TSz = STz
whenever Sz = Tz).

Let (X,�) be a partially ordered set; x, y ∈ X are called comparable if x � y or y � x.
A mapping T : X → X is said to be nondecreasing if for x, y ∈ X, x � y implies Tx � Ty.
Let S, T : X → X be two mappings; T is said to be S-nondecreasing if Sx � Sy implies
Tx � Ty for all x, y ∈ X.

Bhasker and Lakshmikantham [] introduced the concepts of mixed monotone map-
pings and coupled fixed point.

Definition . ([]) Let (X,�) be a partially ordered set, and A : X × X → X. The map-
ping A is said to have the mixed monotone property if A is monotone nondecreasing in
its first argument and is monotone nonincreasing in its second argument, that is, for any
x, y ∈ X,

x, x ∈ X, x � x �⇒ A(x, y) � A(x, y),

y, y ∈ X, y � y �⇒ A(x, y) � A(x, y).

Definition . ([]) An element (x, y) ∈ X is said to be a coupled fixed point of the
mapping A : X → X if A(x, y) = x and A(y, x) = y.

Lemma . ([]) Let X be a nonempty set, and S : X → X a mapping. Then there exists a
subset Y ⊆ X such that SY = SX and S : Y → X is one-to-one.

Paesano and Vetro [] proved Suzuki-type characterizations of completeness for partial
metric spaces and fixed points for partially ordered metric spaces. Note that if in Theo-
rem  of [], we assume that p is a metric, then we obtain Theorem  of []. Recently,
also, some Suzuki-type fixed point and coupled fixed point results for mappings or gen-
eralized multivalued mappings in different metric spaces were investigated (see [–]).
The aim of the paper is to give a generalized version of Theorems  and  of [] in par-
tially ordered partial cone metric spaces over a solid cone. Meantime, we also establish
the corresponding Suzuki-type coupled fixed point results for generalized mappings in
partially ordered partial cone metric spaces. It is worth pointing out that some examples
are presented to verify the effectiveness and applicability of our results.

2 Fixed point theorems in partial cone metric spaces
In this section, we first give some properties of partial cone metric spaces. The following
properties are used (particularly when dealing with cone metric spaces in which the cone
need not be normal).

Remark . Let P be a solid cone. Then the following properties are used:
() If a � b and b � c, then a � c.
() If a 
 b and b 
 c, then a 
 c.
() If θ � u 
 c for each c ∈ int P, then u = θ .
() If a � λa, where  ≤ λ < , then a = θ .
() If a � b + c for each c ∈ int P, then a � b.
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Now, we establish some Suzuki-type fixed point theorems for generalized mappings in
partially ordered partial cone metric spaces over a solid cone.

Theorem . Let (X, p,�) be a θ -complete partially ordered partial cone metric space over
a solid cone P of a normed vector space (E,‖·‖). Let T : X → X be a nondecreasing mapping
with respect to �. Define the nonincreasing function ψ : [, ) → ( 

 , ] by

ψ(r) =

⎧
⎪⎪⎨

⎪⎪⎩

 if  ≤ r <
√

–
 ,

–r
r if

√
–
 ≤ r <

√


 ,


+r if
√


 ≤ r < .

Assume that there exists r ∈ [, ) such that

ψ(r)p(x, Tx) � p(x, y) implies p(Tx, Ty) � rU(x, y) (.)

for all comparable x, y ∈ X, where U(x, y) ∈ {p(x, y), p(x, Tx), p(y, Ty), p(x,Ty)+p(y,Tx)
 }. Suppose

that the following conditions hold:
(i) there exists x ∈ X such that x � Tx;

(ii) for a nondecreasing sequence xn
τp→ x, we have xn � x for all n ∈ N ;

(iii) for two nondecreasing sequences {xn}, {yn} ⊆ X such that xn � yn, xn
τp→ x, and

yn
τp→ y as n → ∞, we have x � y.

Then T has a fixed point in X. Moreover, the fixed point of T is unique if
(iv) for all x, y ∈ X that are not comparable, there exists u ∈ X comparable with x and y.

Proof Since ψ(r) ≤ , ψ(r)p(x, Tx) � p(x, Tx) for every x ∈ X. By (.) and using the trian-
gular inequality, we have

p
(
Tx, Tx

) � rU(x, Tx),

where

U(x, Tx) ∈
{

p(x, Tx), p(x, Tx), p
(
Tx, Tx

)
,

p(x, Tx) + p(Tx, Tx)


}

=
{

p(x, Tx), p
(
Tx, Tx

)
,

p(x, Tx) + p(Tx, Tx)


}

.

