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Abstract
In this paper, we state and prove Wardowski type fixed point theorems in metric
space by using a modified generalized F-contraction maps. These theorems extend
other well-known fundamental metrical fixed point theorems in the literature (Dung
and Hang in Vietnam J. Math. 43:743-753, 2015 and Piri and Kumam in Fixed Point
Theory Appl. 2014:210, 2014, etc.). Examples are provided to support the usability of
our results.
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1 Introduction and preliminaries
One of the most well-known results in generalizations of the Banach contraction principle
is the Wardowski fixed point theorem []. Before providing the Wardowski fixed point
theorem, we recall that a self-map T on a metric space (X, d) is said to be an F-contraction
if there exist F ∈F and τ ∈ (,∞) such that

∀x, y ∈ X,
[
d(Tx, Ty) >  ⇒ τ + F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)]
, ()

where F is the family of all functions F : (,∞) → R such that
(F) F is strictly increasing, i.e. for all x, y ∈R+ such that x < y, F(x) < F(y);
(F) for each sequence {αn}∞n= of positive numbers, limn→∞ αn =  if and only if

limn→∞ F(αn) = –∞;
(F) there exists k ∈ (, ) such that limα→+ αkF(α) = .

Obviously every F-contraction is necessarily continuous. The Wardowski fixed point the-
orem is given by the following theorem.

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be an F-con-
traction. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}n∈N
converges to x∗.

Later, Wardowski and Van Dung [] have introduced the notion of an F-weak contrac-
tion and prove a fixed point theorem for F-weak contractions, which generalizes some
results known from the literature. They introduced the concept of an F-weak contraction
as follows.
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Definition . Let (X, d) be a metric space. A mapping T : X → X is said to be an F-weak
contraction on (X, d) if there exist F ∈F and τ >  such that, for all x, y ∈ X,

d(Tx, Ty) >  ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
M(x, y)

)
,

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}
. ()

By using the notion of F-weak contraction, Wardowski and Van Dung [] have proved
a fixed point theorem which generalizes the result of Wardowski as follows.

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be an F-weak
contraction. If T or F is continuous, then T has a unique fixed point x∗ ∈ X and for every
x ∈ X the sequence {Tnx}n∈N converges to x∗.

Recently, by adding values d(Tx, x), d(Tx, Tx), d(Tx, y), d(Tx, Ty) to (), Dung and
Hang [] introduced the notion of a modified generalized F-contraction and proved a fixed
point theorem for such maps. They generalized an F-weak contraction to a generalized
F-contraction as follows.

Definition . Let (X, d) be a metric space. A mapping T : X → X is said to be a general-
ized F-contraction on (X, d) if there exist F ∈F and τ >  such that

∀x, y ∈ X,
[
d(Tx, Ty) >  ⇒ τ + F

(
d(Tx, Ty)

) ≤ F
(
N(x, y)

)]
,

where

N(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


,

d(Tx, x) + d(Tx, Ty)


, d
(
Tx, Tx

)
, d

(
Tx, y

)
, d

(
Tx, Ty

)}
.

By using the notion of a generalized F-contraction, Dung and Hang have proved the fol-
lowing fixed point theorem, which generalizes the result of Wardowski and Van Dung [].

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be a generalized
F-contraction. If T or F is continuous, then T has a unique fixed point x∗ ∈ X and for every
x ∈ X the sequence {Tnx}n∈N converges to x∗.

Very recently, Piri and Kumam [] described a large class of functions by replacing the
condition (F) in the definition of F-contraction introduced by Wardowski with the fol-
lowing one:

(F′) F is continuous on (,∞).

They denote by F the family of all functions F : R+ → R which satisfy conditions (F), (F),
and (F′). Under this new set-up, Piri and Kumam proved some Wardowski and Suzuki
type fixed point results in metric spaces as follows.
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Theorem . [] Let T be a self-mapping of a complete metric space X into itself. Suppose
there exist F ∈ F and τ >  such that

∀x, y ∈ X,
[
d(Tx, Ty) >  ⇒ τ + F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)]
.

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= con-
verges to x∗.

