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Abstract

Let A be an index set, and C = {Cy }aeu € [1;00)A. Fuzzy quasi-triangular space is
defined to be (X, M¢.4,*), where X is a nonempty set, a fuzzy family

Mea={My : X x X x (0;00) = (0;1], ¢ € A} satisfies YoeaVxyrexViseo0) (Mo (X, y, 1) *
Ma(y,z,5) < My(x,z,Co(t +5)}, and * is the continuous t-norm x: [0; 1] x [0; 1] — [0; 1].
In (X, Mc.a, %), left (right) G-families and W-families KCr. 4 generated by Mc.4 (Kc.a
generalize M. 4) are defined and described. Using families K¢ 4, three kinds of left
(right) fuzzy sets of Pompeiu-Hausdorff type on 2X x 2X x (0; 00) are introduced.
Using these fuzzy sets, three kinds of left (right) set-valued fuzzy contractions

T: X — 2X are constructed, and for such fuzzy contractions, conditions guaranteeing
the existence of periodic points and left (right) M¢_4-convergence to these periodic
points of dynamic processes (W :m € {0} UN), w” e Tw™ ") for m € N, starting at
WP € X, are established. Moreover, in (X, M4, %), using left (right) G-families and
W-families KCc. 4 generated by M. 4, two kinds of left (right) single-valued fuzzy
contractions T : X — X are constructed, and for such fuzzy contractions, the
convergence, existence, approximation, uniqueness, periodic point, and fixed point
result is also obtained. Examples are provided.
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1 Introduction

Let X be a (nonempty) set. A map M : X x X x [0;00) — [0;1] or M : X x X x (0;00) —
[0;1] is called a fuzzy set (Zadeh [1]). The set X, together with a fuzzy set M and with
a continuous f-norm x, is called a fuzzy space and is denoted by (X, M, x). We recall the

definition of Schweizer and Sklar [2].

Definition1.1 A binary operation x: [0;1] x [0;1] — [0;1] is called a continuous ¢-norm if
« satisfies the following conditions: (i) ax b = bxa; (ii) ax b < cxd fora < ¢, b < d; (iii) (a *
b)xc=ax(bxc); (iv) ax1=a; (v) * is continuous, that is, for all convergent sequences
(%, : m e N) and (y,, : m € N) in [0;1], limy,, o0 (X * Vi) = limy,— o0 Xy, % 1imy,—, o0 ¥, Here
a,b,c,d € [0;1].
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The following fuzzy spaces are well known: fuzzy metric spaces (Kramosil and Michalek
[3], George and Veeramani [4]), fuzzy quasi-metric and fuzzy quasi-pseudometric spaces
(Gregori and Romaguera [5]), intuitionistic fuzzy metric spaces (Park [6]), fuzzy uniform
spaces (Lowen and Wuyts [7]), fuzzy quasi-uniform spaces (Hutton [8]), and fuzzy topo-
logical spaces (Hutton [8]).

The following fuzzy metric space is a fuzzy version of probabilistic metric space.

Definition 1.2 A fuzzy metric space (in the sense of Kramosil and Michalek [3]) is an
ordered triple (X, M, *) where M : X x X x [0; 00) — [0;1] satisfies (i) Vs ex {M(x,y,0) = 0},
(i) Vaexee(omo) (M, %, 8) = 1}, (i) Vayex{Fee(omoe (M, 3, 2) = 1} implies & = y}, (iv) Vayex
Vte(0300) (M (%, y, £) = My, %, )}, (V) Yy zexVise0i00) (M (%, y, £) x M(y, 2,8) < M(x,z,t +5)},and
(Vi) Vayex {M(x,,-) : [0;00) — [0;1] is left continuous}.

When (i)-(vi) hold, we will say that (X, M, x) is a KM-fuzzy metric space.

New fuzzy metric spaces and a study of a Hausdorft topology in these spaces appeared
in [4].

Definition 1.3 A fuzzy metric space (in the sense of George and Veeramani [4]) is an or-
dered triple (X, M, x) where M : X x X x (0;00) — (0;1] satisfies (i) VxyexVie(0;00) (M (%,
2,8) > 0}, (i) VaexViewomoiM@,2,8) = 1}, (i) Yayex{Treiomo M@ 3, ) = 1} implies »
b (V) YayexVeeoo iMx,3,8) = My,x,8)}, (V) VayzexVese©oo M, y,1) * M(y,z,5) <
M(x,z,t +5)}, and (Vi) Vyyex {M(x,9,-) : (0;00) — (0;1] is continuous}.

When (i)-(vi) hold, we will say that (X, M, x) is a GV -fuzzy metric space.

Note that these two concepts of fuzziness of metric spaces and the following two kinds
of completeness in these spaces are important in the rich literature concerning fuzzy fixed
point theory (see [3-5] and [9-13]).

Definition 1.4 (Grabiec [9]) Let (X, M, *) be a KM-fuzzy metric space. A sequence (x,, :
m € N) C X is called G-Cauchy if

Vicoo0 Ypent | lim MG %) =1}, (L1)

A sequence (x,, : m € N) C X converges to x € X if Vie0;00){limMyy—o0o MKy, %, ) = 1}.
(X, M, %) is called G-complete if every G-Cauchy sequence in X is convergent in X.

Definition 1.5 (George and Veeramani [4]) Let (X, M, *) be a GV-fuzzy metric space.
A sequence (x,, : m € N) C X is called M-Cauchy if

Vte(O;oo) {n rlr}inooM(xm Xm» t) = 1] (12)

A sequence (x,, : m € N) C X converges to x € X if Vie0;00){limyy— 0o M (X, %, 1) = 1},
(X, M, %) is called M-complete if every M-Cauchy sequence in X is convergent in X.

Note that an M-Cauchy sequence (see (1.2)) is a G-Cauchy sequence (see (1.1)), and the
converse is not always true.
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It is widely recognized that the existence, uniqueness, convergence, approximation, and
fixed point result concerning single-valued contractions in complete metric spaces of
Banach [14] (see also Caccioppoli [15]) deeply influenced the direction of fixed point the-
ory.

Theorem 1.1 ([14]) Let (X,d) be a complete metric space. If T : X — X and
3)»E[O;l)vx,ye)({d(]—v(x)’ T()/)) = )‘-d(xry)}’ (1'3)

then the following are true: (i) T has a unique fixed point w in X (i.e., there exists w € X such
that w = T(w) and Fix(T) = {w}); and (ii) for each w° € X, the sequence (T"(w°) : m € N)

converges to w.

The version of Theorem 1.1 for single-valued maps 7 : X — X satisfying the contractive
condition

Fr.e(01) Vayex Veeoo0) {M(T (%), T(y), At) = M(x,y,)} (1.4)

in G-complete KM-fuzzy metric spaces was proved by Grabiec [9].

The methods and ideas introduced by Banach and Caccioppoli were generalized in var-
ious ways to analyze and solve an astonishing variety of convergence, existence, and ap-
proximation problems. Nadler’s work (see [16, 17]) on the existence of fixed points was
another major advance in this topic since it applies to the set-valued dynamic systems.

Theorem 1.2 ([16, 17]) Let (X, d) be a complete metric space. If T : X — CB(X) and
3)\E[O;l)vx,ye)({I—Id(]—v(x); T(Y)) = )\d(x;)/)}; (15)
then Fix(T) # & (i.e., there exists w € X such that w € T (w)).

Here C5(X) is the class of all nonempty closed and bounded subsets of the metric space
(X,d), and H? is the Pompeiu-Hausdor{f metric on CB(X) x CB(X) of the form

HYU, W) = max{sup d(u, W), sup d(w, u)}, U, W e CB(X), (1.6)
uell weW
where d(x, V) = inf,cy d(x,v) forx € X and V € CB(X).

There have been further new ideas, results, and perspectives on fuzzy fixed point the-
ory in recent years concerning fuzzy extensions of Theorem 1.2 in the case of set-valued
contractions with nonempty compact values.

New and important fixed point and endpoint results for set-valued fuzzy contractions
T :X — K(X) in M-complete GV -fuzzy metric spaces (X, M, ) satisfying the contractive

conditions
J.c0) Vayex Vee(ooo) {Hm (T (%), T(9), At) > M(x,y,t)} 1.7)

(and their generalizations) are proved by Kiany and Amini-Harandi [11]; here the Pom-
peiu-Hausdor(f fuzzy metrics Hy on K(X) x K(X) x (0; 00) is of the form

Hg(U, W, ¢) = min{ inf M, W, ), inf M(w, U, t)}, U, W e K(X), (1.8)
ue we
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where KC(X) is the space of nonempty compact subsets of X, and M(x, V,£) = sup,..,, M(x,
v,t) for x € X, V € K(X), and ¢ € (0;00). Further new results in this direction were pro-
posed by Phiangsungnoen et al. [12].

A totally new idea was required in fuzzy spaces with asymmetric structures, for example,
in fuzzy quasi-metric spaces. This new idea concerning convergence and completeness
was proposed by Gregori and Romaguera [5] and Gregori et al. [10].

Definition 1.6 A fuzzy quasi-metric space (in the sense of George and Romaguera [5]) is
an ordered triple (X, M, ) where M : X x X x (0; 00) — (0;1] satisfies (i) VyexVie(0;00) (M (%,
¥,t) > 0}, (ii) ViexVec000) iM%, 2) = 1}, (iii) Viyex{Fre©i00) iM%, y,t) = 1} implies x = y},
(iV) Vay,zexVise(000) {M (x, 7, 1) * M (9, 2,8) < M(x,2, £ +5)}, and (V) Vigpex {M(,y, ) : (0;00) —
(0;1] is continuous}.

When (i)-(v) hold, we will say that (X, M, x) is a GR-fuzzy quasi-metric space.

Note that given important references are not exhaustive.

After the years 1922 and 1969, also with very strong assumptions (determining essential
tools of investigation and playing an essential role in all known proofs) and with con-
clusions analogous to those mentioned before, many mathematicians constructed similar
contractions and exhibited generalizations of Theorems 1.1 and 1.2 in various sequentially
complete spaces.

However, we see that, without required restrictive assumptions and with conclusions
more profound than in Theorems 1.1 and 1.2 or in the papers cited, it is not clear how one
could construct new spaces, deliver new contractions in these spaces, and prove new anal-
ogous theorems for such contractions. This is one of the most fundamental and natural
questions concerning theory of spaces and fixed point theory of set-valued and single-
valued dynamic systems.

A set-valued dynamic system is defined as a pair (X, T), where X is a certain space,
and T is a set-valued map T : X — 2% (2% denotes the family of all nonempty sub-
sets of a space X). A dynamic process or a trajectory starting at wy € X or a motion of
the system (X, T) at #° is a sequence (w" : m € {0} U N) defined by w” € T(w"!) for
m € N (see Aubin and Siegel [18], Aubin and Ekeland [19], Aubin and Frankowska [20],
and Yuan [21]). By Fix(7T) and Per(T") we denote the sets of all fixed points and periodic
points of T, respectively, that is, Fix(T) = {w € X :w e T(w)} and Per(T) ={fwe X:we
T (w) for some k € N}.

Recall that a single-valued dynamic system is defined as a pair (X, T'), where X is a certain
space, and T is a single-valued map T : X — X, that is, V,cx{T(x) € X}. For each w° € X,
a sequence (W” = TV (w°) : m € {0} UN) is called a Picard iteration starting at w° of the
system (X, T); here, for m € {0} UN, we define T =ToTo---oT (m-times) and T1% = Iy
(the identity map on X). By Fix(T') and Per(T) we denote the sets of all fixed points and
periodic points of T, respectively, that is, Fix(T) = {w € X : w = T(w)} and Per(T) = {w €
X :w = T (w) for some k € N}.

In this paper our aim is twofold. First, we want to introduce and describe fuzzy quasi-
triangular spaces. Second, we want to show how the fuzzy quasi-triangular spaces com-
bined with some new ideas, methods, techniques, and tools of studying can be used to con-
struct the set-valued and single-valued fuzzy contractions and next to study the problems
concerning convergence, periodic points, and fixed points for such contractions. Then,
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in this more general setting, we formulate and prove fuzzy extensions of Theorems 1.1
and 1.2.

More precisely, this paper is divided into 15 sections. In Section 2, we define very gen-
eral fuzzy spaces (X, M, 4, *) called fuzzy quasi-triangular spaces. In Section 3, we intro-
duce the notions of the left (right) M, 4-convergence, M 4 left (right) G-sequentially
completeness, and M, 4 left (right) VW-sequential completeness in (X, Mc; 4, *). In Sec-
tions 4 and 5, we define left (right) G-families and WW-families ¢, 4 generated by Mc; 4,
which generalize M, 4, and next we define left (right) K¢, 4-convergence, K¢, 4 left
(right) G-sequential completeness, and K¢, 4 left (right) WW-sequential completeness in
(X, M, 4, %); in particular, if ¢, 4 = M, 4, then Section 5 reduces to Section 3. In Sec-
tion 6, using families KC¢, 4, we introduce the notions of left (right) fuzzy sets of Pompeiu-
Hausdorff type on 2% x 2% x (0;00), and using these fuzzy sets, we construct left (right)
set-valued 7 : X — 2% and single-valued 7 : X — X fuzzy contractions. In Section 7,
we define K¢, 4 left (right) G-admissible and KC¢; 4 left (right) W-admissible set-valued
T : X — 2% and single-valued T : X — X dynamic systems; this notions generalize in
some sense the notions of K¢; 4 left (right) G-sequential completeness and KCc, 4 left (right)
W-sequential completeness in (X, Mc; 4, *) presented in Section 5. Section 8 of the pa-
per is devoted to the left (right) M, 4-closed set-valued T : X — 2% and single-valued
T : X — X dynamic systems. Section 9 includes a convergence, approximation, and peri-
odic point of Nadler-type result with its proof. This result concerns left (right) dynamic
systems T : X — 2% in (X, M, 4, *) with left (right) G-families and left (right) WW-families
Kc,a generated by M, 4. The convergence, existence, periodic point, fixed point, and
uniqueness of Banach-type result and its proofin the case of left (right) single-valued fuzzy
contractions T : X — X in fuzzy quasi-triangular spaces (X, Mc, 4, *) with left (right)
G-families K¢, 4 and left (right) W-families ¢, 4 (generated by M, 4) are given in Sec-
tion 10. Important relations between fuzzy quasi-triangular spaces and quasi-triangular
spaces are to be found in Section 11. In Section 12, some fuzzy quasi-triangular spaces are
constructed. The examples given in Sections 13 and 14 illustrate the fact that the results
obtained here are different from those well known in the literature. Section 15 concerns
some conclusions.

Results obtained here are new even in fuzzy metric spaces. This paper is a continuation
of [22].

2 Fuzzy quasi-triangular spaces (X, M 4, *) and M, 4-separability

It is worth noticing that the fuzzy quasi-triangular spaces (X, M, 4, *), introduced in this
section, are not necessarily topological or Hausdorff or sequentially complete and are, in
particular, substantial generalizations of fuzzy metric spaces [3, 4] and fuzzy quasi-metric
spaces [5].

Definition 2.1 Let X be a (nonempty) set, A be an index set, C = {Cy}aca € [1; 00)4, and
*:[0;1] x [0;1] — [0;1] be a continuous ¢-norm.
(A) We say that a family Mc, 4 = {My : X x X x (0;00) = (0;1], ¢ € A} of fuzzy sets
My, o € A, is a fuzzy quasi-triangular family on X if

VoteAvx,y,zert,se(O;oo) {Mot (o, V2 )« M, ()’, z,5)

<My (x,2,Cot +5))}. (2.1)
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A fuzzy quasi-triangular space (X, Mc, 4, %) is a set X together with a fuzzy
quasi-triangular family Mc, 4 = {M, : X x X x (0;00) — (0;1], @ € A} and with a
continuous Z-norm .

(B) We say that M 4 = {My : X x X x (0;00) = (0;1], ¢ € A} is a fuzzy triangular
Sfamily if fuzzy triangular sets My, o € A, satisfy the condition

V(xEAvx,y,ZGXVt,sE(O;oo) {Ma (o, Y )« My ()’» z,8) < My(x,2,t +5) } .