Thus, we get the following cases:
Case . p(Tx, Tx) � rp(x, Tx).
Case . p(Tx, Tx) � rp(Tx, Tx), which implies that p(Tx, Tx) = θ .
Case . p(Tx, Tx) � r p(x,Tx)+p(Tx,Tx)

 � r p(x,Tx)+p(Tx,Tx)
 , which implies that

p(Tx, Tx) � rp(x, Tx).
Then, in all cases, we have

p
(
Tx, Tx

) � rp(x, Tx). (.)

Let x ∈ X be such that x � Tx. Since T is nondecreasing, we get

x � Tx � Tx � · · · � Tnx � · · · .
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Define the sequence {xn} by xn = Tnx, so that xn+ = Txn. If xn = xn+ = Txn for some
n, then xn becomes a fixed point of T . Now, suppose that xn 	= xn+ for all n ∈ N . Then
p(xn, xn+) � θ .

Note that ψ(r)p(xn–, Txn–) � p(xn–, Txn–) for all n ∈ Z+, where Z+ is the set of positive
integers. Since xn– and Txn– are comparable for all n > , by (.) we have

p(xn, xn+) = p
(
Txn–, Txn–

) � rU(xn–, Txn–),

where

U(xn–, Txn–) ∈
{

p(xn–, Txn–), p(xn–, Txn–), p
(
Txn–, Txn–

)
,

p(xn–, Txn–) + p(Txn–, Txn–)


}

=
{

p(xn–, xn), p(xn, xn+),
p(xn–, xn+) + p(xn, xn)



}

.

Thus, we get the following cases:
Case . If U(xn–, Txn–) = p(xn–, xn), then p(xn, xn+) � rp(xn–, xn).
Case . p(xn, xn+) � rp(xn, xn+), which implies that p(xn, xn+) = θ .
Case . p(xn, xn+) � r · p(xn–,xn+)+p(xn ,xn)

 � r( p(xn–,xn)+p(xn ,xn+)
 ), which implies that

p(xn, xn+) � rp(xn–, xn).
Then, in all cases, we have

p(xn, xn+) � rp(xn–, xn).

Continuing this process, it follows that

p(xn, xn+) � rp(xn–, xn) � rp(xn–, xn–) � · · · � rnp(x, x).

Thus, for any m, n ∈ Z+ with m > n, we get

p(xn, xm) � p(xn, xn+) + p(xn+, xn+) + · · · + p(xm–, xm)

� (
rn + rn+ + · · · + rm–)p(x, x)

� rn

 – r
p(x, x).

Let θ 
 c be given, Choose δ >  such that c + Nδ(θ ) ⊆ P, where Nδ(θ ) = {y ∈ E :
‖y‖ < δ}. Also, choose a natural number N such that rn

–r p(x, x) ∈ Nδ(θ ) for all n ≥ N.
Then rn

–r p(x, x) 
 c for all n ≥ N. Thus,

p(xn, xm) � rn

 – r
p(x, x) 
 c

for all m > n ≥ N. Hence, {xn} is a θ -Cauchy sequence in (X, p). Since (X, p) is a θ -complete
partial cone metric space, there exists z ∈ X such that xn

τp→ z and p(z, z) = θ .
First, we show that there exists j ∈ Z+ such that Tjz = z. Arguing by contradiction, we

assume that Tjz 	= z for all j ∈ Z+.
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Note that, by condition (ii), if {xn} is nondecreasing, then xn � z. Since T is nondecreas-
ing, we get xn+ = Txn � Tz for all n ∈ N . Taking the limit as n → ∞, by (iii) we obtain that
z � Tz, which implies that {Tnz} is a nondecreasing sequence. So, we have shown that for
{xn}, {Tnz} also is a θ -Cauchy sequence. We also have Tjz is comparable with xn for all
j, n ∈ N .

Now, we prove that

p
(
Tj+z, z

) � rjp(Tz, z) for all j ∈ N . (.)

Since p(Tjz, z) � θ , p(z, z) = θ , and xn
τp→ z, there exists N ∈ N such that p(xn, z) � p(Tjz,z)


for all n ≥ N. We have

ψ(r)p(xn, Txn) � p(xn, Txn) � p(xn, z) + p(xn+, z)

� 


p
(
Tjz, z

)
= p

(
Tjz, z

)
–




p
(
Tjz, z

)

� p
(
Tjz, z

)
– p(xn, z) � p

(
xn, Tjz

)
.

By (.) and using the triangle inequality, we get that

p
(
xn+, Tj+z

) � rU
(
xn, Tjz

)
,

where

U
(
xn, Tjz

) ∈
{

p
(
xn, Tjz

)
, p(xn, xn+), p

(
Tjz, Tj+z

)
,

p(xn, Tj+z) + p(Tjz, xn+)


}

.