Theorem . [] Let T be a self-mapping of a complete metric space X into itself. Suppose
there exist F ∈ F and τ >  such that

∀x, y ∈ X,
[




d(x, Tx) < d(x, y) ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
]

.

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= con-
verges to x∗.

The aim of this paper is to introduce the modified generalized F-contractions, by com-
bining the ideas of Dung and Hang [], Piri and Kumam [], Wardowski [] and Wardowski
and Van Dung [] and give some fixed point result for these type mappings on complete
metric space.

2 Main results
Let FG denote the family of all functions F : R+ → R which satisfy conditions (F) and
(F′) and FG denote the family of all functions F : R+ → R which satisfy conditions (F)
and (F).

Definition . Let (X, d) be a metric space and T : X → X be a mapping. T is said to be
modified generalized F-contraction of type (A) if there exist F ∈ FG and τ >  such that

∀x, y ∈ X,
[
d(Tx, Ty) >  ⇒ τ + F

(
d(Tx, Ty)

) ≤ F
(
MT (x, y)

)]
, ()

where

MT (x, y) = max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}
.

Remark . Note that F⊆ FW . Since, for β ∈ (,∞), the function F(α) = –
α+β

satisfies the
conditions (F) and (F′) but it does not satisfy (F), we have F� FW .

Definition . Let (X, d) be a metric space and T : X → X be a mapping. T is said to be
modified generalized F-contraction of type (B) if there exist F ∈FG and τ >  such that

∀x, y ∈ X,
[
d(Tx, Ty) >  ⇒ τ + F

(
d(Tx, Ty)

) ≤ F
(
MT (x, y)

)]
.

Remark . Note that F ⊆FW . Since, for β ∈ (,∞), the function F(α) = ln(α + β) satis-
fies the conditions (F) and (F) but it does not satisfy (F), we have F �FW .
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Remark .
() Every F-contraction is a modified generalized F-contraction.
() Let T be a modified generalized F-contraction. From () for all x, y ∈ X with

Tx �= Ty, we have

F
(
d(Tx, Ty)

)
< τ + F

(
d(Tx, Ty)

)

≤ F
(

max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


,

d
(
Tx, Tx

)
, d

(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx),

d(Tx, y) + d(y, Ty)
})

.

Then, by (F), we get

d(Tx, Ty) < max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}
,

for all x, y ∈ X , Tx �= Ty.

The following examples show that the inverse implication of Remark .() does not
hold.

Example . Let X = [, ] and define a metric d on X by d(x, y) =| x–y | and let T : X → X
be given by

Tx =

{
, x ∈ [, ),

 , x = .

Obviously, (X, d) is complete metric space. Since T is not continuous, T is not an F-con-
traction. For x ∈ [, ) and y = , we have

d(Tx, T) = d
(

,



)
=




> 

and

max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}

≥ d(Tx, y) + d(y, Ty)

= d(, ) + d
(

,



)

=



.
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Therefore

d(Tx, T) ≤ 


max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}
.

So, by choosing F(α) = ln(α) and τ = ln 
 we see that T is modified generalized F-con-

traction of type (A) and type (B).

Example . Let X = {–, –, , , } and define a metric d on X by

d(x, y) =

⎧
⎪⎨

⎪⎩

, if x = y,
, if (x, y) ∈ {(, –), (–, )},
, otherwise.

Then (X, d) is a complete metric space. Let T : X → X be defined by

T(–) = T(–) = T = –, T = –, T = .

First observe that

d(Tx, Ty) >  ⇔ [(
x ∈ {–, –, }∧y = 

)∨(
x ∈ {–, –, }∧y = 

)∨ (x = , y = )
]
.

Now we consider the following cases:
Case . Let x ∈ {–, –, } ∧ y = , then

d(Tx, Ty) = d(–, –) = , d(x, y) = d(x, ) = , d(x, Tx) = d(x, –) =  ∨ ,

d(y, Ty) = d(, –) = ,
d(x, Ty) + d(Tx, y)


=

d(x, –) + d(–, )


=



∨ ,

d(Tx, x) + d(Tx, Ty)


=
d(–, x) + d(–, –)


=




∨ ,

d
(
Tx, Tx

)
= d(–, –) = , d

(
Tx, y

)
= d(–, ) = ,

d
(
Tx, Ty

)
= d(–, –) = ,

d
(
Tx, Ty

)
+ d(x, Tx) = d(–, –) + d(x, –) =  ∨ ,

d(Tx, y) + d(y, Ty) = d(–, ) + d(, –) = .