A fuzzy triangular space (X, M 4, %) is a set X together with a fuzzy triangular
family M 4 = {M, : X x X x (0;00) — (0;1], @ € A} and a continuous ¢-norm .

(C) Let (X, Mc;.4,%) be a fuzzy quasi-triangular space. We say that M, 4 is separating
on X if

VM,WEX{u # W= EIt:z()E.AEItOE(();oo) {Mao (Ll, w, t()) <1

V Moo (W, u, £9) <1} }. (2.2)

(D) If (X, Mc;.a, %) is a fuzzy quasi-triangular space and ME}A = {M;',a € A}, where
VaeAYayexVieooa iM%, ,8) = My (y,, £)}, then M, is a fuzzy quasi-triangular
family on X, and we say that the fuzzy quasi-triangular space (X, Mg 4o %) is the
conjugation of (X, Mc, 4, *).

Remark 2.1 Let (X, M, 4,*) be a fuzzy quasi-triangular space. In general, the following
properties do not necessarily hold:
(A) YoeaVayex{Vieom0) (Mo (¥, 9, t) = 1} iff x = y}, or, equivalently,
VaeAYrex Ve (0;00) {Ma (%, %, £) = 1} and
VaeAVxyexVie(0i0) (* 7y implies M, (x, ¥, £) < 1}.
(B) VaeaVie:00) Yayex iMa (X, y, ) = Mo (y, %, £)}.
(C) VYaeAYuyex{Meu(x,y,-): (0;00) — (0;1] is nondecreasing}.
(D) VaeaVsyex{My(x,9,-) : (0;00) — (0;1] is continuous}.

3 Left (right) M, 4-convergence in (X, M. 4, *), Hausdorff property, and

M. 4 left (right) G-sequential completeness, and M. 4 left (right)

W-sequential completeness
The notion of G-completeness in KM-fuzzy metric spaces was introduced by Grabiec [9]
(see Definition 1.4). The M-completeness in GV -fuzzy metric spaces was introduced in
George and Veeramani [4] (see Definition 1.5). In fuzzy quasi-metric spaces, using ideas of
Reilly et al. [23], the extensions of the notion of completeness were obtained by Gregori et
al. [10] in a more complicated presentation, which is a consequence of asymmetric struc-
tures of these fuzzy spaces.

The notions of Mc, 4 left (right) G-sequential completeness and M, 4 left (right)
W-sequential completeness in (X, M, 4, *) are defined in this section.

A natural starting point is to define the notions of left (right) M, 4-convergence of se-

quences in the fuzzy quasi-triangular spaces (X, Mc, 4, *).

Definition 3.1 Let (X, M, 4,*) be a fuzzy quasi-triangular space.
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(A) We say that the sequence (0, : m € N) in X is left (right) Mc, a-convergent to x € X

ifx € LIM(, G4 (x € LIMY, ") where
L-M .
LIM 5 = | € X Ve a¥iciomo | lim Mo, =1}

(LIMR Meia ’ueX Ve AV ee(000) { lim M, (x,,, 1, £) =1”).
m— 00

(¥m:meN)

(B) We say that a sequence (x,,, : m € N) in X is left (right) M, a-convergent in X if
L Mg, R Mg,
(C) We say that (X, Mc.4, *) is Zeft (rlght) Hausdorff if for each left (right)
M, a-convergent in X sequence (x,, : m € N), the set LIML Maia LIMR MCA is

(x:meN) (%22 mEN)
a singleton.

Remark 3.1 Let (X, Mc, 4, *) be a fuzzy quasi-triangular space.
(A) Itis clear that if (x,, : m € N) is left (right) M, A convergent in X, then
LIMLx A:lnzl“\? c LIM- A:tn2§ (LIMIi AZZ§ c LIMY O A;l,eN ) for each subsequence
(ym.meN)of(xm.meN)
(B) The limit of left (right) M c; 4-convergent sequence in X need not be a singleton;

see Examples 12.1-12.5.

Now we define M, 4 left (right) G-sequentially completeness and M, 4 left (right)
W-sequentially completeness in (X, Mc; 4, *).

Definition 3.2 Let (X, M, 4, *) be a fuzzy quasi-triangular space.
(A) We say that a sequence (xy, : m € N) in X is an M, 4 left (right) G-sequence in X if

VO(EAvtE(O;OO)VpEN {rnli—r>nooMa (Xsm> Xim+p> t) = 1] (3.1)
<Va€AVtE(0;oo)Vp€N [W}gnoo M, (xm+pr Xm> t) =1 } ) . (32)

If every M, 4 left (right) G- sequence (xm m € N) in X is left (right)
M, a-convergent in X (i.e., LIMLx meN LIMIZ A:[nglg‘ # @)), then (X, Mc, 4, %)

is called M, 4 left (right) G-sequentially complete.
(B) We say that a sequence (%, : m € N) in X is an M, 4 left (right) VWW-sequence in X if

VaeaVecomo | Tim inf Mo (%, £) = 1} (3.3)
m—00 n>m
(V%A‘v’te 0;00)] Lim inf M, (%, X, £) = }) (3.4)
m— 00 N>m

If every M, 4 left (right) W-sequence (x,, : m € N) in X is left (right)
M, 4-convergent in X (i.e., LIML MCA LIMIi Mcia # @), then (X, Mc, 4, %)

(X:meN) :meN)

is called M, 4 left (right) W- sequentmlly complete.

Remark 3.2 Note that every M, 4 left (respectively, right) YW-sequence is also an M¢; 4
left (respectively, right) G-sequence. Indeed, (3.3) and (3.4) imply

vae.AVte(O;oo)VO<8<1ElmoeNVm>mo {;g{,M‘)’ (X X t) > 1 — 8}

(VaGAVtE(O;oo)VO<£<1amoeNvm>mo {rllErEMa (xn; KXm» t) >1-¢ }) .
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Hence,

ereAVte(O;oo)VO<s<l EImo ean>m>m0 {Ma (xm; Kns t) >1- 8}

(VaEAVte(O;oo)V0<s<13m0ean>m>m0 {Ma (xmxm) t) >1- 8}))
and this yields

VaeAVte(O;oo)VpeNVO<a<1 Elmo eNvm>m0 {Ma () Xin+p> £)>1- 8}

(VOZE.AVtE(O;OO)VpENVO<E<13m0 eNvm>mo {Mat (xm+p’xm’ t) >1-— 5})
Hence, we get (3.1) and (3.2).

4 Fuzzy quasi-triangular spaces (X, Mc. 4, *) with left (right) G-families /Cc; 4
and left (right) WW-families /C. 4 generated by M. 4 and relation between
K¢, a-separability and M. 4-separability

For given fuzzy quasi-triangular spaces (X, M, 4, %), it is natural to define the notions

of left (right) G-families K¢, 4 and left (right) W-families K¢, 4 generated by Mc, 4 (see

Definitions 4.1 and 4.2), which provide new structures on X.

Definition 4.1 Let (X, M, 4, *) be a fuzzy quasi-triangular space.
(A) The family K¢, 4 = {K,, : « € A} of fuzzy sets K, : X x X x (0,00) = (0;1], ¢ € A, is
said to be a left (right) G-family generated by Mc, 4 if:

(Kg1) VaeAVx,y,zert,se(();oo){I<o¢ (x,y, 1) x Ky ()/, z,8) < Ky (%, 2, Co (£ + )}
(K£G2) For any sequences (x,,, : m € N) and (y,, : m € N) in X satisfying

Vae Ve Vpert| 1im Ko (i t) =1} (.1)

(VaeaVicoooVpen] Jim_ Kemepmt) =1}) (42)
and

Ve Avtewm){ Tim Ko Qs ) = 1} (4.3)

(Veea¥icooo | lim KeGomymt)=1}), (4.4)
we have

Vae Avte(ow{ i Mo (s s ) = 1} (4.5)

(vae Avtemm){ Tim M (o Y ) =1}). (4.6)

(B) K(L);(?MC;A, " (K&QMC;A, *)) is the set of all left (right) G-families K¢, 4 generated by
M.

Definition 4.2 Let (X, M, 4, *) be a fuzzy quasi-triangular space.
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(A) The family K¢, 4 = {K, : @ € A} of fuzzy sets K, : X x X x (0,00) = (0;1], ¢ € A, is
said to be the left (right) W-family generated by Mc, 4 if:

(’CWI) VaeAVx,y,zeXVt,se(O;oo){I(a (x,y, t) * Ky ()’7 z,8) < Ky (x,2, Co (£ +5))}.
(KW?2) For any sequences (xy, : m € N) and (¥, : m € N) in X satisfying

Vaea¥ecome)] 1im inf Ky(p 2 £) = 1} (4.7)
m—00 n>m
(vae AVecooo) ] Tim inf Ky (e 2 8) = 1}) (4.8)
m—>00 n>m
and
VOtG.AvtE(O;OO){ lim I<a(ym;xm: t) = 1} (4-9)
(Veea¥icomo | lim Koyt =1}), (4.10)
we have
VD(EAvtE(O;OO) {W}Ll;nooMa (ym; Xim» t) = 1] (411)
(VeeaVecooo] Jim Mo ymt) =1}). (4.12)
(B) K (K N1, o.0)) 1s the set of all left (right) W-families K ted b
XMCA* xX,M .A* g -ramilies CA generae y

Mc;a.

A natural step is to understand the remarkable relations in (X, M, 4, *) between M¢, 4

and left (right) G-families and WW-families K¢, 4 generated by Mc, 4.

Remark 4.1 The left (right) G-families ¢, 4 and W-families ¢, 4 generated by M, 4

are substantial generalizations of Mc; 4. Indeed, we have:

(A) Definitions 4.1 and 4.2 imply that Mc, 4 GKXMCA* ﬁKfXgMcA* and
RW
Mea € K VEKG M a0

(B) The arguments in Section 11 show that KLY M%) \{/\/lc A # D,
Koo am\ M) 72, KGN ) \MMea} 72, and KL\ Mca) 7 2.
(C) (X, Kc,a,%) are fuzzy quasi-triangular spaces.

We introduce the notion of ¢, 4-separability in (X, Mc, 4, %) as follows.

Definition 4.3 Let (X, Mc; 4, *) be a fuzzy quasi-triangular space, and K¢, 4 be the left
(right) G-family or WW-family generated by M, 4. We say that K¢, 4 is separating on X if

Vu,wex{u 7'/ w= EIot()E.AEIt()G(O;OO) {I(ao (Ll, w, tO) <1

V Koo (W, 1, 8) <1} (4.13)

The notion of K¢, 4-separability is used for the following interesting theorem.
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Theorem 4.1 Let (X, Mc; 4, *) be a fuzzy quasi-triangular space, and let K¢, 4 be the left
(right) G-family or W-family generated by Mc, a. If M, 4 is separating on X, then K¢, 4
is separating on X.
Proof We begin by supposing that g, wy € X, 1y # wp, and

VaEAVtE(O;OO) {Ka (L{(), Wo, t) =1A I(at (WOr Uuo, t) = 1}

Then (KG1) and (XW1) imply

Vae.AVte(O;oc) {Ka (MO: Uuop, t)

> Ko (o, Wo, £12) % Ko (wo, 1o, £/2) =1 %1 =1}
or, equivalently,
Vae A re(0:00) | Ko (10, 0, £) = Ko (wo, 1o, £) = 1}
and
Ve AV te(0s00) | Ko (10, tho, 1) = Ko (140, wo, £) = 1}.
Assuming that x,, = 1o and y,, = wy, m € N, we conclude that

Ve Avte(o;m)vaN[ 1im Ky (o onps ) = KM Koy (s s ) = 1},
m—>00 m— 00

Ve Avte(o;oo)vpeN{ 1im Ky Spmaps s £) = 1im Koy (s Yor ) =1},
m—00 m— 00

Vaea¥ecopo] lim inf Ko(p 2 t) = lim Ka(y,,,,xm,t)zl},

m—00 n>m m— 00

Ve AVicomo | 1im_inf Ko (on 1) = 1im Ky Gy t) =1}

m— 00 n>m

Therefore, it is not hard to see that (4.1)-(4.4) and (4.7)-(4.10) hold, and, by (KG2) and
(XW2), the above considerations lead to the following conclusion:

Up #WO A VaeAVte(O;oo) {W}EnooMa (lel KXimn» t) = rr}gnoo Ma (xm:ym: t) = 1]
or, equivalently,
Uuo # Wo N VaEAVte(O;oo) {Mot (WOy Uuo, t) = MO( (MO; Wo, t) = 1}

However, M, 4 is separating (see (2.2)), a contradiction. Therefore, K¢, 4 is separating.
O

5 Left (right) ICc, 4-convergence, /Cc; 4 left (right) G-sequential completeness,
and /C¢; 4 left (right) YW-sequential completeness in (X, Mc; 4, *)

Definition 5.1 Let (X, M, 4,*) be a fuzzy quasi-triangular space, and K¢, 4 = {Ky : X x

X x (0,00) = (0;1],x € A} be the left (right) G-family or left (right) WW-family generated

by Mc; 4.
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We say that a sequence (x,, : m € N) in X is left (right) K¢, 4-convergent to x € X if x €
LIM( A (x € LIM(, SSA ) where

Xpp:meN Xpp:meN

_](: 3 .
LimMEReA {u €X: Ve Avte(o;oo){ Tim K (1,5, ) 21}}

Xp:meN) —

(LIMR_ICC‘““ - {u € X : Yaea¥ie(000) {y}gnw1<a (s 1y ) = 1} })

(xp:meN)
We say that a sequence (x,, : m € N) in X is left (right) K¢, 4-convergent in X ifLIM(Lx_m’iZS\T) <
-Ke;
@ (LIM, -S4, 7 2).
Definition 5.2 Let (X, M, 4,*) be a fuzzy quasi-triangular space, and K¢, 4 = {K : X x
X x (0,00) = (0;1], ¢ € A} be the left (right) G-family generated by M. 4.
(A) We say that a sequence (x,, : m € N) in X is a K¢, 4 left (right) G-sequence in X if

VaeAvte(O;oo)vpeN{n}i_r)noo Ky (xmr Xm+ps t) = 1} (51)
(VaeAVte(O;oo) VpeN {rr}l—r)réo K, (xm+p: Kms t) =1 }) . (52)

(B) Ifevery KCc, 4 left (right) G-sequence (x,, : m € N) in X is left (right)
K¢, a-convergent in X (i.e., LIM- e £ (LIMR_’CC;A # @)), then (X, Mc. 4, *)

(xp:meN) (xpy:meN)

is called ICc, 4 left (right) G-sequentially complete.

Definition 5.3 Let (X, M, 4,*) be a fuzzy quasi-triangular space, and let K¢, 4 = {K, :
X x X x (0,00) = (0;1],« € A} be the left (right) W-family generated by Mc. 4.
(A) We say that a sequence (x,, : m € N) in X is a K¢, 4 left (right) W-sequence in X if

Vaea¥icone] lim inf[(a(xm,x,,,t)zl} (5.3)

m—00 n>m

(vae AVictoi0)] 1im inf Ky (s £) = 1}) (5.4)
m—00 n>m

(B) Ifevery K¢, 4 left (right) W-sequence (x,, : m € N) in X is left (right)

42 (LIM{ A @), then (X, M, 4, %)

is called KCc; 4 left (right) W-sequentially complete.

L-Kc;A
(xy:meN)

K¢, a-convergent in X (i.e., LIM

Remark 5.1

(A) Every K¢, left (respectively, right) W-sequence in X is Kc; 4 left (respectively,
right) G-sequence in X. This can be proved by using (5.1)-(5.4) and by adopting the
arguments in Remark 3.2.

(B) Note that every K¢, 4 left (respectively, right) G-sequentially complete fuzzy
quasi-triangular space (X, Mc; 4, *) is also K¢, 4 left (respectively, right)
W-sequentially complete. Indeed, assume that (x,, : m € N) in X is IC¢, 4 left
(respectively, right) W-sequence in X. Then, by (A) it is also K¢, 4 left (respectively,
right) G-sequence in X, and this means that it is left (respectively, right)

K¢, a-convergent in X.
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6 Left (right) fuzzy sets of Pompeiu-Hausdorff type on 2X x 2X x (0; 00) and
set-valued T : X — 2X and single-valued T : X — X left (right) fuzzy
contractions in (X, M, 4, %)

The Pompeiu-Hausdorff metric (1.6) on closed or compact sets in metric spaces (X, d)

plays an essential role in mathematics and its applications. See Berinde and Pécurar [24]

for a comprehensive treatment of the foundations of this metric.