Thus,

p
(
z, Tj+z

) � p(xn+, z) + p
(
xn+, Tj+z

)

� p(xn+, z) + rU
(
xn, Tjz

)
,

where

U
(
xn, Tjz

) ∈
{

p
(
xn, Tjz

)
, p(xn, xn+), p

(
Tjz, Tj+z

)
,

p(xn, Tj+z) + p(Tjz, xn+)


}

.

Since xn
τp→ z for every c � θ , there exists n ∈ N such that p(xn, z) 
 c

 and p(xn, xn+) 
 c


for all n > n. Now, for n > n, we consider the following cases:
Case . p(z, Tj+z) � p(xn+, z) + rp(xn, Tjz) � p(xn+, z) + r(p(xn, z) + p(z, Tjz)) � rp(z,

Tjz) + c. Then it follows from Remark .() that p(z, Tj+z) � rp(z, Tjz), and we get

p
(
z, Tj+z

) � rp
(
z, Tjz

) � rp
(
z, Tj–z

) � · · · � rjp(z, Tz). (.)

Case . p(z, Tj+z) � p(xn+, z) + rp(xn, xn+) 
 c, which implies that p(z, Tj+z) = θ .
Case .

p
(
z, Tj+z

) � p(xn+, z) + rp
(
Tjz, Tj+z

) � c + rp
(
Tjz, Tj+z

)
,

which implies that p(z, Tj+z) � rp(Tjz, Tj+z). Then from (.) we have



Xu et al. Fixed Point Theory and Applications  (2016) 2016:47 Page 8 of 18

p
(
z, Tj+z

) � rp
(
Tjz, Tj+z

) � rp
(
Tj–z, Tjz

) � · · · � rj+p(z, Tz) � rjp(z, Tz).

Case .

p
(
z, Tj+z

) � p(xn+, z) + r · p(xn, Tj+z) + p(Tjz, xn+)


� p(xn+, z) + r
p(xn, z) + p(z, Tj+z) + p(Tjz, z) + p(z, xn+)




 c + r · p(z, Tj+z) + p(Tjz, z)


,

which implies that p(z, Tj+z) � rp(z, Tjz). Then from (.) we get p(z, Tj+z) � rjp(z, Tz).
Thus, in all cases, we obtain p(z, Tj+z) � rjp(z, Tz), that is, (.) holds.
Now, we consider the following three cases:
()  ≤ r <

√
–
 ;

()
√

–
 ≤ r <

√


 ;
()

√


 ≤ r < .
In case (), we note that r + r <  and ψ(r) = . If we assume that p(Tz, z) ≺ p(Tz, Tz),

then by (.) we have

p(z, Tz) � p
(
z, Tz

)
+ p

(
Tz, Tz

)

≺ p
(
Tz, Tz

)
+ p

(
Tz, Tz

)

� rp(z, Tz) + rp(z, Tz)

� p(z, Tz).

This is a contradiction. So, we have p(Tz, z) � p(Tz, Tz) = ψ(r)p(Tz, Tz). By (.)-
(.) we deduce that

p
(
Tz, Tz

) � rU
(
Tz, z

)
,

where

U
(
Tz, z

) ∈
{

p
(
Tz, z

)
, p

(
Tz, Tz

)
, p(z, Tz),

p(Tz, z) + p(Tz, Tz)


}

.

Thus, we get the following cases:
Case . p(Tz, Tz) � rp(Tz, z) � rp(Tz, z) � rp(Tz, z).
Case . p(Tz, Tz) � rp(Tz, Tz) � rp(Tz, z) � rp(Tz, z).
Case . p(Tz, Tz) � rp(Tz, z).
Case . p(Tz, Tz) � r p(Tz,z)+p(Tz,Tz)

 � r[ rp(Tz,z)+rp(z,Tz)
 ] � rp(Tz, z) � rp(Tz, z).

Then, in all cases, we have p(Tz, Tz) � rp(Tz, z). Hence,

p(z, Tz) � p
(
z, Tz

)
+ p

(
Tz, Tz

)

� rp(z, Tz) + rp(z, Tz) =
(
r + 

)
p(z, Tz)

≺ p(z, Tz),

which is a contradiction.
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In case (), we note that r <  and ψ(r) = –r
r . Now, we show by induction that

p
(
Tnz, z

) � rp(z, Tz) (.)

for n ≥ . By (.), (.) holds for n = . Assume that (.) holds for some n with n ≥ .
Since

p(z, Tz) � p
(
z, Tnz

)
+ p

(
Tnz, Tz

) � p
(
z, Tnz

)
+ rp(z, Tz),

we have

p(z, Tz) � 
 – r

p
(
z, Tnz

)
,

and so

ψ(r)p
(
Tnz, Tn+z

)
=

 – r
r p

(
Tnz, Tn+z

) �  – r
rn p

(
Tnz, Tn+z

)

� ( – r)p(z, Tz) � p
(
z, Tnz

)
.