Case . Let x ∈ {–, –, } ∧ y = , then

d(Tx, Ty) = d(–, ) = , d(x, y) = d(x, ) =  ∨ , d(x, Tx) = d(x, –) =  ∨ ,

d(y, Ty) = d(, ) = ,
d(x, Ty) + d(Tx, y)


=

d(x, ) + d(–, )


=  ∨ 


,

d(Tx, x) + d(Tx, Ty)


=
d(–, x) + d(–, )


=




∨ ,

d
(
Tx, Tx

)
= d(–, –) = , d

(
Tx, y

)
= d(–, ) = ,
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d
(
Tx, Ty

)
= d(–, ) = ,

d
(
Tx, Ty

)
+ d(x, Tx) = d(–, ) + d(x, –) =  ∨ ,

d(Tx, y) + d(y, Ty) = d(–, ) + d(, ) = .

Case . Let x =  ∧ y = , then

d(Tx, Ty) = d(–, ) = , d(x, y) = d(, ) = , d(x, Tx) = d(, –) = ,

d(y, Ty) = d(, ) = ,
d(x, Ty) + d(Tx, y)


=

d(, ) + d(–, )


= ,

d(Tx, x) + d(Tx, Ty)


=
d(–, ) + d(–, )


= ,

d
(
Tx, Tx

)
= d(–, –) = , d

(
Tx, y

)
= d(–, ) = ,

d
(
Tx, Ty

)
= d(–, ) = , d

(
Tx, Ty

)
+ d(x, Tx) = d(–, ) + d(, –) = ,

d(Tx, y) + d(y, Ty) = d(–, ) + d(, ) = .

In Case , we have

d(Tx, Ty) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}

= max

{
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
, d

(
Tx, y

)
, d

(
Tx, Ty

)
}

= .

This proves that for all F ∈ F ∪ F, T is not an F-weak contraction and generalized
F-contraction. Since every F-contraction is an F-weak contraction and a generalized
F-contraction, T is not an F-contraction. However, we see that

d(Tx, T) ≤ 


max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}
.

Hence, by choosing F(α) = ln(α) and τ = ln 
 we see that T is modified generalized

F-contraction of type (A) and type (B).

Theorem . Let (X, d) be a complete metric space and T : X → X be a modified general-
ized F-contraction of type (A). Then T has a unique fixed point x∗ ∈ X and for every x ∈ X
the sequence {Tnx}n∈N converges to x∗.

Proof Let x ∈ X. Put xn+ = Tnx for all n ∈ N. If, there exists n ∈ N such that xn+ = xn,
then Txn = xn. That is, xn is a fixed point of T . Now, we suppose that xn+ �= xn for all n ∈N.
Then d(xn+, xn) >  for all n ∈N. It follows from () that, for all n ∈N,

τ + F
(
d(Txn–, Txn)

)

≤ F
(

max

{
d(xn–, xn),

d(xn–, Txn) + d(xn, Txn–)


,
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d(Txn–, xn–) + d(Txn–, Txn)


, d
(
Txn–, Txn–

)
,

d
(
Txn–, xn

)
, d

(
Txn–, Txn

)
+ d(xn–, Txn–), d(Txn–, xn) + d(xn, Txn)

})

= F
(

max

{
d(xn–, xn),

d(xn–, xn+) + d(xn, xn)


,

d(xn+, xn–) + d(xn+, xn+)


, d(xn+, xn+),

d(xn+, xn), d(xn+, xn+) + d(xn–, xn), d(xn, xn) + d(xn, xn+)
})

= F
(
max

{
d(xn–, xn), d(xn, xn+)

})
. ()

If there exists n ∈N such that max{d(xn–, xn), d(xn, xn+)} = d(xn, xn+) then () becomes

τ + F
(
d(xn, xn+)

) ≤ F
(
d(xn, xn+)

)
.

Since τ > , we get a contradiction. Therefore

max
{

d(xn–, xn), d(xn, xn+)
}

= d(xn–, xn), ∀n ∈N.