In this section, in (X, M, 4, *) with left (right) G-families IC¢, 4 and left (right) WW-fam-
ilies ICc, 4 generated by M, 4, we define three kinds of left (right) fuzzy sets of Pompeiu-
Hausdorff type on 2% x 2% x (0;00), and, using these fuzzy sets, we construct three kinds
of set-valued left (right) fuzzy contractions T : X — 2% and two kinds of single-valued left
(right) fuzzy contractions 7 : X — X.

Definition 6.1 Let (X, M, 4, %) be a fuzzy quasi-triangular space, K¢, 4 be the left (right)
G-family or W-family generated by M, 4, and

VaeA,xeX,VeZX,te(O;oo) {[<a (%, V,t) = Sup{l(a (x,v,t):ve V}

/\I(O,(V,x,t):sup{Ka(v,x,t):ve V}} (6.1
(A) IflCcAeKXMCA* K(LX% o 1€ (12,3}, and

-Kc.
VOZEAVU,WQZXVtE(O;OO) Fi;n,z)E'A (U1 W, t)

min{inf,c;; Ky (1, W, t), inf,cw K, (U, w,£)} ifn=1,
= { min{inf,c;; K, (e, W, t),inf,,cw K, (W, U, £)} ifn=2, ¢,
inf,c; Ko (u, W, t) ifn=3

then a family FL GA = {FL A a € A} is said to be a left fuzzy set of
Pompeiu- Hausdo;ﬁtype on 2X x 2% x (0; 00).
(B) 1f Kt € Ky Y KoM ge 1 € 1,2,3), and

-Kc.
Vote.AvU,Wezx vtE(O;oo) Pf;n,Z)gA (U, W, t)

min{inf,e Ky (u, W, t), infew Ko (U, w,8)}  ifn =1,
= { min{inf,ey Ky (, W, t), infew Ko (w, U, 8)} ifn=2, },
inf,cy Ky (u, W, t) ifn=3

then a family ]-'R A = {FR A € A} is said to be a right fuzzy set of
Pompeiu- Hausdorﬁ"type on 2X x 2% x (0; 00).

Definition 6.2 Let (X, M, 4, *) be a fuzzy quasi-triangular space, K¢, 4 be the left (right)
G-family or left (right) W-family generated by Mc, 4, A = {Aq}aca € (0;1)4, (X, T) be a
set-valued dynamic system, 7 : X — 2%, and n € {1,2,3)}.
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UKW and

(A )IfICCAEKXMcA* M, a%)

-Kc,
VaeAvte(O;oo)Vx,yeX {Fim,z)c("A (T(x)r T()’); A t)

> Kq(%,9, Cat) }, (6.2)

then we say that (X, T) is a fuzzy (]-'i ;)](CC;A, A)-left contraction.
RW
(B) If Kca GKXMC.A* K(XMC.A* and

K
VaeAvte(O ;00) xyeX{an 2)€A ( (x)’ T(Y); )Lat)

> Ka(%,9, Cat)}, (6.3)

then we say that (X, T) is a fuzzy (.Fie ;,}(CC‘A,)L)-right contraction.

The following Definition 6.3 can be stated as a single-valued version of Definitions 6.1
and 6.2.

Definition 6.3 Let (X, M, 4,*) be a fuzzy quasi-triangular space, let ICc, 4 be the left
(right) G-family or left (right) W-family on X generated by Mc, 4, and let n € {1,2}. Let
={Ag}eca € (0; 1) ,and let (X, T) be a single-valued dynamic system, 7 : X — X.
(A) If Ke,p € KES M) K(LX%C , then we define a left fuzzy set ]-'i;(’cc““ on
X x X x (0;00) by]:L Foa _ {FOL”]’;CA,a € A} where

Kc
VaeAvu weXVte 0; oo)FL A(

wmx (W, )

min{K, (u, w, t), Ko (W, u, t)} ifn=1,
Ky (u, w, t) ifn=2.

We say that (X, T) is a fuzzy (]-',;KC;A, A)-left contraction if

-K
VaeaVayexVecoo) [Fams ™ (T®), TO), Aot)

o;n,X

> Ko (%,5, Cat) }. (6.4)

(B) If Ccq € KXY M) U K&V/\Q A , then we define a right fuzzy set }':;CC;A on

X x X x (0;00) by]:R Foa anlf(CA,a € A} where

R-K¢.
VaeAVu,weXVte(O;oo) (PH)O,W,XC’A (M: w, t)

min{K, (u, w, t), Ko (W, u, t)} ifn=1,
Ky (u, w, t) ifn=2.

We say that (X, T) is a fuzzy (.7-'5 ;(’CC;A, A)-right contraction if

K
Vae.AVx,yeXVte(O ;00) {an XCA( (x)’ T()’)’ )Wxt)

> Ky (x5, Cat)}. (6.5)
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Remark 6.1 By Definition 2.1, Remark 4.1, and the property K(X) C CB(X) C 2% it follows
that, even when 5 = 2, Definitions 6.1 and 6.2 extend (1.8) and (1.4).

7 Kca left (right) G-admissible and KCc; 4 left (right) VV-admissible set-valued
T :X — 2¥ and single-valued T : X — X dynamic systems in (X, M. 4, *)

The following terminology will be often used in the sequel.

Definition 7.1 Let (X, Mc;4,*) be a fuzzy quasi-triangular space, and (X, T) be a set-

valued dynamic system, T : X — 2%,

(A)

(B)

Let KCc; 4 be the left (right) G-family generated by Mc, 4.
We say that (X, T) is K¢, left (right) G-admissible in a point w° € X if each
dynamic process (W : m € {0} UN) starting at w°, ¥,,cj0jun{w™*! € T(w™)}, and

satisfying the property

Vo Avte(o;oo)vpeN{ lim K, (", w"*?,t) = 1}
m—> 00

(VeeaVicomo Ve tim K, (w7, w, 1) =1})
m—00
is left (right) K¢, 4-convergent, that is, there exists w € X such that

VaeAVte(O;oo) {W}l—{noo K, (W, w", t) = 1}

(Veca¥icooo | lim Ko(w”w,1) =1}).

We say that (X, T) is K¢, 4 left (right) G-admissible on X if (X, T) is K¢, 4 left
(right) G-admissible in each point w° € X.

Let K¢, 4 be the left (right) WW-family generated by Mc; 4.

We say that (X, T) is Kc,4 left (right) W-admissible in a point w° € X if each
dynamic process (w” : m € {0} UN) starting at w°, V,,cjojun{w! € T(w™)}, and
satisfying the property

VaeaViciome) ] lim inf K, (W, w",£) = 1}

m—00 n>m
(VeeaVectooo{ lim_ inf K, (w",w",2) =1})

m—>00 n>m

is left (right) Cc, 4-convergent, that is, there exists w € X such that
Ve Avte(o;oo){ lim K, (w, w™,¢) = 1}
m— 00
(vae Avte(o;m)| lim K (w", w,¢) = 1})
m—00

We say that (X, T) is K¢, left (right) W-admissible on X if (X, T) is Kc, 4 left
(right) W-admissible in each point w° € X.

Definition 7.2 Let (X, M, 4, %) be a fuzzy quasi-triangular space, and (X, T') be a single-

valued dynamic system, 7: X — X.
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(A) Let Kc; 4 be the left (right) G-family generated by Mc, 4.
We say that (X, T) is K¢, 4 left (right) G-admissible in a point w® € X if a sequence
(w" = T (wP) : m € {0} UN) satisfying the property

VaeAvte(o;o@)VpeN{ lim K, (Wm, wnp, t) = 1}
mM— 00

(VaeAVte(O;oo)vpeN{ lim I(a (WWHP, Wm, t) = 1})

m—> 00

is left (right) KCc, 4-convergent, that is, there exists w € X such that

VaeAVicooo | lim Ko (w,w”,¢) =1

m—> 00
(vae Avte(o;oo){ lim K, (w", w,¢) = 1])
m—> 00

We say that (X, T) is Kc, 4 left (right) G-admissible on X if (X, T) is K¢, 4 left
(right) G-admissible in each point w° € X.
(B) Let Kc,a be the left (right) WW-family generated by Mc; 4.
We say that (X, T) is Kc,4 left (right) W-admissible in a point w° € X if a
sequence (w” = T"(w°) : m € {0} U N) satisfying the property
Vaed¥ie@o) | lim inf K, (w”,w",t) = 1}

m—00 n>m

(vae AVec(omo] lim inf K, (w", w™, ) :1])

m—>00 n>m

is left (right) KCc, 4-convergent, that is, there exists w € X such that
VaEAvtE(O;o@){ lim K, (w,w", t) = 1}
m— 00
(VaeAVte(O;oo){ lim K, (w’”, w, t) = 1})
m— 00

We say that (X, T) is K¢, 4 left (right) W-admissible on X if (X, T) is K¢, 4 left
(right) W-admissible in each point w° € X.

Remark 7.1 Let (X, Mc;, 4, *) be a fuzzy quasi-triangular space with left (right) G-family
K¢, 4 or with left (right) W-family K, 4 generated by M 4. Let (X, T) be a set-valued dy-
namic system T : X — 2% or a single-valued dynamic system T : X — 2% If (X, Mc,4, *)
is a KCc, 4 left (right) G-sequentially complete or a K¢, 4 left (right) WW-sequentially com-
plete fuzzy quasi-triangular space, then (X, T) is ¢, 4 left (right) G-admissible or Kc; 4
left (right) YV-admissible on X, respectively, but the converse does not necessarily hold.

8 Left (right) M, 4-closed set-valued T : X — 2X and single-valued T: X — X
dynamic systems in (X, Mc; 4, %)
The continuity has been extended in several directions and has been applied to problems
in different fields.
In this section we define the following generalization of continuity of set-valued dynamic
systems in (X, Mc, 4, %).

Definition 8.1 Let (X, Mc;4,*) be a fuzzy quasi-triangular space, k € N, and (X, T) be
a set-valued dynamic system, T : X — 2X. A set-valued dynamic system (X, T¥)) is said
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to be left (right) Mc, a-closed on X if for every sequence (xm :m e N) in TH(X), left
(right) M ¢, 4-convergingin X (thus LIML x /\:th§ 4% (LIM N 2 - @)) and having subse-
quences (v, : m € N) and (u,,, : m eN) satlsfymg Ve {Vim € T® (1)}, the following prop-

erty holds: there exists x € LIM . A:IHGN) (x e LIM x A:,eN )such thatx € THW (x) (x € T (x)).

x me

We further state the generalization of continuity of single-valued dynamic systems in
(X ’ MC;Ar *)

Definition 8.2 Let (X, M, 4, *) be a fuzzy quasi-triangular space. Let (X, T') be a single-
valued dynamic system, T : X — X, and let k € N. The single-valued dynamic system
(X, Ty is said to be left (right) M, 4-closed on X if for each sequence (,, : m € N) in
THW(X), left (right) M, 4-converging in X (thus LIMLx A:LZ{Q) e 3% (LIMIi A:lnilé # &)) and
having subsequences (v,, : m € N) and (4, : m € N) satlsfymg VmgN{VW, = T (y,,)}, the fol-
lowing property holds: there exists x € LIM(Lx m EN A(xe LIM ) such that x = T (x)
(x = T (x)).

(Xm meN)

9 Convergence, existence, approximation, and periodic point theorem in

(X, Mc; 4, *) for set-valued left (right) fuzzy contractions T : X — 2
In this section, in fuzzy quasi-triangular spaces (X, Mc; 4, *) with left (right) G-families
Kc.4 and with left (right) W-families K¢, 4 (generated by M. 4), the convergence, ap-
proximation, and periodic point theorem concerning set-valued fuzzy left (right) contrac-
tions T : X — 2% is proved.

We use the notation

VaeAY meN {h ﬁ(l + ﬁ ) }

I=1

where, for each m € N, {8/} ,c 4 € (0; 00)A.

Theorem 9.1 Assume that (X, Mc,a,*), where C = {Cy}qen € [1;00)4, is a fuzzy quasi-
triangular space, A = {Ay}yca € (0; DA, n € {1,2,3}, and (X, T) is a set-valued dynamic
system, T : X — 2%,
Assume, moreover, that one of the following (A) or (B) holds:
(A) There exist a left (respectively, right) G-family K¢, 4 generated by Mc, 4 and a point
w® € X such that:
(Al) (X, T) is fuzzy (.FL A N)-left contraction (respectively, fuzzy
(]—'RZ,)(CCA A)-right contraction);
(A2) (X, T)is Kc,a left (respectively, right) G-admissible in a point w°;
(A3) forevery x € X and for every B = {By}aca € (0;00), there exists y € T(x) such

that

Ve AYie(o00) {Ka (% T(®), 1) < Ko (5,9, 61+ Ba)) } 9.1)
(respectively,

VaeaYeeoo0 | Ka (T(%), %, ) < Ko (32,61 + ) }); (92)

and either
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(A4) there exists w' € T(wW°) and, for each m € N, there exists {8 }ye 4 € (0;00)A
such that Ve A{lim,,_, oo b%) € (0;00)} and

tcm—l
VaeAvte(O;oo)VpeN llm *m+p K, w? Wl; 2 =1 (9.3)
pri b
a~i
(respectively,
L tcm—l
VaE.Avte(O'oo)VpEN{ lim * 77K, (wl,wo, « ) = 1}); (9.4)
! m— 00 i (@)
p)"abi

or
(A5) there exists w' € T(WP) such that

Vae ALlim Ky (w°, wh,£) = 1} (9.5)
(respectively,
: 1.0
VaeA{tlgroloKa(w RTE 1}) (9.6)

(B) There exist a left (respectively, right) W-family K¢, 4 generated by Mc, 4 and a point
w® € X such that:
(Bl) (X,T)is a fuzzy (]-—nL ;)I(CC;A, A)-left contraction (respectively, fuzzy
(}'R oA , \)-right contraction);
(B2) (X, T) is Kc, 4 left (respectively, right) W-admissible in a point w°;
(B3) forevery x € X and for every B = {Ba}aca € (0; o0)A, there exists y € T (x) such

that
VaeAVie00) { Ko (% T(®), ) < Ko (%,7, 81+ Ba)) | (9.7)
(respectively,
VaeaVieo00) { Ko (T(x),5,£) < Ko (3, t(1 + Bo)) }); (9.8)
(B4) there exists w' € T(W°), for each a € A, there exists a sequence

(am :meN) C (0;1), and for each m € N, there exists {B }yeu € (0;00)4
Sor which Ve a{) o, zzm =1}, Vaea{lim,,_ biz € (0;00)},

(“1 cm 1
VaeAVie;00) hm w0 Ky w°, w ,% =1 (9.9)
AL B
ol
(respectively,
(@) ~m-1
. ta, 'C
VaeAVie(0;00) {W}l_l)noo *?:m1<a (Wl, w?, —)lJ' b(z) ) =1 }), (9.10)
a”i

and, in addition, either

VaeA{Ka (wo, wh, ) 1 (0;00) = (0;1] is nondecreasing} (9.11)
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(respectively,

Voea{ Ky (W', w,-) : (0;00) — (0;1] is nondecreasing}) (9.12)
or

VaeaYe00) Yxewo- 2 7imwo) | Ku (%, 8) = 1} (9.13)

Then the following statements hold:

(C) There exist a dynamic process (W™ : m € {0} UN) of the system (X, T) starting at w°,
Yocouniw™t € T(w™)}, and a point w € X such that (W™ : m € {0} UN) is left
(respectively, right) M, a-convergent to w.

(D) Ifa set-valued dynamic system (X, T'®) is left (respectively, right) M ¢, a-closed on X
for some k € N, then Fix(T™X) # @, and there exist a dynamic process
(w" :m € {0} UN) of the system (X, T) starting at w°, ¥ ucioun{w™*t € T(w™)}, and
a point w € Fix(TW) such that (w" : m € {0} UN) is left (respectively, right)

M, a-convergent to w.