Therefore, by the hypotheses we have

p
(
Tn+z, Tz

) � rU
(
Tnz, Tz

)
,

where

U
(
Tnz, z

) ∈
{

p
(
Tnz, z

)
, p

(
Tnz, Tn+z

)
, p(z, Tz),

p(Tn+z, z) + p(Tz, Tnz)


}

.

Thus, we get the following cases:
Case . p(Tn+z, Tz) � rp(Tnz, z) � rnp(Tz, z) � rp(Tz, z).
Case . p(Tn+z, Tz) � rp(Tnz, Tn+z) � rn+p(Tz, z) � rp(Tz, z).
Case . p(Tn+z, Tz) � rp(Tz, z).
Case .

p
(
Tn+z, Tz

) � r
p(Tn+z, z) + p(Tz, Tnz)


� r

(
rnp(Tz, z) + rp(Tz, z)



)

� rp(Tz, z) � rp(Tz, z).

Then, in all cases, we have p(Tn+z, Tz) � rp(Tz, z). Therefore, (.) holds. Now, from (.)
we have

p
(
z, Tn+z

) � rp
(
z, Tnz

) � · · · � rnp(z, Tz)

for n ≥ . Since  ≤ r < , for every c � θ , there exists n ∈ N such that p(Tz, z) 
 c for all
n ≥ n. Hence,

p(z, Tz) � p
(
z, Tn+z

)
+ p

(
Tn+z, Tz

)

� rnp(z, Tz) + rp(z, Tz) 
 c + rp(z, Tz),
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which implies that p(Tz, z) = θ . Thus, Tz = z. This is a contradiction.
In case (), we note that for x, y ∈ X, either

ψ(r)p(x, Tx) � p(x, y) or ψ(r)p
(
Tx, Tx

) � p(Tx, y).

Indeed, if

ψ(r)p(x, Tx) � p(x, y) and ψ(r)p
(
Tx, Tx

) � p(Tx, y),

then we have

p(x, Tx) � p(x, y) + p(Tx, y)

≺ ψ(r)
[
p(x, Tx) + p

(
Tx, Tx

)]

≺ ψ(r)
[
p(x, Tx) + rp(x, Tx)

]

=
(


 + r

)

( + r)p(x, Tx) = p(x, Tx).

This is a contradiction. Now, since either

ψ(r)p(xn, Txn) � p(xn, z) or ψ(r)p(xn+, Txn+) � p(xn+, z)

for all n ∈ N , by (.) it follows that either

p(Txn, Tz) � rU(xn, z) or p(Txn+, Tz) � rU(xn+, z),

where

U(xn, z) ∈
{

p(z, xn), p(xn, xn+), p(z, Tz),
p(xn, Tz) + p(z, xn+)



}

,

U(xn+, z) ∈
{

p(z, xn+), p(xn+, xn+), p(z, Tz),
p(xn+, Tz) + p(z, xn+)



}

.

Hence, we deduce that either

p(Tz, z) � p(Txn, z) + p(Txn, Tz) (.)

or

p(Tz, z) � p(Txn+, z) + p(Txn+, Tz). (.)

Since xn
τp→ z for every c � θ , there exists n ∈ N such that p(xn, z) 
 c

 and p(xn, xn+) 

c
 for all n > n. Now, by (.) we get the following cases:

Case . p(Tz, z) � p(xn+, z) + rp(z, xn) 
 c implies p(Tz, z) = θ .
Case . p(Tz, z) � p(xn+, z) + rp(xn, xn+) 
 c implies p(Tz, z) = θ .
Case . p(Tz, z) � p(xn+, z) + rp(z, Tz) 
 c + rp(z, Tz) implies p(Tz, z) = θ .
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Case .

p(Tz, z) � p(xn+, z) + r
[

p(xn, Tz) + p(z, xn+)


]

� p(xn+, z) + r
[

p(xn, z) + p(z, Tz) + p(z, xn+)


]


 c + rp(z, Tz),

which implies that p(Tz, z) = θ . Then, in all cases, we have p(Tz, z) = θ . Similarly, by
(.) we also have p(Tz, z) = θ . Thus, Tz = z. This is a contradiction.

Therefore, in all cases, there exists j ∈ N such that Tjz = z. Since {Tnz} is a θ -Cauchy
sequence, we obtain z = Tz. If not, that is, if z 	= Tz, from p(Tnjz, Tnj+z) = p(z, Tz) for all
n ∈ N it follows that {Tnz} is not a θ -Cauchy sequence. Hence, z is a fixed point of T .