Thus, from (), we have

F
(
d(xn, xn+)

)
= F

(
d(Txn–, Txn)

) ≤ F
(
d(xn–, xn)

)
– τ

< F
(
d(xn–, xn)

)
. ()

It follows from () and (F) that

d(xn, xn+) < d(xn–, xn), ∀n ∈N.

Therefore {d(xn+, xn)}n∈N is a nonnegative decreasing sequence of real numbers, and
hence

lim
n→∞ d(xn+, xn) = γ ≥ .

Now, we claim that γ = . Arguing by contradiction, we assume that γ > . Since
{d(xn+, xn)}n∈N is a nonnegative decreasing sequence, for every n ∈N, we have

d(xn+, xn) ≥ γ . ()

From () and (F), we get

F(γ ) ≤ F
(
d(xn+, xn)

) ≤ F
(
d(xn–, xn)

)
– τ

≤ F
(
d(xn–, xn–)

)
– τ

...

≤ F
(
d(x, x)

)
– nτ , ()
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for all n ∈N. Since F(γ ) ∈R and limn→∞[F(d(x, x)) – nτ ] = –∞, there exists n ∈N such
that

F
(
d(x, x)

)
– nτ < F(γ ), ∀n > n. ()

It follows from () and () that

F(γ ) ≤ F
(
d(x, x)

)
– nτ < F(γ ), ∀n > n.

It is a contradiction. Therefore, we have

lim
n→∞ d(xn, Txn) = lim

n→∞ d(xn, xn+) = . ()

As in the proof of Theorem . in [], we can prove that {xn}∞n= is a Cauchy sequence. So
by completeness of (X, d), {xn}∞n= converges to some point x∗ in X. Therefore,

lim
n→∞ d

(
xn, x∗) = . ()

Finally, we will show that x∗ = Tx∗. We only have the following two cases:
(I) ∀n ∈N, ∃in ∈N, in > in–, i =  and xin+ = Tx∗,

(II) ∃n ∈N, ∀n ≥ n, d(Txn, Tx∗) > .
In the first case, we have

x∗ = lim
n→∞ xin+ = lim

n→∞ Tx∗ = Tx∗.

In the second case from the assumption of Theorem ., for all n ≥ n, we have

τ + F
(
d
(
xn+, Tx∗))

= τ + F
(
d
(
Txn, Tx∗))

≤ F
(

max

{
d
(
xn, x∗),

d(xn, Tx∗) + d(x∗, Txn)


,

d(Txn, xn) + d(Txn, Tx∗)


, d
(
Txn, Txn

)
,

d
(
Txn, x∗), d

(
Txn, Tx∗) + d(xn, Txn),

d
(
Txn, x∗) + d

(
x∗, Tx∗)

})
. ()

From (F′), (), and taking the limit as n → ∞ in (), we obtain

τ + F
(
d
(
x∗, Tx∗)) ≤ F

(
d
(
x∗, Tx∗)).

This is a contradiction. Hence, x∗ = Tx∗. Now, let us to show that T has at most one fixed
point. Indeed, if x∗, y∗ ∈ X are two distinct fixed points of T , that is, Tx∗ = x∗ �= y∗ = Ty∗,
then

d
(
Tx∗, Ty∗) = d

(
x∗, y∗) > .
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It follows from () that

F
(
d
(
x∗, y∗)) < τ + F

(
d
(
x∗, y∗))

= τ + F
(
d
(
Tx∗, Ty∗))

≤ F
(

max

{
d
(
x∗, y∗),

d(x∗, Ty∗) + d(y∗, Tx∗)


,
d(Tx∗, x∗) + d(Tx∗, Ty∗)


,

d
(
Tx∗, Tx∗), d

(
Tx∗, y∗), d

(
Tx∗, Ty∗) + d

(
x∗, Tx∗),

d
(
Tx∗, y∗) + d

(
y∗, Ty∗)

})

= F
(

max

{
d
(
x∗, y∗),

d(x∗, y∗) + d(y∗, x∗)


,
d(x∗, x∗) + d(x∗, y∗)


,

d
(
x∗, x∗), d

(
x∗, y∗), d

(
x∗, y∗) + d

(
x∗, x∗),

d
(
x∗, y∗) + d

(
y∗, y∗)

})

= F
(
d
(
x∗, y∗)),

which is a contradiction. Therefore, the fixed point is unique. �

Theorem . Let (X, d) be a complete metric space and T : X → X be a continuous mod-
ified generalized F-contraction of type (B). Then T has a unique fixed point x∗ ∈ X and for
every x ∈ X the sequence {Tnx}n∈N converges to x∗.