Proof We prove only the case where K¢, 4 is a left G-family or a left W-family on X, (X, T)
is fuzzy (}'i ;(CC;A, A)-left contraction, (X, T) is K¢, 4 left G-admissible or left V-admissible
in a point w° € X, and (X, T™¥) is left M, 4-closed on X. We omit the case of ‘right’ since
the reasoning is based on an analogous technique.

PART A. Further, in Steps I-1V, we consider the situation where assumptions (A) hold.

Step 1. Assume that (A1)-(A3) hold and let
wh e T(w°) (9.14)

be arbitrary and fixed. For arbitrary and fixed " = {,Bg")}aeA € (0;00)4, m € N, there
exists (W" : m > 2) such that

whtl e T(w’”), meN (9.15)
and
Ve a¥se (000 Vmen | Ka (W, W, £) = K, (WP, W', 6(Co/2a)™ 162}, (9.16)

where ¥ae A men (bl = [171(1+ BL)).
Indeed, we apply (9.1) for w' and for BV = {8{V},c 4 to find

w? e T(w') (9.17)
such that

VaeaYie00) | Ka (Wh T(w'), ) < Ko (wh, w2, £(1+ BO)) ). (9.18)
Observe that then

Vaea¥se(000) | Ka (Wh WP £) = Ko (W°, wh, 6(Co/a) (1 + BD)) ). (9.19)
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Indeed, from (9.18), Definitions 6.1 and 6.2, and using (9.14), for each case where n =1 or
n=2orn=23,weget

VaeAVte(O;oc){Ko[ (Wl, W2, thy, (1 + ﬁ;l)))
> Ky (W', T(w'), tha)
= inf{l(a (u, T(Wl)’ t)»a) ‘ue T(WO)}
> F NG (T(w), T(w), 20
ZKO((WO; wl,tCa)},

This yields (9.19).
Applying (9.1) for w? and for B2 = {8?},c 4, we conclude that there exists

w? e T(w?)
such that

VaeaYie00) | Ka (W2 T(W?), ) < Ko (w2, W, t(1+ B2)) . (9.20)
We seek to show that

VaeaYie(000) | Ka (WP WP, £) = Ko (Whw?, H(Co/00) /(1 + B2)) ). (9.21)

By (9.20), Definitions 6.1 and 6.2, and using (9.17), for each case where n =1 or n =2 or
n = 3, it follows that

VaEAVtE(O;oo) {Kot (Wz) WB: 7 (1 + :3122)))
> K, (wz, T(wz),)wt) > inf{Ka (u, T(wz), t)\(,,) = T(wl)}
> FRGA (T (wh), T(wP), the)

= T am2X

> K, (wl, w2, tCa) }

This implies (9.21).
From (9.21) and (9.19) we get

VaeAVte(O;oo) {I<o¢ (WZ, W3, L‘)

= Ko (W, wh, t(Cal 21 (L4 B) (14 B7)]) -

Proceeding as before, using Definitions 6.1 and 6.2, we get that there exists a se-

quence (W” : m € N) in X satisfying (9.15) and, for calculational purposes, upon letting
Vmen (B = {BY"}aea),

Ve AVie(000) Vmen { Ko (W™, T (W"), £) < Ko (W™, w1, ¢(1 + 7))}
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and

Vae A 1e(000) Ve { Ko (W, W, th (1 + B))

> K, (W™, w", tCy) },
that is,

VaeAVte(O;oc)VmeN {[(a (Wm, Werl) t)
> K, (w"’_l, w", t(Ca/)W)/(l + ,BL’")))
> K, (W, w!, H(Co /)" 16E) ).
Consequently, we proved that with arbitrary and fixed w! satisfying (9.14), the dynamic
process (W : m € {0} UN) of the system (X, T) starting at w° constructed here satisfies
(9.16).
Step 11. Assume that (A1)-(A3) hold and that (A4) or (A5) holds. Then there exists a
dynamic process (W" : m € {0} UN) of the system (X, T) starting at w° such that
VaeAVicomoVper{ lim Ky (w",w™?,¢) =1}, 9.22)
m— 00
and there exists w € X such that

VaeAVicomo | lim Ko (w,w”,0) =1} (9.23)

(i.e., (W":m € {0} UN) is left K¢, 4-converging to w) and

_ L_MC;.A
we LIM(LW,,/,\;CE;Q) = {x exX: W}l_)rréo w" = x} (9.24)

(i.e., W":m € {0} UN) is left M, 4-converging to w).

We consider two cases.

Case IL1. Let m,p € N, and let (A4) hold, that is, w' € T(w°) and {8 }4c4 € (0;00)4,
m € N, are such that (9.3) holds. By Step I, for such w! € T(w°) and {B"}4c4 € (0;00)%,
m € N, there exists (W" : m > 2) such that w”*! € T(w"), m € N, and a dynamic process
(w" . m € {0} UN) of the system (X, T) starting at w° satisfies (9.16). Then, using Defini-
tion 4.1(KG1), property (9.16), and Definition 1.1(ii), we get

VaeAYie(000) Vimpen { Ko (W, w7, 1)
= Ko (W", "™, tIp + (p - 1)t/p)
> K, (W, ™, £/(pCy)) 5 Ko (W, ™, (p = 1)1 (pC,,))
= K (w8 (pC )

> K (W0, W, [ (Calha) 1B ] (pCEY) )

=P (WO, wh £ C Y (W pb ) ) ). (9.25)
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Hence, by Definition 1.1(v) and property (9.3) we obtain

VaeAVte(0:00) peN{ hm Ky (wm’wm+p, t)

> Tim #4070, W eC (b)) = 1.
m—> 00
This means that (9.22) holds.

Case I1.2. Let m,p € N, and let (A5) hold, that is, let w' € T(w?), and let (9.5) hold. Let
now {,35")}0[6,4 € (0;00)4, m € N, be arbitrary and fixed and such that, for each « € A,
(q12,a+ /32)) :m € N) converges to B, € (0;00). By Step I we may construct a sequence
(w" . m > 2) satisfying w"*! € T(w™), m € N, and such that a dynamic process (W : m €
{0} UN) of the system (X, T) starting at w° satisfies (9.16). Using next Definition 4.1(KG1),
property (9.16), and Definition 1.1(ii), we get (see (9.25))

VaeAvte(O;oo)vm,peN {I<o¢ (er wm+p’ t)

> P (WO, W e C Y (pAl b)) ).
However, since Vye4{B« € (0;00)}, condition (9.5) implies

VaeaVie Ooo)vpeNVze {m,...m+p— 1}{ hm K, (W W tCm l/ )\l = 1}

,,,,,

Consequently,

VaeAVie(000) peN{ hm Ky (wm, wme, t)

Z*ZXIYJI_EI;QK (w w!, tC"™ 1/()pr(‘)‘)) ---*1:1}.
This means that (9.22) also holds in this case.

Now, since (X, T) is K¢, 4 left G-admissible in a point w° € X, by Definition 7.1(A) prop-
erty (9.22) implies that there exists w € X such that (9.23) holds.

Next, defining x,,, = w"” and y,, = w for m € N, by (9.22) and (9.23) we see that conditions
(4.1) and (4.3) hold for the sequences (x,, : m € N) and (y,, : m € N) in X. Consequently,
by Definition 4.1(XG2) we get (4.5), which implies that

VaEAVtE(O;oo) {W}EnooMa (W: Wm: t) = rr}L)moo Moz ()/my Xm» t) = 1];

and so, in particular, by Definition 3.1 we have w € LIMECA ={xreX: llmm GA =

(w":meN)
x}, that is, (9.24) holds.
Step 111. Assume that (A1)-(A3) and (A4) or (A5) hold and that, for some k € N, (X, T™)
is left M, a-closed on X. Then

3 Mg g we THw)l.
weLIM ., mce(O)uN) { }

Indeed, by Steps I and II, LIMLW%HCGA oy 7 9 and w”™*! € T(w™) for m € {0} UN;

thus, W V% ¢ TH (k) for m € {0} UN, and defining (x,, = w” ¥ : m € N), we see
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that (x,, : m € N) ¢ THW(X), LIMLX Ajni{é}UN LIMLW,J”V:HCE“{‘})}UN # @, the sequences (y,, =

w Dk g e N) € THW(X), and (z,, = w* : m € N) € TH(X) satisty V,,en(ym € TW(2,,)}

and, as subsequences of (x,, : m € {0} U N), are left M, 4-converging to each point

of the set LIM.. w,f:/:nCEA UN Moreover, by Remark 3.1(A), LIM(LW,%”CEQ C LIM- A;Eﬁ? and
L-Mc; A

LIM iy C L[M

conclude that

From this by Definition 8.1, since T is left M ¢, 4-closed, we

(zm meN)

L-Mc, g {w e T (w)}‘

(xp:meN)

3 L-Mc; A

weLIM(Wm me(0JUN) =LIM

Step IV. The results in the case where K, 4 is a left G-family, (X, T) is left G-admissible in
apoint w° € X, and (X, T} is left M ¢, 4-closed on X now follow at once from Steps I-IIL

PART B. Further, in Steps V-VIII we consider situation where assumptions (B) hold.

Step V. Assume that (B1)-(B3) hold and let w' € T(w°) be arbitrary and fixed. For ar-
bitrary and fixed {ﬁg”)}aeA € (0;00)A, m € N, there exists (W™ : m > 2) such that w™! €
T(w"), meN, and

VoA 1e (0500 Vimen | Ko (W, W, t) = Ky (WP, wh, t(Co/2a)™ 162}, (9.26)

where Ve AV men{bs) = [17,(0 + BD)).

The proof of this step is identical to the proof of Step I and is omitted.

Step V1. Assume that (B1)-(B4) hold. Then there exists a dynamic process (W™ : m € {0} U
N) of the system (X, T) starting at w° such that

VacaVicomo| lim_ inf K, (W™, w", t) =1}, (9.27)

m—00 n>m

and there exists w € X such that
Voo Avte(o;m){ lim K, (w, w", £) = 1} (9.28)
m—> 00

(i.e., W":m € {0} UN) is left K¢, 4-converging to w) and

L_MC;.A
w e LIM S = {x eX: lim w"-= x} (9.29)

m— 00

(i.e., W":m e {0} UN) is left M, 4-converging to w).
Indeed, let m,n € N and n > m. Let /3(’”) = {ﬂém)}aeA € (0; oo)A, m € N, be such that, for
each o € A, lim,,, o [[7,(1 + BY) € (0;00). Denote

o m
VaeAvmeN {Sii) = Zﬂga) and SEZ) = Z aga) } .
i=m i=1

Using then Definition 4.2(KW1), we get

Vae.AVte(O;oo)vm,neN,mm {I<a (Wm; w”, t)
= K, (W, w',t8%) = K, (w", ", ta® + t8) +15%).)

> Ko (W, W™, 0@ |Cy) % Ko (WL, w", 18),1C, + £511C,)
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> Ko (W, w00 [C,) % Ko (W™, w2, ta'%) 1C2)
s Ko (W2, w1580, 1C2 + 152 /C2)
>. > % 21( (W Wl+l t(l /Cl Wl+l)

* Ky (w"-l, w18 /CrmL g ey, (9.30)

Now let us prove that

VaeAvtE(O;oo)vm,nEN,n>m {I<a (Wm: Wn, t)

> % anLK (W Wl+1 t&l /Cz m+1)} (9'31)

With this aim, we consider two cases.

Case V1.1. Let (9.11) hold. We see that

SWCEm v st > al e, (9.32)

Therefore, using (9.32) in (9.30), we immediately obtain (9.31).
Case V1.2. Let (9.13) hold. By Definition 4.2(CW1) and (9.13) we see that
Ky (", £ jcrml 4 tsiﬁl/CZ’m’l)
=K, (w”’l, w', tasx_)l/ C;j*’”*l + th") / Cg’””l + tsiﬁil/ C;j*’”*l)
> Ko (W', w, ta™, 1 CI) 5 Ky (W, w65 [ C 4 1) /i)

= Ko (W', w, ta® 1. (9.33)

Now (9.31) is a consequence of (9.30) and (9.33).
Now (9.31) and (9.26) imply
VaEAVtE(O'oo)Vm neN,n>m {I(a (Wm’ w”, t)

> LK, (w0, wh, el 1 (AL 6)) ). (9.34)

Further, in view of (ii) and (iv) of Definition 1.1 and property (9.34), for each [/ € N, we
obtain that

VaeAVte(0;00) VimneNnsm {1<a (Wm; w, t) *1

> M (w0, wh, e a1 (0 6))
Using this, we conclude that (9.34) implies

VaeAVictome)Ymen | inf Ko (w", W, 0)

> inf «/7, Ky (w°, W, tCl' a )/()\‘ b(a)))

n>m

> 2, Ky (w0, wh, 6C7 /()Vb"‘))}. (9.35)
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In view of (9.9), from (9.35) it follows that

VaeAVie000)] lim inf K, (W”’, w", t)

m— 00 n>m

> lim 2, K, (w", W, eCo a1 (0 b)) = 1}, (9.36)
which implies (9.27).

On the other hand, since (X, T) is K¢, 4 left VW-admissible in w° € X, by Definition 7.1(B)
property (9.27) implies that there exists w € X such that (9.28) holds.

Finally, defining x,, = w” and y,, = w for m € N, by (9.27) and (9.28) we see that con-
ditions (4.7) and (4.9) hold for the sequences (x,, : m € N) and (y,, : m € N) in X. Conse-
quently, by (XWV2) of Definition 4.2 we get (4.11), which implies that

VaEAVtE(O;oc) W}LlnooMa (W, w”, t) = ”}ij}goMa (ym» Xm» t) = 1];

. . -Mc, . L-Mg,
and so, in particular, we see that w € LIMfwm:mig) = {x € X : lim,, oS w" = x}.

Step VIL. Assume that (B1)-(B4) hold and that, for some k € N, (X, T is left M. 4-
closed on X. Then

L-Mc, g {w € T[k](w)}.

(xp:meN)

3 L-Mc,A

WELIM(wm me(0JUN) =LIM

The proof of this step is identical to the proof of Step III and is omitted.

Step VIII. The results in the case where K¢, 4 is a left WW-family, (X, T) is left VW-admis-
sible in a point w° € X, and (X, T™) is left M, 4-closed on X now follow at once from
Steps V-VIL d

10 Convergence, existence, approximation, periodic point, fixed point, and
uniqueness theorem in (X, M 4, #) for single-valued fuzzy left (right)
contractions T : X — X

Using Theorem 9.1, we prove the following convergence, existence, periodic point, fixed

point, and uniqueness theorem for two kinds of single-valued fuzzy left (right) contrac-

tions in (X, M, 4,*) with left (right) G-families K¢, 4 and with left (right) W-families

K¢, 4 (generated by M, 4).