Finally, we prove the uniqueness of the fixed point. Suppose that there exist z, z ∈ X
with z 	= z such that Tz = z and Tz = z. We have two possible cases:

Case (a). If z and z are comparable, using (.) with x = z and y = z, we get that

p(z, z) = p(Tz, Tz) � rU(z, z),

where

U(z, z) ∈
{

p(z, z), p(z, Tz), p(z, Tz),
p(z, Tz) + p(z, Tz)



}

=
{

p(z, z), p(z, z), p(z, z),
p(z, z) + p(z, z)



}

=
{

p(z, z), p(z, z), p(z, z)
}

.

Thus, we get the following cases:
Case . p(z, z) � rp(z, z) implies p(z, z) = θ .
Case . p(z, z) � rp(z, z) � rp(z, z) implies p(z, z) = θ .
Case . p(z, z) � rp(z, z) � rp(z, z) implies p(z, z) = θ .

Thus, in all cases, we have p(z, z) = θ , that is, z = z. This is a contradiction. Hence,
z = z.

Case (b). If z and z are not comparable, then there exists x ∈ X comparable with z

and z. First, we note that for each x ∈ X comparable with z, we have that Tnz and Tnx
are comparable and ψ(r)p(Tn–z, Tnz) � p(Tn–z, Tnz) = p(z, z) � p(Tn–z, Tn–x). By
(.) we obtain

p
(
z, Tnx

)
= p

(
Tnz, Tnx

) � rU
(
Tn–z, Tn–x

)
,

where

U
(
Tn–z, Tn–x

) ∈
{

p
(
Tn–z, Tn–x

)
, p

(
Tn–z, Tnz

)
, p

(
Tn–x, Tnx

)
,

p(Tn–x, Tnz) + p(Tn–z, Tnx)


}

=
{

p
(
z, Tn–x

)
, p(z, z), p

(
Tn–x, Tnx

)
,

p(z, Tn–x) + p(z, Tnx)


}

,
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Thus, we get the following cases:
Case . p(z, Tnx) � rp(z, Tn–x) � rp(z, Tn–x) � · · · � rnp(z, x).
Case . p(z, Tnx) � rp(z, z) � rp(z, Tn–x) � · · · � rnp(z, x).
Case . p(z, Tnx) � rp(Tn–x, Tnx) � rp(Tn–x, Tn–x) � · · · � rnp(x, Tx).
Case . p(z, Tnx) � r[ p(z,Tn–x)+p(z,Tnx)

 ] implies p(z, Tnx) � rp(z, Tn–x) � rnp(z, x).
Thus, in all cases, we have

p
(
z, Tnx

) � rnp(z, x)orp
(
z, Tnx

) � rnp(x, Tx).

Similarly, p(z, Tnx) � rnp(z, x) or p(z, Tnx) � rnp(x, Tx). Let θ 
 c and choose a natu-
ral number N such that rnp(z, x) 
 c

 , or rnp(x, Tx) 
 c
 and rnp(z, x) 
 c

 for all n ≥ N.
Thus,

p(z, z) � p
(
z, Tnx

)
+ p

(
z, Tnx

) 
 c


+
c


= c,

which is again a contradiction. Hence, z = z. �

Now, in order to support the usability of Theorem ., we present the following example.

Example . Let E = C
R[, ] with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞, and X = P = {u ∈ E :

u(t) ≥ , t ∈ [, ]}, which is a nonnormal solid cone. Define the mapping p : X × X → P
by

p(x, y) =

⎧
⎨

⎩

x, x = y,

x + y otherwise.

Then (X, p) is a θ -complete partial cone metric space. We can define a partial order on X
as follows:

x � y if and only if x(t) ≤ y(t) for all t ∈ [, ].

Then (X, p,�) is a θ -complete partially ordered partial cone metric space. For every fixed
r ∈ [, ), define T : X → X by

Tx(t) =

⎧
⎪⎪⎨

⎪⎪⎩

 if t ∈ [, ] such that x(t) = ,
n–

 rt + n–
n rx(t) if t ∈ [, ] such that n –  ≤ x(t) ≤ n for n ∈ Z+,

nrt + n
n+ rx(t) if t ∈ [, ] such that n ≤ x(t) ≤ n +  for n ∈ Z+.

Thus, for all x ∈ X, we consider the following three cases:
Case . If t ∈ [, ] such that x(t) = , then Tx(t) = x(t).
Case . If t ∈ [, ] such that n –  ≤ x(t) ≤ n, then

Tx(t) =
n – 


rt +

n – 
n

rx(t) ≤ n – 


r +
n – 


r ≤ rx(t).