Proof By using a similar method to that used in the proof of Theorem ., we have

F
(
d(xn, xn+)

)
= F

(
d(Txn–, Txn)

) ≤ F
(
d(xn–, xn)

)
– τ

< F
(
d(xn–, xn)

)

and

lim
n→∞ d(xn, Txn) = lim

n→∞ d(xn, xn+) = .

As in the proof of Theorem . in [], we can prove that {xn}∞n= is a Cauchy sequence. So,
by completeness of (X, d), {xn}∞n= converges to some point x∗ ∈ X. Since T is continuous,
we have

d
(
x∗, Tx∗) = lim

n→∞ d(xn, Txn) = lim
n→∞ d(xn, xn+) = .

Again by using similar method as used in the proof of Theorem ., we can prove that x∗

is the unique fixed point of T . �

3 Some applications
Theorem . [] Let T be a self-mapping of a complete metric space X into itself. Suppose
there exist F ∈ F and τ >  such that

∀x, y ∈ X,
[
d(Tx, Ty) >  ⇒ τ + F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)]
.
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Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= con-
verges to x∗.

Proof Since

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}

≤ max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}
,

from (F) and Theorem . the proof is complete. �

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be an F-con-
traction. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}n∈N
converges to x∗.

Proof Since

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}

≤ max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}
.

So from (F) and Theorem . the proof is complete. �

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be an F-weak
contraction. If T or F is continuous, then T has a unique fixed point x∗ ∈ X and for every
x ∈ X the sequence {Tnx}n∈N converges to x∗.

Proof Since

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}

≤ max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}
,

if F is continuous, from (F) and Theorem . the proof is complete. If T is continuous,
from (F) and Theorem . the proof is complete. �

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be a generalized
F-contraction. If T or F is continuous, then T has a unique fixed point x∗ ∈ X and for every
x ∈ X the sequence {Tnx}n∈N converges to x∗.
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Proof Since

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


,

d(Tx, x) + d(Tx, Ty)


, d
(
Tx, Tx

)
, d

(
Tx, y

)
, d

(
Tx, Ty

)}

≤ max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}
,

if F is continuous, from (F) and Theorem . the proof is complete. If T is continuous,
from (F) and Theorem . the proof is complete. �

Theorem . Let (X, d) be a complete metric space and let T : X → X be a function with
the following property:

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γ d(y, Ty), ()

where α, β , and γ are nonnegative and satisfy α + β + γ < . Then T has a unique fixed
point.

Proof From (), we have

d(Tx, Ty) ≤ (α + β + γ ) max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


,

d
(
Tx, Tx

)
, d

(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

}
.

Then if d(Tx, Ty) > , we have

ln


α + β + γ
+ ln

(
d(Tx, Ty)

)

≤ ln

(
max

{
d(x, y),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
,

d
(
Tx, y

)
, d

(
Tx, Ty

)
+ d(x, Tx), d(Tx, y) + d(y, Ty)

})
.

Therefore by taking F(α) = ln(α) and τ = ln 
α+β+γ

in Theorem . or in Theorem . the
proof is complete. �

Remark . Our theorems are extensions of the above theorems in the following aspects:
() Theorem . gives all consequences of Theorem . of [] without assumption (F)

used in its proof.
() Theorem . gives all consequences of Theorem . of [] without assumption (F)

used in its proof.
() If in Theorem  of [] F is continuous, Theorem . gives all consequences of

Theorem  of [] without assumptions (F) and (F) used in its proof.
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() If in Theorem  of [] T is continuous, Theorem . gives all consequences of
Theorem  of [] without assumption (F) used in its proof.

() Because every F-weak contraction is a generalized F-contraction, () and () are
also true for Theorem . of [].
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