Theorem 10.1 Assume that (X, Mc,4, %), where C = {Cy}qeu € [1;00)4, is a fuzzy quasi-
triangular space, ) = {Ay}aca € (0;1)A, n € (1,2}, and (X, T) is a single-valued dynamic
system, T: X — X.
Assume, moreover, that one of the following (A) or (B) holds:
(A) There exist a left (respectively, right) G-family K¢, 4 generated by Mc, 4 and a point
w® € X such that:
(Al) (X, T) is fuzzy (]-'i ;(]CC;A, A)-left contraction (respectively, fuzzy
(]-—5, ;()CC;A , \)-right contraction);
(A2) (X, T)is Kc,a left (respectively, right) G-admissible in a point w°; and either
(A3)

VaeAVic(omoVpen{ lim K, (w, T(w°), e (pi)) =1}
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(respectively,
VaeAVicomoVpen] Tim K, (T(w), w0, eC2 7 (pal)) =1},

or
(A4) Vgeallims, o Ky (w0, T(WP),t) = 1} (respectively,
Vaea{lim;_, o0 Ko (T(W0), w°,2) = 1}).
(B) There exist a left (respectively, right) W-family K¢, 4 generated by Mc, 4 and a point
w® € X such that:
(Bl) (X, T) is a fuzzy (}',;’CC;A, A)-left contraction (respectively, fuzzy
(F,i;(’CC‘A, \)-right contraction) on X;
(B2) (X, T)is K¢, left (respectively, right) W-admissible in a point w°;
(B3) foreach o € A, there exists a sequence (zz(yz) :m e N) C (0;1) for which
Vacall e an =1},

VaeAYre(000) [ Tim %, Ky (0, T(w°), tal CI2L) = 1}
(respectively,

VaecAYie(:00) {”}glgo #2Ka (T (w°), w0, 1 C 1 12) = 1})
and, in addition, either

Vaea{Ka(W, T(w°),") : (0;00) — (0;1] is nondecreasing}
(respectively,

Vaea{Ka(T(w°),w°, ") : (0;00) — (0;1] is nondecreasing})
or

VOKE-AVlE(O?OO)VxEWO:{T[m](Wo):mEN} {1(()[ (x, X, t) = 1}. (10.1)

Then the following statements hold.:
(C) There exists a point w € X such that the sequence (W" = T (w°) : m € {0} UN) is
left (respectively, right) Mc, a-convergent to w.
(D) Suppose that the single-valued dynamic system (X, T™X) is left (respectively, right)
M, a-closed on X for some k € N. We have the following:
(D1) Fix(TW) + &;
(D2) there exists a point w € Fix(T™X) such that a sequence
(w" = T"(wP) : m € {0} UN) is left (respectively, right) M c. 4-convergent to w;
(D3) ifv e Fix(T™) and Vae AV te000) {liMyy— 00 Ko (v, T(v), t(Co/Ay)™) =1}, then
Ve AV ic000){Ka (v, T(v),2) = 1};
(D4) ifv e Fix(T™) and ¥ ue A e 0:00) 1iMys 00 K (T(W), v, (Co/10)™) = 1}, then
Ve A0 {Ke(T(v), v, 2) = 1}.
(E) Suppose that a single-valued dynamic system (X, T™) is left (respectively, right)
M, a-closed on X for some k € N and that the family Mc; 4 is separating on X. We
have the following:
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(ED) If

VaeAvte(O;oo)vVEFix(T[k]) {WP_I)I;O Ky (V, T(V)x t(Ca /)&a)m)

= lim K (T(), v, 6(Calr)") :1}, (10.2)
then
Fix(T™) = Fix(T) # @; (10.3)

there exists a point w € Fix(T) such that a sequence
(w" = T (wP) : m € {0} UN) is left (respectively, right) M c, a-convergent to w;
and

VaeAVte(O;oo)vapix(T[k]):FiX(T) {Ka (vnt)=1 } . (10.4)
(E2) If

VaeAVte(o;oo)vu,vgpix(ﬂk]) {mh—l;%o Ky (V, u, t(Ca [ )m)

= lim K, (v, 6Cul2a)") =1, (10.5)
nm— 00
then there exists a point w € X satisfying
Fix(T™) = Fix(T) = {w}; (10.6)

the sequence (w" = T" (W) : m € {0} UN) is left (respectively, right)
M, a-convergent to w; and

VOIGAVtE(O;OO) {Kcl (Wr w, t) = 1} (107)

Proof By Theorem 9.1 we prove only (D3), (D4), (E1), and (E2).
PART 1. Proof of (D3). Suppose that there exist vy € Fix(T™), a € A, and ¢, € (0; 00)

such that

mli_r)réo Koo (vo, T(vo), to(Cay /1ag)™) =1 (10.8)
and

Koy (vo, T(vo), t) < 1. (10.9)

Of course, for each m € N, vy = TH®(vo) = T (1) = T2 (y0) and T (vy) = T(T (1)) =
TP"K (T (v,)). Hence, for n € {1,2}, by Definition 6.3(A) and (10.9),
Vimen{1 > Koy (vo, T(v0), o) = Kao (T (v0), T?"™ (T (vy)), to)

. FL_)C)C(;A (lemk](vo)r T12mk] (T(Vo): tO))

@05,
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> Koo (T (vg), TR (T (1)), £ Cag /1)

> - A (T[ka—l] (vp), TI2k=1] (TW0)), toCag /oy )

— = a0,

> Koo (TP (wg), TP (T (vy)), t0(Cag I hay)?) = -+
> Ko (vo, T(v0), t0(Cag /g™ ) }-
By Definition 1.1(v) and property (10.8), this gives 1 > Ky, (vo, T'(vp), to) = limy,_, o0 Ko (Vos

T(vo), tohig”k) = 1. By (10.8) this is impossible. Therefore, (D3) holds.
PART 2. Proof of (D4). Suppose that there exist vy € Fix(T™), oy € A, and ¢, € (0; 00)

such that

Jim K, (T(v0), vo,t0(Cag/Aa)™) =1 (10.10)
and

Koo (T(vo),vo, 1) < 1. (10.11)

Then, by Definition 6.3(A) and (10.11), using the fact that, for each m € N, vy = T¥ () =
TP (vg) = T (1), we get, for 1 € {1,2}, that

1> Koy (T(v0), vo, t0) = Kag (T (v0), T (v9), 1)
L-Kc. mk+ "
= Fyt” (T (00), TN (1), 10)
= 1<Dt() (T[m,(] (VO); T[mk_l] (VO): tO(Cozg /)‘-ozg ))
Z Fi(;n,)c(;A (T[Mk] (VO)’ T[mk_l] (VO)) tO(Cozo /)\4010 ))

> I<0t0 (T[mk_ll (V0)7 T[mk_Z] (VO): tO(Ca() /)"010 )2)

== Kao (T(VO)’ Vo, tO(Cao/)‘-oto)mk)-
Hence, by Definition 1.1(v) and by (10.10),

1> Kyo (T (v0), vo, t0)

> lim I<a0 (T(V()),V(),to(cao /)\ao)mk) =1,

which is impossible. Therefore, (D4) holds.
PART 3. Proof of (E1). We first observe that

Verix(rtiy | T(0V) = v};

in other words, Fix(T™) = Fix(T). In fact, if v € Fix(T™™) and T(v) # v, then, since
the family Mc, 4 = {M,, @ € A} is separating on X, by (2.2) we get that T(v) # v =
JveATte(000) Mo (TW),v,t) <1V My (v, T(v),t) < 1}. In view of Theorem 4.1, this implies
T(v) #v = JyeaTic000{Ka(T(v),v) <1V K, (v, T(v)) < 1}. However, by (10.2), (D3), and
(D4) this is impossible. Therefore, (10.3) holds.
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Next, we see that (10.4) holds. In fact, by Definition 2.1(A) and properties (D3), (D4),
and (10.2) we conclude that

VaeAVee(0i00) Vyerix(rikh { Ka (v, v, 2)
> Ky (v, T(),£1(2Cy)) % Ko (T(v), v, £/(2C,))
=1%1=1}.

PART 4. Proof of (E2). Finally, let us observe that Fix(T) is a singleton. We argue by

contradiction and so suppose that
u,w € Fix(T) and u#w. (10.12)

Then, since the family M, 4 = {M,, @ € A} is separating on X, we get 3y 43 e (0;00) {Me (4,
w,t) <1V My(w,u,t) < 1}. By applying Definition 4.3 and Theorem 4.1 we see that this

implies
JueaTreo0) { Ko, w,£) <1V Ko (w,u,8) < 1}, (10.13)
On the other hand, for n € {1,2}, by Definition 6.3(A) we conclude that

Vae ¥ re (000 Vmen | Ka (14, w, 1)
= Ko (T (u), T(w),t)
> FEREA(T(w), T(w), £) = Ko (0, w,6(Ca I 1a)
= Ka(T(), T(W), (CalAa))
> FLREA (T(w), T(w), 6(Culha)

> Ko (16, ,6(Co/2a)?) = -+ = Koo (1, w, H(Co/0ar)™) }
and

Ve AV se(0s00) Vmett | K (W, 2, 1)
=Ky (T(w), T(u), £)
> FLSEA(T(w), Tw), £) = Ko (w,10,6(Cul4a)
= Ko (T(w), T(), H(Ca )
> Fu SEA(T(w), Tw), 1(Culha)

= I<o( (W1 u, t(Ca/)"o{)z) =z 2z I<o( (W; u, t(Ca/)"ot)m)}-
From this, using (10.5), we have

VaeaVeeo0) {Ka(u, w,8) > Tim Ky (t, w, £(C /1)) = 1} (10.14)

m— 00



Wtodarczyk Fixed Point Theory and Applications (2016) 2016:32 Page 29 of 49

and
VaeAVte(O;oc) {1<at(wx u, t) > lim K, (W; u, t(Ca/)"a)m) = 1}¢ (1015)
m—00

respectively. Thus, we obtain that (10.12) implies (10.13)-(10.15), which is impossible.
Therefore, Fix(T) is a singleton.
Thus, (10.6) and (10.7) hold. g

11 Interaction of quasi-triangular spaces and some fuzzy quasi-triangular
spaces

In this section we provide a background relations between fuzzy quasi-triangular spaces
and quasi-triangular spaces.

First, we define quasi-triangular spaces (X, D¢, 1), and, next, we construct some fuzzy
quasi-triangular spaces (X, Mgi‘(“, *) determined by (X, D¢, 4).

Let X be a (nonempty) set. A distance on X is a map d : X x X — [0;00). The set X,
together with distances on X, is called distance spaces.

Definition11.1 Let X be a (nonempty) set, A bean index set,and C = {C, }aec 4 € [1;00)*.
(A) We say that a family D¢, 4 = {dy : X x X — [0,00),a € A} of distances d, € A, is
a quasi-triangular family on X if

YaeAYupwex {da (1, w) < Co[da(u,v) + du (v, w)]}. (1L1)
A quasi-triangular space (X, D¢, 4) is a set X together with a quasi-triangular family
Dec.a.
(B) We say that a family D 4 = {dy : X x X — [0,00),a € A} of distances d,, @ € A, is a
triangular family on X if

VO(EAVL{,V,WGX {dd(u1 W) =< da(u: V) + da(V, W)} (112)

A triangular space (X, D 4) is a set X together with a triangular family D 4.
(C) Let (X, D, 4) be the quasi-triangular space. We say that D, 4 is separating on X if

Viwex{u #w = Joea{do(u,w) > 0V do(w,u) > 0}}. (11.3)
We have the following useful result.
Theorem 11.1 Let (X,Dc. 1), Dca = {dy : X2 — [0,00) : @ € A}, be a quasi-triangular

space, * be a continuous t-norm defined by ax b =a - b, and Mgfj(“ = {MZ?C‘A (X XX x
(0;00) — (0,1], € A}, where

D,
VaeAvte(O;oo)Vu,weX {Ma oA (Lt, w, t) = t/[t + doz (u, W)] } (114)
Then we have the following:

D, D, D,
(A1) VaeaViywexViscooo) (Mo O (v, 1) % Mo (v, w,5) < My “ (1, w, Co (£ + 5))}.
(A2) VaeaVumex (Mo S (u, w, ) : (0500) — (051] is nondecreasing}.
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Proof To prove (Al), suppose that

Dc;a Dc;a
Elotoe.AEluo,vo,woe)(ato,soe(o;oo) {Mot() (40, v0, to) * Moy, (vo, wo,S0)

De,
> MaOC'A (Mo, Wo, Cao (to + So)) }
By (11.4) and the definition of *, this means that

0 > 2050 { Cag [ dag (405 V0) + dary (Vo, Wo) | — dlg (110, o) }

+ Cototgdao (VO; WO) + Cotos(z)dao (MO: VO)'

Hence, by (11.1) we have that 0 > Cyt2dy, (vo, W) + CaySada, (1o, v0), a contradiction.
Therefore, (Al) holds.
Since

Vo AV e (000 Vimwex | OMa A (u, w, )19t = d (u, W)/ [ + do(u, w)]” = 0},
we see that this bound implies property (A2). g

Remark 11.1 Definition 11.1(A) and Theorem 11.1 show, in particular, that (X, Mgi‘(“, *)
is a fuzzy quasi-triangular space satisfying additional property (A2).

This suggests the following definition.

Definition11.2 Let (X, Dc;, 4), Dc,a = {dy : X x X — [0,00) : & € A}, be a quasi-triangular
space, and * be a continuous ¢-norm defined by a * b = a - b. We say that (X, ./\/lgi‘(“, x) is
a fuzzy quasi-triangular space determined by (X, D¢, 4)-

Now, for given quasi-triangular spaces (X, Dc; 4), we define left (right) G-families and
W-families Jc, 4 generated by D¢, 4.

Definition11.3 Let(X,Dc; 4), Dc,a = {dy : X x X — [0,00) : & € A}, be a quasi-triangular
space.
(A) The family Jc.4 = {Ju : @ € A} of distances J, : X x X — [0,00), @ € A, is said to be
the left (right) G-family generated by D¢, 4 if:

(TG1) VaeaVuywex Vo (u,w) < Collo(u,v) + Jo (v, w)]}.
(JG2) For any sequences (i, : m € N) and (wy, : m € N) in X satisfying

VotE.AVpEN{ lim o (4, um+p) = O} (11.5)
(Vaca¥pen] tim Ju Gy i) = 0}) (116)
and
VaeA{ lim Jo (W th) = 0] (11.7)
m—>00

(VaEA{W}i_)rréO]a(umrwm) = 0}), (11.8)
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the following holds:
Vaea[ lim do(w, 1) =0 (11.9)
(Vae.A{ lim dy (U, Win) = 0}) (11.10)
nm— 00

(B) J X, Dc,a) (q]](x D )) is the set of all left (right) G-families Jc; 4 generated by Dc; 4.

Definition 11.4 Let (X,Dc,4), and D¢, 4 = {dy : X x X — [0,00) : @ € A} be a quasi-
triangular space.
(A) The family Jc, 4 = {Jo : @ € A} of distances J, : X x X — [0,00), & € A, is said to be
the left (right) W-family generated by D, 4 if:

(le) VaeAvu,v,weX{]a(u: W) < Coz Ua(ur V) +]oz (Vr W)]}
(JW2) For any sequences (u4,, : m € N) and (w,, : m € N) in X satisfying

Ve AvpeN{ lim_sup J, (s, 4,) = 0] (11.11)
% o
(vae AvpeN{ fim_ sup (s 1) = o}) (11.12)
and
Ve A[ B Jo (W o) =o} (11.13)
P
(VaeA[r’}ilnwla(um, W) = 0}), (11.14)
the following holds:
Ve A{ B dy (W, 14y, =0} (11.15)
o
( aeA{ fim (s, W) :0}). (11.16)

(B) J(X De,a) (J(X DCA)) is the set of all left (right) WW-families J¢;, 4 generated by D¢, 4.

Remark 11.2 The left (right) G-families Jc¢, 4 and left (right) W-families Jc; 4 generated
by D¢, 4 are substantial generalizations of D¢, 4. Indeed, note that'
(A) From Definitions 11.3 and 11.4 it follows that D¢, 4 € J (X.De.a) N J&?DC;A) and

Dc.a € J xDe) J (X.Dc,a)’ respectively.
(B) From construction of the family J¢, 4 given further in Theorem 11.2 it follows that

XDC.A \{DC'A} 79, JXDC_A \Dcal # 2, JXDCA)\{DC;A} # &, and
“]]XDcA \MDca} # 2.

Theorem 11.2 Let (X, D¢, 4), and Dc. g = {dy : X x X — [0,00) : « € A} be a quasi-
triangular space. Assume that E C X is a set such that

Voea{8u(E) = sup{dy(u,w) : u,w € E} #0} (11.17)
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and let {jtg}gen € (0;00)* satisfy
VaeA{Ma = 8a(E)/(2Ca)} (1118)
Let Jc,a = {Ju, o € A} where, for each o € A and for each u,w € X,

dy(u,w) ifEN{u,w}={u,w}

Jabewr =1, iFE O {u, wh 7 {1, W),

(11.19)

Then the family Jc,4 = {J : « € A} of distances J, : X x X — [0,00), a € A, is the left and
right G-family and the left and right VV-family generated by Dc; 4.

Proof Indeed, suppose that condition (JG1) or (JW1) does not hold, that is,

EIol()G.Aabto,l/(),W()EX {]Dt() (M(), WO) > Colo []0(0 (uOr VO) + ]010 (VO! WO)] } (1120)

Then (11.1) and (11.19) imply {uo, vo, wo} N E # {10, v0, wo}, and the following Cases A-D
hold.