Case . If t ∈ [, ] such that n ≤ x(t) ≤ n + , then

Tx(t) = nrt +
n

n + 
rx(t) ≤ nr + nr ≤ rx(t).
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In all cases, for all x ∈ X and t ∈ [, ], we have Tx(t) ≤ rx(t). Hence, for all x, y ∈ X, x � y,
we have

p(Tx, Ty) � rp(x, y) � rU(x, y),

where U(x, y) ∈ {p(x, y), p(x, Tx), p(y, Ty), p(x,Ty)+p(y,Tx)
 }, which ensures that condition (.) is

satisfied. Also, conditions (i)-(iii) of Theorem . are satisfied. Following the Theorem .,
we deduce that T has a fixed point in X; indeed, x = θ is a fixed point of T .

Theorem . Let (X, p,�) be a partially ordered partial cone metric space over a solid
cone P of a normed vector space (E,‖ · ‖). Let S, T : X → X be such that T is an S-
nondecreasing mapping with respect to �, TX ⊆ SX, and SX is a θ -complete subset of X.
Define ψ : [, ) → ( 

 , ] as in Theorem .. Suppose that there exists r ∈ [, ) such that

ψ(r)p(Sx, Tx) � p(Sx, Sy) implies p(Tx, Ty) � rU(Sx, Sy) (.)

for all comparable Sx, Sy ∈ X, where U(Sx, Sy) ∈ {p(Sx, Sy), p(Sx, Tx), p(Sy, Ty), (p(Sx, Ty) +
p(Sy, Tx))/}. Suppose that the following conditions hold:

(i) there exists x ∈ X such that Sx � Tx;
(ii) for a nondecreasing sequence xn

τp→ x, we have xn � x for all n ∈ N ;
(iii) for two nondecreasing sequences {xn}, {yn} ⊆ X such that xn � yn, xn

τp→ x, and
yn

τp→ y as n → ∞, we have x � y;
(iv) the set of points of coincidence of S and T is totally ordered, and S, T are weakly

compatible.
Then S and T have a unique common fixed point in X.

Proof By Lemma . there exists Y ⊆ X, such that SY = SX and S : Y → X is one-to-one.
Define f : SY → SX by fSx = Tx for all Sx ∈ SY .

Since S is one-to-one on Y , f is well defined. Note that, for all comparable Sx, Sy ∈ SY ,

ψ(r)p(Sx, fSx) � p(Sx, Sy) implies p(fSx, fSy) � rU(Sx, Sy),

where U(Sx, Sy) ∈ {p(Sx, Sy), p(Sx, fSx), p(Sy, fSy), p(Sx,fSy)+p(Sy,fSx)
 }.

Since T is S-nondecreasing, we have that f is nondecreasing. In fact, Sx � Sy implies
Tx � Ty, and hence fSx = Tx � Ty = fSy. Since SY is θ -complete, by Theorem . we get
that f has a fixed point on SY , say Sz. Then z = y is a coincidence point of S and T , that is,
Tz = fSz = Sz.

Now, we prove that S and T have a unique coincidence point. Suppose that w is another
coincidence point of S and T with z 	= w. Then

ψ(r)p(Sz, Tz) � p(Sz, Sw),

and by (.) we have

p(Tz, Tw) � rU(Sz, Sw), (.)
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where U(Sz, Sw) ∈ {p(Sz, Sw), p(Sz, Tz), p(Sw, Tw), p(Sz,Tw)+p(Sw,Tz)
 }. Since Sz = Tz and Sw =

Tw, it follows from (.) that

p(Tz, Tw) � rU(Tz, Tw),

where U(Tz, Tw) ∈ {p(Tz, Tw), p(Tz, Tz), p(Tw, Tw), p(Tz,Tw)+p(Tw,Tz)
 } = {p(Tz, Tw), p(Tz, Tz),

p(Tw, Tw)}, which is a contradiction. Hence, z = w. Let v = Sz = Tz. Since S and T are
weakly compatible, we have Sv = STz = TSz = Tv. Then v is also a coincidence point of
S and T , Thus, v = z by uniqueness. Therefore, z is the unique common fixed point of S
and T . �

3 Coupled point theorems in partial cone metric spaces
In this section, we will apply the results obtained in Section  to establish the correspond-
ing Suzuki-type coupled fixed point theorems for generalized mappings in partially or-
dered partial cone metric spaces over a nonnormal cone.

For ã = (x, y), b̃ = (u, v) ∈ X, we introduce the mapping p̃ : X × X → P defined by
p̃(ã, b̃) = p(x, u) + p(y, v).

The following conclusion is valid, and for its proof, we refer to [].

Lemma . If (X, p) is a partial cone metric space over a solid cone P of a normed vector
space (E,‖ · ‖), then (X, p̃) is also a θ -complete partial cone metric space.

Proof It suffices to prove that, for ã = (x, y), b̃ = (u, v), c̃ = (z, w) ∈ X,

p̃(ã, b̃) � p̃(ã, c̃) + p̃(b̃, c̃) – p̃(c̃, c̃).

In fact, for ã = (x, y), b̃ = (u, v), c̃ = (z, w) ∈ X, we have

p̃(ã, b̃) = p(x, u) + p(y, v)

� p(x, z) + p(u, z) – p(z, z) + p(y, w) + p(v, w) – p(w, w)

= p(x, z) + p(y, w) + p(u, z) + p(v, w) –
[
p(z, z) + p(w, w)

]

= p̃(ã, c̃) + p̃(b̃, c̃) – p̃(c̃, c̃).

Suppose that the sequence {x̃n} = {(xn, yn)} is a θ -Cauchy sequence in (X, p̃). Then,
for every c � θ , there exists a positive integer n ∈ N such that p̃(x̃n, x̃m) = p(xn, xm) +
p(yn, ym) 
 c for all n, m > n. Then p(xn, xm) 
 c and p(yn, ym) 
 c. Thus, {xn} and {yn}
are θ -Cauchy sequences in (X, p). Since (X, p) is θ -complete, there exist x, y ∈ X such that
xn

τp→ x, yn
τp→ y, and p(x, x) = θ , p(y, y) = θ .

Thus, for every c � θ , there exists n ∈ N such that p(xn, x) 
 c
 and p(yn, y) 
 c

 for all
n > n. Then p̃((xn, yn), (x, y)) = p(xn, x) + p(yn, y) 
 c

 + c
 = c, and p̃((x, y), (x, y)) = θ . Thus,

{(xn, yn)} τp̃→ (x, y).
Therefore, (X, p̃) is a θ -complete partial cone metric space. �

Theorem . Let (X, p,�) be a θ -complete partially ordered partial cone metric space
over a solid cone P of a normed vector space (E,‖ · ‖). Let A : X × X → X be a mapping
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satisfying the mixed monotone property on X with respect to �. Define ψ : [, ) → ( 
 , ]

as in Theorem .. Assume that there exists r ∈ [, ) such that

ψ(r)[p(x, A(x, y)) + p(y, A(y, x))] � p(x, u) + p(y, v) implies

p
(
A(x, y), A(u, v)

)
+ p

(
A(y, x), A(v, u)

) � rU
(
(x, y), (u, v)

) (.)

for all x, y ∈ X such that x � u and v � y, where

U
(
(x, y), (u, v)

) ∈
{

p(x, u) + p(y, v), p
(
x, A(x, y)

)
+ p

(
y, A(y, x)

)
,

p
(
u, A(u, v)

)
+ p

(
v, A(v, u)

)
,

p(x, A(u, v)) + p(y, A(v, u)) + p(u, A(x, y)) + p(v, A(v, u))


}

.

Suppose that the following conditions hold:
(i) there exists x, y ∈ X such that x � A(x, y) and A(y, x) � y;

(ii) for a nondecreasing sequence xn
τp→ x, we have xn � x for all n ∈ N ;

(iii) for a nonincreasing sequence yn
τp→ x, we have y � yn for all n ∈ N ;

(iv) for two nondecreasing sequences {xn}, {un} ⊆ X such that xn � un for all n ∈ N ,
xn

τp→ x, and un
τp→ u as n → ∞, we have x � u;

(v) for two nonincreasing sequences {yn}, {vn} ⊆ X such that vn � yn for all n ∈ N ,
vn

τp→ v, and yn
τp→ y as n → ∞, we have v � y.

Then A has a coupled fixed point in X, that is, there exist z, w ∈ X such that A(z, w) = z and
A(w, z) = w.

Proof Let X̃ = X × X. For ã = (x, y), b̃ = (u, v) ∈ X̃, we introduce the order ≺ as

ã ≺ b̃ if and only if x � u, v � y.

It follows from Lemma . that (X̃, p̃,≺) is also a θ -complete partially ordered partial cone
metric space, where

p̃(ã, b̃) = p(x, u) + p(y, v).

The mapping T : X̃ → X̃ is given by Tã = (A(x, y), A(y, x)) for all ã = (x, y) ∈ X̃ . Then a
coupled point of A is a fixed point of T and vice versa.

If ã ≺ b̃, then x � u and v � y. Noting the mixed monotone property of A, we see that if
A(x, y) � A(u, v) and A(v, u) � A(y, x), then Tã ≺ Tb̃. Thus, T is a nondecreasing mapping
with respect to the order ≺ on X̃.