Case A. If {ug,wo} C E, then vo ¢ E, and, by (11.19) we see that (11.20) is of the form
Aoy (100, Wo) > 2C, ey, - Next, by (11.18) this implies dy, (¢40, Wo) > 2Cqy ity = 8oy (E). By
(11.17) this is impossible.

Case B. If uy € E and wy ¢ E, then (11.20) and (11.19) give fty, > Coq [day (40, Vo) + g =
Coo ey Whenever vy € E or fLgy > Cog[Jhag + Mag] = 2Cqq ey Whenever v ¢ E. Since Cyy >
1, this is impossible.

Case C.If uy ¢ E and wy € E, then (11.20) and (11.19) give jty, > Coq [t + oy (Vo Wo)] =
Cog ey Whenever vy € E or gy > Cop [ ey + Hagl = 2Cyq ey Whenever vy ¢ E. This is im-
possible.

Case D. If uy ¢ E and wy ¢ E, then (11.20) and (11.19) give fgy > Cyylibag + Hapl =
2Cyqy Moy for vo € X. This is impossible.

Therefore, Ve 4V vwex U @, w) < ColJu (4, v) + Jo (v, w)]}, that is, conditions (JG1) and
(IW1) hold.

Assume now that the sequences (i, : m € N) and (w,, : m € N) in X satisfy (11.5) and
(11.7) or (11.11) and (11.13). We see that (11.9) holds and is equal to (11.15). Indeed, (11.7) is
equal to (11.13) and implies

Vae.AV0<e<;L,1 Hmo:m()(ot)eNszmo {]O((Wm! um) < 8}~ (1121)

Denoting m' = min{my(a) : ¢ € A}, we see, by (11.21) and (11.17)-(11.19), that V,,5,,,{E N
{Wi> U} = {Wis, e }}. Then, in view of (11.19), this implies Ve A Yo<e<po I enVimzm Ada (Wi,
Up) = Jo (Wi, uy) < €}. Hence, we obtain that the sequences (u,, : m € N) and (w,,, : m € N)
satisfy (11.9) and (11.15). Thus, we see that J¢, 4 is left G- and VW-family generated by D¢ 4.

In a similar way, we show that if (u,, : m € N) and (w,, : m € N) in X satisfy (11.6) and
(11.8) or (11.12) and (11.14), then (u,, : m € N) and (w,, : m € N) in X satisfy (11.10) and
(11.16). Therefore, Jc, 4 is right G- and WW-family generated by D¢, 4. We have proved that
Jcia € “]](L);gDc;A) n JS;(,QDC;A) n J(L);(%C;A) n J&%C;A)' O

Finally, we see that further analysis of quasi-triangular spaces (X, Dc; 1) and families
Jc. 4 vields the following theorem.
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Theorem 11.3 Let (X, Dc,4), Dea = {dy : X x X — [0,00) : o € A} be a quasi-triangular
space, the family Jo, A = {Jo : @ € A} of distances J, : X x X — [0,00), a € A, be the left
(right) G-family or the left (right) W-family generated by Dc; 4, and = be the continuous
t-norm defined by a x b = a - b. Let ICgfj{“ = {KfC‘A X x X x (0;00) = (0;1],x € A},
where

Jc.
VaeaViei00) Yiwex {Ka 2 (u, w, t) = t1[t + Jo (u, w)]}. (11.22)

Then we have the following:
(B) Ve aVmexVese(oioo) UGa O (1 ,2) 5 Ko (v, ,5) < K5O (11, w, Ca(£ + 9))).
(B2) vaeAvu,weX{KfC?A (&, w,-) : (0;00) — (0;1] is nondecreasing}.
(B3) If Jca = (o : o € A} is the left (right) G-family generated by Dc, 4, then
Jc.A LG JCA o gRG
Kool eK” K ek
G g ot K pa )
(B4) If Jcu = {]a o € A} is the left (right) W-family generated by Dc, 4, then
JcA LW Jc; A RW
Kool eK” Kei €eK”
Gk €K B B
Proof The proofs of (B1) and (B2) are analogous to those of (Al) and (A2) in Theorem 11.1
and are omitted.
We prove (B3) and (B4). In this aim, let Jc, 4 be the left G-family or left VW-family gen-

erated by D, 4. If the sequences (u,, : m € N) and (w,, : m € N) in X satisfy

VaeAvte (0;00) peN{ hm I( (urm Umsps t) = 1} (1123)
or
VaeVecooo ] lim inf KAt it t) = 1] (11.24)
m—00 n>m
and

. Jc:
VaeAVte(O;oo){ mlgana AW, thy £) = 1}, (11.25)

then, by (11.22), we see that (11.23)-(11.25) imply, respectively,

VaeAVpert{ i Ju(ttns ) = 0} (11.26)
or
Vae.A{ lim sup Jo, (4, ) = 0} (11.27)
m=>00 p>m
and
VaeA{W}i_r)noo]a(Wm: Um) = 0}. (11.28)

Next, we see that in view of (11.26)-(11.28), properties (11.5) and (11.7) or (11.11) and (11.13)
hold, and by Definition 11.3 or Definition 11.4, respectively, this implies that

aeA{n}lm doy (Wi, ) =0}. (11.29)
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However, by Theorem 11.1 and Remark 11.1 (see (11.4)) we get that (11.29) yield
Ve Avte(o;oo){ lim My A (Wi, thr £) = 1}. (11.30)
m—> 00

Hence, it follows that if Jc; 4 is the left G-family generated by Dc; 4, then by Definition 4.1

the consequence of (B1), (11.23), (11.25), and (11.30) is that Kgi*{‘ e Kb9 Dos - More-
’ XM 7 %)

over, if Jc, 4 is the left WW-family generated by Dc; 4, then, by Definition 4.2, the conse-
quence of (11.24), (11.25), and (11.30) is IC“C@‘A e KEW

Dca
XM a” %)

If Jc, 4 is the right G-family or right WW-family generated by D¢, 4, then the proof that
ICgfle e KR Dea . OF ICgfj‘A € KBW pea . Tespectively, is analogous and is omit-
ted (X’MC;A %) (X’MC;A %) 0
ed.

Remark 11.3 The results obtained show that the Definitions 4.1 and 4.2 are correct.

12 Examples of fuzzy quasi-triangular spaces
In this section we construct examples of some fuzzy quasi-triangular spaces in the case
where * is the continuous t-norm defined byaxb=a - b.

Example 12.1 Let X = [0;3], and let Mg),q) = {M : X x X x (0;00) — (0;1]} be of the

form
1 if ,
M(u, w, t) = tu=w (12.1)
tit+w=—u)?*] fu<w.
(1) (X, Mysyny, %) is a fuzzy quasi-triangular space. Indeed, we take
0 if u>w,
d(u, w) = pu=w (12.2)
w-u)? fu<w,

where u, w € X. Note that V,,, wex{d(u, w) < 8[d(u,v) + d(v, w)]}; this inequality is a conse-
quence of (12.2) and the following Cases A-D.

Case A. If u,v,w € [0;3] and v < u < w, then d(u,v) = 0 and w — u < w — v. This gives
A, w) = (w—u)* < (w-v)* <8(w-v)* =8[d(u,v) + d(v,w)].

Case B. If u,v,w € [0;3], u < w, and u < v < w, then d(u,w) = (w — u)* and f(vo) =
min,<,<, f(v) = (w — u)* where, for u <v <w, f(v) = 8[d(u,v) + d(v,w)] = 8[(v — u)* + (w —
v)*] and vy = (1 + w)/2.

Case C.

sup  d(u,w)= sup (w-u)*=3*=81 and

u,we(0;3);u<w u,we(0;3);u<w

sup min S[d(u, V) +d(v, w)]
u,we(0;3);u<w usv=w

= sup min 8[(v —u)t+ (w- v)4]
u,we(0;3);u<w USV=w

=8[(3/2-0)* + (3-3/2)*] =81.

Case D. If u,v,w € [0;3] and u < w <, then d(v,w) = 0 and w — u < v — u. This gives
du,w)=(w—u)* < (v-u)* <8 -u)*=8[du,v) +dv,w).
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By Definition 11.1, denoting Dygy.q1y = {d}, we have that (X, Dyg),(13) is a quasi-triangular
space. Next, Theorem 11.1 implies that (X, Mgy, %), where M = t/(t + d), is a fuzzy quasi-
triangular space.

(2) Mgy = {M} is asymmetric. Indeed, we have that V;c(,00){1 = M(3,1,£) # M(1,3,¢) =
t/(t +16)}.

(3) For the constant sequence of the form (u,, =2 :m € N) C X, the sets LL
{1}

and LIM'R AjneN are not singletons Indeed, by (12.1) and Definition 3.1 we have that

LMy it = [23], LL - [0;2].

(um mEN

Mgy
(um:meN)

(u mEN

Example 12.2 Let (X, Mg),1),*) be such as in Example 12.1. Moreover, let E C X, E # &,
E #X, 8(E) = sup{d(u,w) : u,w € E} # &, and y satisfy y > §(E)/16; here d is defined by
(12.2). Define Kig),1y = {K : X x X X (0; 00) — (0;1]} where

1 if u>wand E N {u,w} = {u,w},
K@u,w,t) = t/[t+ (w-w)?] ifu<wandEN {u,w} = {u,w), (12.3)
t(t+y) if EN{u, w} # {u, w}.

(1) Kysyy = {K} is the left and right G-family and a left and right VW-family generated by
Mgy = {M} in a fuzzy quasi-triangular space (X, M gy,q), *). Indeed, define Jgy,n) = {J}
where, for each u, w € X,

d(u,w) if EN{u,w}={u,w},
J(u, w) = .
if EN {u, w} # {u, w}.

By Theorem 11.2, Jisy,1) is the left and right G-family and left and right JV-family gen-
erated by Dyg),;1y = {d} in quasi-triangular space (X, Digy,1)). By Theorem 11.3 and Def-
initions 4.1 and 4.2 this implies that K,y = {K} deﬁned by Vie(0;00) Vuwex (K (1, w, t) =
t/[t + J(u,w)]} is the left and right G-family and left and right VW-family generated by
Msyy = {M} in a fuzzy quasi-triangular space (X, Mgy, *).

(2) (X, Kysyay, %) is a fuzzy quasi-triangular space. We see that Kyg),q) is a fuzzy quasi-
triangular family on X.

(3) Kisyny = (K} on the diagonal is not equal to one. Indeed, if u € X\E, then V,¢(o;00){K (1,
u,t)=t/(t+y)<1}.

(4) Kisy,ny = (K} is asymmetric. Indeed, since §(E) > 0, for each u, w € E, u > w, by (12.3)
we have that V,c(;00){1 = K(u, w, ) > K(w,u,t) = t/[t + (w — u)*]}.

(5) For the constant sequence of the form (u,, =2 : m € N) C X, the sets LI
{1}

and LIMR me;N are not smgletons Indeed, by (12.3) and Definition 5.1 we have that

(um

LIM, S0~ [2;3], LIM(,

(um:meN) (m mEN ]

85{1)
(um meN)

Example 12.3 Let X be a set (nonempty), ACX,A#J,A#X,y >0, and let My =
{M: X x X x (0;00) — (0;1]} be of the form

1 if AN {u,w}={u,w},

M(u,w, t) = (12.4)
t/t+y) ifAN{uwl+#{uwl

(1) (X, Muyy, %) is a fuzzy triangular space. This is a consequence of Theorem 11.1. In

fact, we see thatM(u, w, t) = t/[t +d(u, w)] for (u,w,t) € X x X x (0;00) whered : X x X —
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[0; 00) is of the form

A, w) = 0 ?fA N {u, w} = {u,w}, (12.5)
y ifAN{u,w} #{u,w}.
Indeed, we see that d defined by (12.5) satisfies
Vuywex{d(u,w) < d(u,v) + d(v,w)}. (12.6)

Otherwise, 3,,;,vy,woex {d(uo, wo) > d(uo, vo) + d(vo, wo)}. It is clear that then d(ug, wo) = y,
d(ug, vo) = 0,and d(vy, wg) = 0. In conclusion, A N{ug, wo} # {ug, wo}, AN{ug, vo} = {uo, vo},
and A N {vy, wo} = {vo, wo}. This is impossible. Therefore, (12.6) holds.

(2) Muymy = {M} on the diagonal is not equal to one. Indeed, if u € X\A, then
Vie00)iM(u, 1, t) = t/[t+7y] < 1}. Therefore, the condition Ve (o;00) Vuex {M(u, u, t) = 1} does
not hold.

(3) Muyny = {M} is symmetric. This follows from (12.4).

(4) We observe that LI (7M(1H;) = LIMRiMm;{)” = A for each sequence (u,, : m € N) C A.

Up:meN (uy:meN

We conclude this from (12.4).

Example 12.4 Let X = [0;3], and let M),y = {M : X x X x (0;00) — (0;1]} be of the

form

ifu>w,

M(u,w,t) = { 1 (12.7)

tHt+w-u)?] ifu<w.

(1) (X, My, %) is a fuzzy quasi-triangular space. Indeed, using Theorem 11.1, we see
that M(u, w, t) = t/[t + d(u, w)] for (u,w,t) € X? x (0;00) where d : X> — [0;00) is of the

form
A w) =1 ° ifuzw (12.8)
w-u)® ifu<w,
satisfying
Vu,v,weX{d(u, W) < 4[d(u: V) + d(V; W)] }; (129)

by (12.8) inequality (12.9) is a consequence of the following Cases A-C.

Case A. If v < u <w, then d(u,v) =0, w — u < w — v, and, consequently, d(u,w) = (w —
u)? < (w-v)?<4(w-v)?=4dv,w) = 4[d(u,v) + d(v,w)].

CaseB.Ifu <wandu <v < w, thend(u,w) = (w—u)® and f(vy) = min,< <, f(v) = (w—u)?
where v = (4 + w)/2 is a minimum point of the map f(v) = 4[d(u,v) + d(v,w)] = 4(w —
uw)[wW? + wu + u? + 3v2 = 3v(w + u)].

Case C. If u < w < v, then d(v,w) = 0, and, consequently, d(u, w) = (w — u)® < (v —u)® <
4(v —u)® = 4d(u,v) = 4[d(w,v) + d(v, w)].

(2) My = {M} on the diagonal is equal yo one. In fact, by (12.7) it is clear that
Vte(o;oo)vueX{M(u; u,t) = 1}.

(3) Mgy = {M} is asymmetric. Indeed, we have that V,¢(0,00) {1 = M(3, 0, £) # M(0,3,¢) =
t/(t+27)}.
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(4) We observe that LI (;ﬂ:)ﬁf; V= 1[2;3] and LIMﬁ;mJ?fng{f)l V= [0;2] for a sequence (u,, =

2 :m € N). We conclude this from (12.7).
Example 12.5 Let X =R, and let M4,y = {M : R x R x (0; 00) — (0;1]} be of the form

1 ifu>w,

M(u,w,t) =
(1, w:2) tit+w-uw)? ifu<w,

u,weR,t € (0;00). (12.10)

We will consider the sequence (x,, =Y .-, 1/s:m € N) C X.

(1) (X, Myayuy, %) is a fuzzy quasi-triangular space. The proof is analogous to those in
Example 12.4(1) and is omitted.