On the other hand, for all ã = (x, y), b̃ = (u, v) ∈ X̃ with ã ≺ b̃, if ψ(r)p̃(ã, Tã) =
ψ(r)[p(x, A(x, y)) + p(y, A(y, x))] � p(x, u) + p(y, v) = p̃(ã, b̃), then we have

p̃(Tã, Tb̃) = p
(
A(x, y), A(u, v)

)
+ p

(
A(y, x), A(v, u)

) � rU
(
(x, y), (u, v)

)
,
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where

U(ã, b̃) = U
(
(x, y), (u, v)

)

∈
{

p(x, u) + p(y, v), p
(
x, A(x, y)

)
+ p

(
y, A(y, x)

)
, p

(
u, A(u, v)

)
+ p

(
v, A(v, u)

)
,

p(x, A(u, v)) + p(y, A(v, u)) + p(u, A(x, y)) + p(v, A(v, u))


}

=
{

p̃(ã, b̃), p̃(ã, Tã), p̃(b̃, Tb̃),
p̃(ã, Tb̃) + p̃(Tã, b̃)



}

.

Also, there exists an x̃ = (x, y) ∈ X̃ such that x̃ ≺ Tx̃ = (A(x, y), A(y, x)).
If a nondecreasing monotone sequence {x̃n} = {(xn, yn)} in X̃ τp-converges to x̃ = (x, y),

then x̃n = (xn, yn) ≺ (xn+, yn+) = x̃n+, that is, xn � xn+ and yn+ � yn. Thus, {xn} is a nonde-
creasing sequence τp-converging to x, and {yn} is a nonincreasing sequence τp-converging
to y. Thus, xn � x and y � yn for all n ∈ N . This implies x̃n ≺ x̃.

If two nondecreasing sequence {x̃n} = {(xn, yn)}, {ỹn} = {(un, vn)} are such that x̃n ≺ ỹn for
all n ∈ N , x̃n

τp̃→ (x, y), and ỹn
τp̃→ (u, v) as n → ∞, then xn � un, vn � yn, xn � xn+, yn+ � yn,

and un � un+, vn+ � vn. Thus, {xn}, {un} ⊆ X are two nondecreasing sequences, xn � un

for all n ∈ N , xn
τp→ x, and un

τp→ u as n → ∞, and by condition (iv) we have x � u. Similarly,
by condition (v) we have v � y. Thus, (x, y) ≺ (u, v).

Therefore, all hypotheses of Theorem . are satisfied. Following Theorem ., we de-
duce that A has a coupled point, that is, there exist z, w ∈ X̃ such that A(z, w) = z and
A(w, z) = w. �

Now, we present the following example.

Example . Let X = P = {(x, x) : x, x ∈ R+} ⊆ R, and E = R with the norm ‖x‖ =
√

x
 + x

. Define the mapping p : X × X → P by

p(x, y) = (x ∨ y, x ∨ y)

for all x = (x, x), y = (y, y) ∈ X, where a ∨ b = max{a, b}, a, b ∈ R+. Then (X, p) is a θ -
complete partial cone metric space. Define the partial order on X by

x � y if and only if x ≤ x, y ≤ y.

Then (X, p,�) is a θ -complete partially ordered partial cone metric space. In fact, “�” is
equal to “�”. For any fixed r ∈ [, ), define A : X × X → X by

A(x, y) = A
(
(x, x), (y, y)

)
=

(
rx

 + y
,

rx

ey

)

for all x, y ∈ X. It is clear that A satisfies the mixed monotone property on X with respect
to �. Define ψ : [, ) → ( 

 , ] as in Theorem ..
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Now, for all x, y, u, v ∈ X, x � u, v � y, we have

ψ(r)
[
p
(
x, A(x, y)

)
+ p

(
y, A(y, x)

)] � p
(
x, A(x, y)

)
+ p

(
y, A(y, x)

)
,

=
(

x ∨ rx

 + y
, x ∨ rx

ey

)

+
(

y ∨ ry

 + x
, y ∨ ry

ex

)

= (x + y, x + y)

� (u + y, u + y) = p(x, u) + p(y, v)

and, on the other hand,

p
(
A(x, y), A(u, v)

)
+ p

(
A(y, x), A(v, u)

)

=
(

rx

 + y
∨ ru

 + v
,

rx

ey
∨ ru

ev

)

+
(

ry

 + x
∨ rv

 + u
,

ry

ex ∨ rv

eu

)

=
(

ru

 + v
+

ry

 + x
,

ru

ev
+

ry

ex

)

� (ru + ry, ru + ry) = r
[
p(x, u) + p(y, v)

]

� rU
(
(x, y), (u, v)

)
,

where U((x, y), (u, v)) is as in Theorem ..
Also, conditions (i)-(v) of Theorem . are satisfied. From Theorem . we obtain that

A has a fixed point in X; indeed, x = (, ) is a fixed point of A.
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