(2) Xy : m € N) is an My, left and right G-sequence in X. Indeed, by (12.10) and Defi-
nition 3.2 we see that Ve (0;00) Y pen {1imyy— 00 M (%s Xy t) = limy,,, o0 /[ + (Z;":;‘fﬂ 1/5)3] =
1} and Ve (0;00) VpeN {limy— 0o M (Xpnaps Xy £) = 1},

(3) (Xm : m € N) is not an My left W-sequence in X and is an My, right
W-sequence in X. Indeed, by (12.10) and Definition 3.2 we have that

n 3
Vtg(om{ lim inf M(%,,, %,,¢) = lim inf ¢ |:t+<2 1/s> ]
m— 00 n>m m— 00 n>m

s=m+1
00 3
= lim ¢ |:t+ (Z 1/5) i| :0}
s=m+1

and Vte(O;oo){hmmeoo infn>m M(xm Xm> t) = 1}
(4) (x, : m € N) is not left May,q)-convergent in X and is right M ay,1)-convergent in X.
Indeed, by (12.10) and Definition 3.1 we see that

VicmoVaex| lim Mo0) = Tim /[t + (6, -2°] =0
m— 00 m— 00
and Vte(O;oo)VxeX{limmeoo M(xmvx; t) = 1}

13 Examples illustrating Theorem 9.1
Let, in the sequel, * be the continuous ¢-norm defined by a «b =a - b.

Example 13.1 Let X = [0;3), and let Mg;;q; = {M : X x X x (0;00) — (0;1]} be of the
form (12.1). Define a set-valued dynamic system (X, T') by

) : [0;1] %fu € [0;1] U (2;3), 151)
(2;3) ifue(;2].
Let
E=1[0;1]U(2;3), (13.2)

let y > 128 be arbitrary and fixed, and let KCig),;1y = {K}, where, for u,w € X and ¢ € (0; 00),
1 if u>wand EN {u, w} = {u, w},
K@u,w,t)={ t/[t+ w-u)*] ifu<wandEN{u,w}={u,w}, (13.3)
t(t+7y) if E0 {u, w} # {u, w}.
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(1) (X, Msy,ny, %) is a fuzzy quasi-triangular space. See Example 12.1(1).

(2) Kysyy = (K} is the left and right G-family and left and right VW-family generated by
Msyay = (M} in a fuzzy quasi-triangular space (X, Mgy, *). See Example 12.2; we have
that y > 128 > 8(E)/16 = 81/16.

(3) For each ) € (128/y;1), (X, T) is a fuzzy (]:IL;(C

(]:lkgf(s"(l’,k)—right contraction. Indeed, we prove that, for C =8 and A € (128/y;1),

©KU \)-left contraction and a fuzzy

Vte(O;oo)Vx,yGX{FIC (T(x): T()/)y )\t) > M(x:y: Ct)}:

where, by Definition 6.1 for n =1,

—Kiay. —ICig).
Vte(O;oo) {FIC(Ur W} t) = Fi172)é8)'{1) (u, W, t) = Fllfl,zxis)'m (U, W, t)

- min{ inf K(u, W, 1), inf K(U,w, t)] ] u,we2~.
uel weW

With this aim, we consider the following Cases A-C.

Case A. If x,y € [0;1] U (2;3), then T(x) = T(y) = [0;1] = U C E, and, by (13.3),
infycp{sup,cy K@, w,t)} = inf,eu{K(u,u,t) = 1} = 1 and, consequently, V;c;x)
Vicazsy (Fc(T(), T0), A1) = 1= K(x,,80)).

CaseB.Ifx,y € [1;2], then T'(x) = T(y) = (2;3) = U C Eand, by (13.3), inf,cis{sup,,c;; K (1,
w, t)} = inf,e {K(u, u,t) = 1} = 1. Consequently, V;c(0;00)Vac2sry i Exc(Tx), T(y), At) =1 >
K(x,v,8t)}.

Case C. Ifx € [0;1] U (2;3) and y € (1;2], then T'(x) = [0;1] =U CE, T(y) = (2;3) = W C
E, and, by (13.3),

JQE[MS/IEJ‘%K(M, w, t)} = ;2{1[52&#& +(w- u)4] = t/[t +(2 - u)4]}

=t/(t+2%)

and infy,ew{sup,c;; K(u, w, )} = infew{sup,c; t/[t + (W —u)*]} = infew {t/[t + (w-1)*]} =
t/(t +2%). Thus, Fic(T(x), T(y), At) = min{t/(t + 2%/A), t/(t + 2*/))} = t/(¢ + 2*/)). Moreover,
we have E N {x,y} # {x, y}. This gives, by (13.3), that K(x, y, 8¢) = t/(¢ + y/8). Hence, /(¢ +
2%/1) > t/(t + y/8) whenever 2*/1 < y /8. Therefore, if y > 128, then A € (128/y;1).

(4) Property (A3) holds, that is, ¥ ;e(0;00)Vxex ¥ ge(0;00) IyeT) (K (%, T(%),£) < K(x,9,t(1 +
B))}. Indeed, this follows from the following Cases A-C.

Case A. Let x € [0;1] and B € (0;00) be arbitrary and fixed, and let y = x € T'(x) = [0;1].
By (13.1)-(13.3) and (6.1) we get that Ve (0,000 {K (%, 5, (1 + 8)) = K(x,x,t(1 + B)) = 1}. There-
fore, Vie(o,00{K (%, T(x),t) < K(x,9,t(1 + B)) = 1}.

Case B. Let x € (2;3), B € (0;00), and y € T'(x) = [0;1] be arbitrary and fixed. By (13.1)-
(13.3) and (6.1), since x > y, we get V:c(0,00){K(*,5,£(1 + B)) = 1}. Therefore, V(0,00 {K (%,
T(x),t) < K(x,3,t(1 + B))}.

Case C. Let x € (1;2], B € (0;00), and y € T(x) = (2;3) be arbitrary and fixed. By (13.1)-
(13.3) and (6.1), since V,erw{E N {x,v} # {x,v}}, we get Vic00 (K, 9, t(1 + B)) = t(1 +
Bt + B)+yl=t/[t+y/1+ B)]} and V(0,00 {K (%, T (%), ) = sup{M(x,v,¢) : v e T(x)} =
t/(t + )}. This gives V(0,00 {K (%, T(x),£) < K(x,9,t(1 + B))}.
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(5) (X, T) is Ksyy left and right G-admissible and left and right VW-admissible on X.
By Definition 7.1, assuming that w° € X is arbitrary and fixed, we must prove that each
dynamic process (w” : m € {0} UN) of (X, T) starting at w° and satisfying

Vie(0500) VpeN {rr}gnoo I<(Wm, WP, t) = 1}
or

Ve (0500) {W}gréo ;9£I<(wm, w't) = 1}
is left and right KCyg),(1;-convergent. In fact, since, by (13.1), V.1 {(W" € T(w"™ 1) C [0;1]};
therefore, by (13.1)-(13.3) we get that 1 € LL (i me({ yand 0 € LIZ\/IRW,i,Cm€ (OJUN)-

(6) (X, T) is left and right M g),1)-closed. Indeed, since T( ) =E,if (x,, : m e N) C T(X)
is a left or right M{g};{l}—converging sequence in X and having subsequences (v,, : m €
N) and (u,, : m € N) satisfying VmeN{vm e T(um)}, then, by (13.1)-(13.3) we have that
T ertYmzmy (s € [031]), 1 € LIM( 80, 0 € LIME 490 1 € T(1), and 0 € T(0).

(7) Property (A4) holds. Indeed, by (13.1)-(13.3), even for each ¢ € (0;00), p e N, i €
{m,...,m+p—1}, 1 € 128/y;1), w° € X, and w! € T(w°), since T(w°) C E, C = 8, and
lim,,— o0 A" = 0, if we assume that VmeN{,B(’”) = 1/m?}, then we get that lim,,_.c b, €
(0;00), where V,,en{by = [/, + B?)}, and

hm w P 1K(w wh, tC™" 1/()»’ i)

=m

m+p-1

= lim 1_[ KW, w',tC” ' (M'pby)) =

This follows from the following Cases A and B.
Case A. Let w° € E satisfies w° > w!. Then, by (13.3),

Vte(O oo)vmesze {m,..,m+p-1} {I<(W W tC" 1/()u pb )) }

Hence,
m+p-1 m+p-1
1 _
W}l_r)réol_[Kw w!, tC" '/ (M'pb;)) = 1‘[1_1.
i=m =m

Case B. Let w° € E satisfies w® < w?, or let w° ¢ E. Then, by (13.3), defining constant Q
as

0= { (Wt —w®)?* if w¥ e E satisfies w® < wt,

13.4
y ifw® ¢ E as4)

we deduce that

m+p-1 m+p-1
: 0 .1 “1/(vi b)) — 1 i -17 =
Tim ]‘[ K(w’,wh, tcC" 1 (Apby)) = Tim ]’[ ti[t + Quipbi/C" ] =1

since Yie(m, ., m+p-1)1iMy— 00 A'pb;/ C™ 1 = 0}.

,,,,,
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Therefore, property (9.3) holds. Analogously, we prove that property (9.4) holds.
(8) Property (A5) holds. Indeed, by (13.1)-(13.3), even for each w° € X and w* € T(w°),
since T(w°) C E, we get

lim [((WO, wh, t)

t—00

1 if w® € E satisfies w® > w!,
=1 limyo oo t/[t + (W = w°)*] =1 if w° € E satisfies w° < w!,

limy, o t/(t+y)=1 ifw® ¢ E.

Thus, (9.5) holds. Proof of (9.6) is analogous.

(9) Property (B4) holds. Indeed, by (13.1)-(13.3), even for each ¢ € (0;00), A € (128/y;1),
w? € X, and w' € T(W°), since T(w®) C E, C = 8, and lim,,,oc A" = 0, if we assume
that V,,en{B" = 1/m?} and V,.enf{a, = 1/[m(m + 1)]}, then we get that lim,,_, o by, =
limy,— 00 [ 11711 + B?) € (0;00) and Y0~ a,, = 1, and also, denoting

VmeN{hm = ﬂm/()\mbm) }’

we observe that property (9.9) holds, that is,

: 00 m-1\ _ m—1
mh_{%o*z:mM(W wh, th,C"™) = mh_)mool_[Mw wh, th,C" ) = 1. (13.5)

The proof of (13.5) follows from the following Cases A and B.
Case A. Let w° € E satisfies w® > w!. Then

lim HMW wh, th;,C"™") = lim Hl 1.

m—> 00 m—> 00
i=m

Case B. Let w° € E satisfy w® < w!, or let w® ¢ E. Then, first, we see that
o0
Vimen | [ [M (W, 0!, thiC™ )
i=m

ch C" (e + Q) = [a-P) Y, (13.6)

where Ven{P; = [Q/(;C"™ 1)1/t + Q/(h;C™1)]}, and Q is defined by (13.4).
Now, we prove that Zlofl P; is convergent. With this aim, we study the limit lim;_, o Pj41/

P;. First, we observe that

i+2 t+R;
P /P; = )\— 1+ pD —, 13.7
1 (1+p )t TR (13.7)
where R; = Q/(l;C™1) = Qb;i(i + 1)A}/C™1. Next, we see that
lim R; = 0; (13.8)

1—> 00
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in fact, we have lim;_, o Ri;1/R; = lim;_, oo (1 + BED)A(i + 2)/i = A < 1, which gives that the
series ) - R; is convergent, and, consequently, (13.8) holds. The consequence of (13.7)
and (13.8) is that lim;_, o P;,1/P; = A, which means that the series ) . P; is convergent.

Since (13.6) holds, the convergence of Y ;) P; implies (13.5). Therefore, (9.9) holds.
Analogously, we prove (9.10).

It follows from (13.3) that (9.11) and (9.12) hold. Clearly, (9.13) also holds since W° C E,
and thus by (13.3) we get V;c(0;00) Vxewo {K (%, %, £) = 1}.

(10) For all w° € X, w' € T(W°), and » € (128/y;1), all assumptions (A) and (B) of Theo-
rem 9.1 for Kigy,ny in (X, Mgy, %) hold. This follows from items (1)-(9).

Claim (a) Fix(T) = [0;1]. (b) For each w° € X, each dynamic process (W" : m € {0} UN)
of the system (X, T) starting at w°, ¥ueiouni{w™! € T(W")}, is left and right M gy,q)-
convergent to some point of Fix(T).

Example 13.2 Let X, Mg,y = {M}, n =1, and (X, T) be such as in Example 13.1.
(1) (X, Msy), %) is a fuzzy quasi-triangular space. See Example 13.1.
(2) For each A € (0;1), the condition

Ve (0s00) Yagex {Ea (T(®), T(y), At) = M(x,y,86)}
does not hold, where

Victomo {Eaa (U, W, 1) = EL 000 (U, W,8) = Fop 00 (U, W,

1;1,2X 1;1,2X

- min{ inf M(u, W, 1), inf M(U,w, t)} } u,we 2~
uel weW

Indeed, suppose that J;,,c(0;1) Vie(0i00) Vayex (FM(T (%), T(¥), Aot) > M(x, y, 8t)}. Letting x¢ =
5/2 and yo = 2, by (12.1) it can be shown that M(xo, yo,8t) = 1, T'(xo) = [0;1], T'(yo) = (2;3),
infefo) M(u, (25 3), Aot) = infyejoq) SUP,,c (a3 Aot/ [Mot + (W — u)*] = infepo) ot/ [Mot + (2 —
u)*] = hot/ (Mot +2*), and inf e (o3 M([0;1], W, Aot) = infye(a3) SUP,,cfo.) ot/ [hot + (w—u)*] =
infyec;3) Aot/ [Aot + (w—1)*] = Aot/ (Aot + 2%). Therefore, Fa((T (xo), T (yo), hot) = rot/(hot +
2%) > 1 = M(xo, Yo, 8t), which is absurd.

Remark 13.1 Let us observe that the main tool is the families /C¢, 4. We make the follow-
ing remarks about Examples 13.1 and 13.2 showing how natural these families K, 4 are.
(a) By Example 13.1 we observe that we may apply Theorem 9.1 for set-valued dynamic sys-
tems (X, T) in a fuzzy quasi-triangular space (X, M, 4, *) with left and right G-admissible
and left and right WW-admissible family /C¢, 4 generated by Mc, 4 where K¢, 4 # Mc, 4.
(b) By Example 13.2 we note, however, that we do not apply Theorem 9.1 in a fuzzy quasi-
triangular space (X, Mc, 4, *) when K¢, 4 = M, 4. (c) From (a) and (b) it follows that, in
Theorem 9.1, the existence of families K¢, 4 such that K¢, 4 # M, 4 are essential.

Example 13.3 Let X = (0;3), y > 0, A = Ay U Ay, A; = (01], Ay = [2:3), My = (M :
X? x (0;00) — (0;1]} where, for all u,w € X and ¢ € (0; 0c0),

1 if AN {u, w}={u,w},

Mu, w, ) = t/t+y) AN u,w}F {u,w),

(13.9)
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and let a set-valued dynamic system (X, T') be of the form

A, forueA,
Tu)={A forue(;2), (13.10)
A, forueA,.

(1) (X, My, %) is a fuzzy triangular space; see Example 12.3(1).
(2) For each A€ (0;1), (X,T) is a fuzz (]—'L ;V(” W N)-left contraction and a fuzz
Y S, y

.FR Mugu ', 1)-right contraction. Indeed, if x,y € X, then T(x) = U C A, T(y) = W C A,

1,2X
and, by (13.9), (6.1), Example 12.3(3), and Definition 6.1, for n =1,

W, w,t)

Vie Om){FM(u W, 1) =i

1;1,2X

= FEMm g W) = min{ inf M(u, W, £), inf M(U, w, t)} - 1}.
uel weW
Thus, for C =1,
Ve (0i00) Vaeom) Yagex {Fat (T(x), T(y), At) = 1> M(x,y, Ct)}.

(3) Property (A3) holds, that is, ¥ e(0,00)Vxex ¥ ge(0i00) Jye (0 (M (%, T(x), £) < M(x,y, (1 +
B))}. Indeed, this follows from the following Cases A and B.

Case A. Let x € A, B € (0;00), and y € T(x) be arbitrary and fixed. By (13.9), (13.10),
and (6.1) we get T(x) C A, V:e,00) VveT M, v, t(1 + B)) = 1} and V(0,00 {M(x, T'(x), t) =
sup{M(x,v,t) : v € T(x)} = 1}. Therefore, V;c(0,00){M(x, T(x),£) = M(x,y,t(1 + B))}.

CaseB.Ifx € A, B € (0;00), and y € T'(x) are arbitrary and fixed, then, by (13.9), (13.10),
and (6.1) we get T(x) = A, Vie©00)Vverm M@, v, t(1 + B)) = t(L + B)/[t1 + B) + y]}, and
Vie00){M(x, T(x),t) = sup{M(x,v,t) : v € T(x)} = t/[¢ + y]}. Hence, by Theorem 11.1(A2),
Vicioo) iM%, T (x), t) < M(x,y,t(1 + B))}.

(4) (X, T) is Muyuy left and right G-admissible and VV-admissible on X. By Defini-
tion 7.1, assuming that w° € X is arbitrary and fixed, we must prove that each dynamic
process (w” : m € {0} UN) of (X, T) starting at w° and satisfying

vte(o;m)vpeN{ lim M(w", w"?, ) = 1]
m—> 00
or

Victwo fim, inf M(w" 7,0 =1}
is left and right M ;,;1;-convergent. Indeed, since, by (13 10), Vs (W™ € T(W" 1) C A},
by (13.9) we get that A = LIM( 200 = LIM{ 70

(5) (X, T®) is left and right My,)-closed. Indeed, since T?/(X) = A, if (x,, : m € N) C
T®(X) is a left or right M 1),1;-converging sequence in X and having subsequences (v, :
m € N) and (u,, : m € N) satisfying VmeN{vm € T (u,,)}, then by (13.9) and (13.10) we have
that Jymyen¥msmo (6 € A}, A = LIM(, 0 = LIM{ 70 - and Fix(T) = A.
(6) Property (A4) holds. Indeed, by (13.9), even for each t € (0;00),pe N, i€ {m,...,m+

p-1}, 1 €(0;1), w° € X, and w!' € T(w°), since T(W®) C A, C =1,and lim,,,_, o A" = 0, if we
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assume that V,,en{B"” = 1/m?}, then we get that lim,,_. o, b,, € (0; 00), where V,,en{b,, =

[T5a+ B}, and

lim ;7" 1M(wo, wh,t/(\'ph;))

m— 00

m+p—1

= 121;0 l_[ w w! t/kpb))

M7 t1=1 if w0 € 4,

=m

B {hmm_)Do [15e Vet + yAiph) =1 ifw° € X\A.

Thus, (9.3) and (9.4) hold.
(7) Property (A5) holds. Indeed, by (13.9), even for all w° € X and w! € T(w°), since
T(W®) C A, we get

lim M(w°, w', £) = { , %f Wz €4,
t—00 lim, o t/(t+y) =1 ifw’ e X\A.
Thus, (9.5) and (9.6) hold.

(8) Property (B4) holds. Indeed, by (13.9), even for all £ € (0;00), A € (0;1), w° € X, and
wh e TwP), since T(wW°) C A, C =1, and lim,,_, o, A" = 0, if we assume that V,,cn{B"" =
1/m?} andV, ,enia,, = 1/[m(m+1)]}, then we get that lim,,,_, o b,,, € (0;00) and Yo m =1,
and also, denoting

VmeN{hm = dm/()\mbm) };

we observe that

lim 72 M(w wh th)— lim l_[Mw wh th): (13.11)

moee mﬁool m
This follows from the following Cases A and B.
Case A. Let w° € A. Then, by (13.9), V;c(0;00) Vmen{M(W°, w!, th,,) = 1}. Consequently,
limy,,— 0o ]_[fcmM W, wh, thy) = lim,,— o [ [, 1 = 1, that is, (13.11) holds.
Case B. Let w® € X\A. Then, by (13.9), Vyuen{[ 1o, MW, wh, thy) = [0, ¢/t + vy Ihy) =
[T, (1 — Q)} where ¥,uen{Qum = (¥ /1) /(¢ + y [)}. Let us prove that

lim_ [Ja-Q)=1 (13.12)

With this aim, it suffices to show that the series Y - Q,, is convergent.
First, let us observe that

t+Zy)(m+2)

vmeN{Qmu/Qm U s D)

1+ ,3“”*”)1}, (13.13)
where V,en{Z,, = A" ym(m + 1) [ ]2, (1 + B?)}. Next, we see that

+2
hm Zmiil Zy = lim m—lk(l ,3m+1):k<1,

m—o0 Ml +
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which implies that the series Y - | Z,, is convergent, and, consequently,

W}i_r}nooZm =0. (13.14)
Now, using (13.14) in (13.13), we obtain lim,,_ oo Qu+1/Qm = A < 1. Hence, Y o> | Q,, is con-
vergent. Thus, we have that (13.12) holds.

Therefore, properties (9.9) and (9.10) hold.

It follows from (13.9) that properties (9.11) and (9.12) hold. Clearly, also (9.13) holds
since W0 = A.

(9) For each w° € X and for each w* € T(W°), all assumptions (A) and (B) of Theorem 9.1
fOI" ’C{l);{l} = M{l};{l} hold. This follows from (1)-(8).

Claim (a) Fix(T) = @ and Fix(T™?) = A. (b) For each w° € X, each dynamic process (W :
m € {0} UN) of the system (X, T) starting at w°, ¥ ucojun{w™t € T(w™)}, is left and right
M py,)-convergent to each point of Fix(T™2).

14 Examples illustrating Theorem 10.1
Let, in the sequel, * be the continuous ¢-norm defined by a « b = a - b.

Example 14.1 Let X = (0;3). Define the single-valued dynamic system (X, T') by

1+u for u € (0;1],
T(u)= 1 u/2 for u € (1;2], (14.1)
2+u/3 forue(2;3).

Lety >0, A = (1/2;3), and M1y = {M : X* x (0;00) — (0;1]} where, for all x,y € X and
t € (0;00),

Ml w, ) = 1 if AN {u,w} = {u,w}, (14.2)
Y HE+y) ifAN{u,w)+ {u,w). ’

(1) (X, My, *) is a fuzzy triangular space; see Example 12.3(1).
(2) For each A € (0;1), (X,T) is a fuzzy (EL';(M“H”,)L)—Zeﬁ contraction and a fuzzy
(];f;(Mm;(l), A)-right contraction. Indeed, by Definition 6.3 for 1 = 1, denoting

M,
Vte(O;oo)Vu,weX{FM (1, w,t) = FlL;Lx it (u, w, t)

= EL O (3,10, 8) = min M (s w, £, MOw, 1, 0)} ),
we see that, for all x,y € X, T(x), T(y) € A, and thus, for C =1,

Vie(00) Vayex {Eat (T (), T(), At) =1 > M(x,y,Ct)}
since

ifAN{xyt={xy}

M(x,y,Ct) = | 1
BIEIEY cocrry) AN ) £ 0 y).

(14.3)



Wtodarczyk Fixed Point Theory and Applications (2016) 2016:32 Page 45 of 49

(3) (X, T) is My, left and right G-admissible and My, left and right VWW-admissible
on X.Indeed, let w° € X be arbitrary and fixed. Since (w” = T/ (w°) : m > 1) C A, we have

Vte(O;OO)VpEN {mh—I};oM(Wm’ WWH'P’ t) =1 } )

vte(o;m){ lim_inf M(w", w", ) = 1},

m— 00 n>m

and
Vf€(0;OO)VWeA{ lim M(w, w™, t _1}

(4) The single-valued dynamic system (X, T'?)) is left and right M y,ny-closed on X. In-
deed, since

1/2 + u/2 for u € (0;1],
T w)= {1+ u2 for u € (1;2], (14.4)
2+2/3+u/3% forue(2;3),

we have T?/(X) C A, and if (x,, : m € N) C T®(X) is a left or right M ;,1;-converging se-
quence in X and having subsequences (v,, : m € N) and (u,, : m € N) satisfying V,,en{v =
T (1)}, then A = LIM,, W) = LIM, 41 and Fix(T?) = {1,2) C A.

(5) We see that, for each w° € X, all assumptions (A) and (B) of Theorem 10.1 in
(X, My, *) hold and, for k = 2, the assumption in statement (D) of Theorem 10.1 holds.
Consequently, the assertions in (C) and (D) hold. This follows from items (1)-(4) and (14.1)-

(14.4) since V,,en{T"(X) C A}.

Claim (a) Fix(T) = @ and Fix(T™?) = {1,2}. (b) For each w° € X, the dynamic process (w" :
m € {0} UN) of the system (X, T)) starting at w°, Vyciouniw™t = T(W™)}, is left and right

My -convergent, and

-My

le(T[Z]) CA-= LIMLW (w: me{O UN)

me{O}UN =LIL

(c) The property ¥ ,cpiy(ri2))Vee©00{M (v, T(v), £) = M(T (v), v, t) = 1} holds. (d) Assertions in
statement (E) of Theorem 10.1 do not hold; M is not separating on X since, for x,y € A, x #y,
we have V(0,00 {M(x,,t) = M(y,%,t) = 1}.

Example 14.2 Let X = [0;3), and let M },) = {M : X? x (0;00) — (0;1]} where, for u, w €
X and ¢ € (0; 00),

M(u,w,t) =t/(t +|w—ul) foru,weXandt e (0;00). (14.5)
Define the single-valued dynamic system (X, T') by
1 for u € [0;1],

T(u)=1{1/2 forue(1;2], (14.6)
0 for u € (2;3).
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Further, let E = [0;1], y > 8(E)/2 = sup, . |x — yI/2 = 1/2, and Ky = (K : X* x
(0; 00) — (0;1]} where, for u,w € X and ¢ € (0; 00),

@+ w—ul) fEN{u,w}={uw}

K(u,w,t) = H(E+y) if E 0 {u, w}  {u, w}.

14.7)
(1) (X, Mqyqy, *) is a fuzzy triangular space; see Example 12.3(1).
(2) Kaypy = (K} is the left and right G-family and the left and right VV-family generated
by Muyny = {M} in a fuzzy quasi-triangular space (X, Myy,uy, *). See Example 12.2; we
have that y > 8(E)/2 = sup, e |x —y|/2 =1/2.

(3) For each A € (1/2y);1), (X, T) is a fuzzy (]:i;()q”‘m,)\)—lq‘i contraction and a fuzzy
(f;;(’c““”,k)-right contraction. Indeed, we prove that, for C=1and A € (1/(2y); 1),

Vte(O;oo)Vx,yEX{FIC (T(x)! TU/): }\,t) Z 1<(xy_y: Ct)}’ (148)
where, by Definition 6.3, for n = 2,

—Kqy;
VtE(O;OO)Vu,WEX{F)C(u) w,t) = PlL;z,xm’m (u,w, 1)

—KCqy,
= FII;,X“)’“) (w,u,t) = K(u,w, t)}.

With this aim, we consider the following Cases A and B.

Case A.If {x,y} C [0;1] or {x,y} C (1;2) or {x,y} C (2;3), then T'(x) = T(y) € E. By (14.6)
and (14.7) this gives Fx(T'(x), T(y), At) = K(T'(x), T(y), At) = 1. Therefore, (14.8) holds in
this case.

Case B. If {x,y} N [0:1] # (x5}, (%5} N (12) # (x5}, and {x,y} N (233) # {x,3}, then
T(x), T(y) € E, T(x) # T(y), and (14.8) holds since

K(T(x), T(y),rt) = At/(ht +1/2) > t/(t + y) = K(x,5,Ct), C=1,

whenever A € (1/(2y);1).

(4) (X, T) is Ky left and right G-admissible and left and right WW-admissible on X. By
Definition 7.1, assuming that w® € X is arbitrary and fixed, we must prove that a dynamic
process (W = T"(w°) : m € {0} UN) of (X, T) starting at w° and satisfying

Ve (0i00) YpeN {W}EHOOK(WW[, wr, t) = 1} (14.9)
or
Vieo]Jim_int K1) -1} 1410

is left and right KCy);;-convergent. In fact, since, by (14.6), V,,=2{w” = 1}, by (14.6) and

Ky, ~K(sy;

(14.7) we get that (14.9), (14.10), and LIM, ““;’}UN) = LJMJ(2 ‘8”%}% = {1} hold.
(5) For each w° € X, property (A4) holds. Indeed, by (14.7),

w":mef{0 w:me

Vwoex{tl_i}goK(wo, T(W0),£) = lim K(T(w°),w°, ) = 1},

t—>00
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(6) For each w° € X, property (B3) holds. Indeed, even for each t € (0;00), A € (1/(2y); 1),
and w° € X, since T(w®) C E, C =1, and lim,,,,cc A" = 0, if we assume that ¥, .en{d, =
1/[m(m +1)]}, then we get that ) ., a,, = 1, and also, denoting

VmeN{hm = am/)‘fm};
we observe, by (14.7), that Y,c(;00)Vmen{KW°, T(W°),th,,) = K(T(w°),w°, th,,)} and
Ve (000) Vimend [ 1oy K(W0, T(WP), th) = [152,,(1 — Q)} where, for all m € N and ¢ € (0;00),

Q. = P/h,,/[t + P/h,,] and

p- [w® — T(w®)| ifw® eE,
Ty if w® ¢ E.

We prove that

vtew{mlgnm*sfmz<<w°,r(w°>,tho

m— 00
=m

= lim [[K(w’, T(w°),th;) = mlgnoo]_[u—oi) :1}. (14.11)

With this aim, it is sufficient to prove that the series Y . Q,, is convergent. Indeed, we
see that

14.12)

m+2 t+Z2
Vze(O;oo)VmeN { Qus1/Qm =2 : = }

L+ Zm+1

where V,,en{Z,, = Pm(m + 1)A"}. Since lim,,_, oo Z,51/Z, = A < 1, the series Zf::l Z, is
convergent, and, consequently, lim,,_, oo Z,, = 0. By (14.12) this implies that lim,;;—, oo Qy41/
Qu=A<1,50) 2 Q, is convergent, and (14.11) holds.

Moreover, by (14.7) we see that V;c(0;00) Vo ex (Ko (W, T(w°), £) : (0;00) — (0;1] is non-
decreasing}.

(7) (X, T'®) is left and right M y),n)-closed. Indeed, since T'?(X) = {1}, by Definition 8.2,
if (x,, : m € N) C T?(X) is a left or right M),1)-converging sequence in X and having
subsequences (v,, : m € N) and (u,, : m € N) satisfying V,,en{v,, = T? (1,,)}, then we have
that Vo {m = 1), L € LIM, ) = LIM( 00 and 1= T (1),

(8) We see that, for each w° € X, all assumptions (A) and (B) of Theorem 10.1 in
(X, My, %) hold and, for k = 2, the assumptions in statements (C)-(D) of Theorem 10.1
hold. This follows from items (1)-(7).

Claim (a) Fix(T™) = Fix(T) = {1}. (b) For each w° € X, a dynamic process (W" : m €
{0} U N) of the system (X,T) starting at w°, Vciouni{w”t = T (W0}, is left and
right My,ny-convergent, and {1} = LIMfJ,ﬁ:;Q}g;UN) = LIM:;&:;Q})UN). (c) The property
Vie00{M(1,1, ) =1} holds.

Example 14.3 Let X, M) = {M : X* x (0;00) — (0;1]}, and (X, T) be such as in Ex-
ample 14.2. It is not hard to see that Theorem 10.1 cannot be used for Ky = {K : X* x
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(0;00) — (0;1]} when K = M since the property 3;.¢(0;1)Vie(0;00) Yayex (M (T (%), T(y), At) >
M(x,,t)} does not hold, where

“Mu.
Vte(O;oo)Vu,weX{FM (e, w,t) = FlL;z,x it (u, w, t)

= Fﬁz_;\(/tm;m (w,u, t) = M(u,w, t)}.
Indeed, using xo = 1 and y, = 11/10, we compute that
M(T(x0), T(yo), ht) = At/(At +1/2) = t/(t + 1/10) = M(%0, Yo, £)
whenever A > 5, which is impossible.

Remark 14.1 Before going further, let us observe that (X, M3, %), where My = {M},
and M is defined by (14.5), is a GV -fuzzy metric space. Consequently, Examples 14.2 and
14.3 show that Theorem 10.1 is a new one even in GV -fuzzy metric spaces and that K¢; 4 #
M 4 is a useful tool from a practical point of view in the sense that we may construct a
fuzzy periodic and fuzzy fixed point theory in very general classes of spaces and maps.

15 Conclusions

It is easy to show, by constructing appropriate examples, that in mathematics, some inter-
esting spaces and fascinating results in these spaces are not optimal and that the answers
to many basic problems about them are still missing (e.g., statements that we can give in
more general spaces, some hypotheses are not significant, assertions are not deep). From
any point of view, this situation is not satisfactory and inspires further investigations. This
paper describes and solves some problems in this direction and leads to entirely new con-
cepts of fuzzy spaces and set-valued and single-valued fuzzy contractions and to a new
way of looking at fuzzy periodic and fixed point theory.
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