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Abstract
In this paper, we first propose a weak convergence algorithm, called the linesearch
algorithm, for solving a split equilibrium problem and nonexpansive mapping
(SEPNM) in real Hilbert spaces, in which the first bifunction is pseudomonotone with
respect to its solution set, the second bifunction is monotone, and fixed point
mappings are nonexpansive. In this algorithm, we combine the extragradient method
incorporated with the Armijo linesearch rule for solving equilibrium problems and the
Mann method for finding a fixed point of an nonexpansive mapping. We then
combine the proposed algorithm with hybrid cutting technique to get a strong
convergence algorithm for SEPNM. Special cases of these algorithms are also given.
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1 Introduction
Throughout the paper, unless otherwise is stated, we assume that H and H are real
Hilbert spaces endowed with inner products and induced norms denoted by 〈·, ·〉 and
‖ · ‖, respectively, whereas H refers to any of these spaces. We write xk → x or xk ⇀ x
iff xk converges strongly or weakly to x, respectively, as k → ∞. Let C, Q be nonempty
closed convex subsets in H, H, respectively, and A : H → H be a bounded linear op-
erator. The split feasible problem (SFP) in the sense of Censor and Elfving [] is to find
x∗ ∈ C such that Ax∗ ∈ Q. It turns out that SFP provides a unified framework for the study
of many significant real-world problems such as in signal processing, medical image re-
construction, intensity-modulated radiation therapy, et cetera; see, for example, [–]. To
find a solution of SFP in finite-dimensional Hilbert spaces, a basic scheme proposed by
Byrne [], called the CQ-algorithm, is defined as follows:

xk+ = PC
(
xk + γ AT (PQ – I)Axk),

where I is the identity mapping, and PC is projection mapping onto C. Xu [] investigated
the SFP setting in infinite-dimensional Hilbert spaces. In this case, the CQ-algorithm be-
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comes

xk+ = PC
(
xk + γ A∗(PQ – I)Axk),

where A∗ is the adjoint operator of A.
The split feasibility problem when C or Q are fixed points of mappings or common

fixed points of mappings and solutions of variational inequality problems was considered
in some recent research papers; see, for instance, [–]. Recently, Moudafi [] (see also
[–]) considered the split equilibrium problems (SEP), more precisely:

Let f : C ×C →R, g : Q×Q →R be equilibrium bifunctions, that is, f (x, x) = g(u, u) = 
for all x ∈ C and u ∈ Q. The split equilibrium problem takes the form

Find x∗ ∈ C such that x∗ ∈ Sol(C, f ) and Ax∗ ∈ Sol(Q, g),

where Sol(C, f ) is the solution set of the following equilibrium problem (EP(C, f )):

Find x̄ ∈ C such that f (x̄, y) ≥ ,∀y ∈ C,

and Sol(Q, g) is the solution set of the equilibrium problem EP(Q, g). See [, ] for more
detail on equilibrium problems.

For obtaining a solution of SEP, He [] introduced an iterative method, which generates
a sequence {xk} by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ C, {rk} ⊂ (, +∞), μ > ,

f (yk , y) + 
rk

〈y – yk , yk – xk〉 ≥ , ∀y ∈ C,

g(uk , v) + 
rk

〈v – uk , uk – Ayk〉 ≥ , ∀v ∈ Q,

xk+ = PC(yk + μA∗(uk – Ayk)), ∀k ≥ .

Under certain conditions on bifunctions and parameters, the author shows that {xk},
{yk} weakly converges to a solution of SEP, provided that f and g are monotone on C and
Q, respectively.

On the other hand, many researchers have been proposed numerical algorithms for find-
ing a common element of the set of solutions of monotone equilibrium problems and the
set of fixed points of nonexpansive mappings; see, for example, [–] and the references
therein.

This paper focuses mainly on a split equilibrium problem and nonexpansive mapping
involving pseudomonotone and monotone equilibrium bifunctions in real Hilbert spaces.
In detail, let f : C × C → R be a pseudomonotone bifunction with respect to its solu-
tion set, g : Q × Q → R be a monotone bifunction, and S : C → C and T : Q → Q be
nonexpansive mappings. The problem considered in this paper can be stated as follows
(SEPNM(C, Q, A, f , g, S, T) or SEPNM for short):

Find x∗ ∈ C such that x∗ ∈ Sol(C, f ) ∩ Fix(S) and Ax∗ ∈ Sol(Q, g) ∩ Fix(T),

where Fix(S) and Fix(T) are the fixed points of the mappings S and T , respectively.
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It should be noticed that, under the monotonicity assumption on f and g , the solu-
tion sets Sol(C, f ) and Sol(C, g) of the equilibrium problems EP(C, f ) and EP(Q, g) are
closed convex sets whenever f and g are lower semicontinuous and convex with re-
spect to the second variables. In addition, the nonexpansiveness assumption of S and T
also implies that Fix(S) and Fix(T) are closed convex sets. Hence, Sol(C, f ) ∩ Fix(S) and
Sol(Q, g) ∩Fix(T) are closed convex sets. However, the main difficulty is that, even if these
sets are convex, they are not given explicitly as in a standard mathematical programming
problem, and therefore the projection onto those sets cannot be computed, and conse-
quently, available methods (see, e.g., [, , ] and the references therein) cannot be ap-
plied for solving SEPNM directly.

In this paper, we first propose a weak convergence algorithm for solving SEPNM by using
a combination of the extragradient method with Armijo linesearch type rule for an equi-
librium problem [] (see also [–] for more detail on extragradient algorithms) and
the Mann method [] (see also [, ]) for a fixed point problem. We then combine this
algorithm with hybrid cutting technique [] (see also []) to get a strong convergence
algorithm for SEPNM.

The paper is organized as follows. The next section presents some preliminary results.
A weak convergence algorithm and its special case are presented in Section . In the last
section, we combine the method presented in Section  with the hybrid projection method
for obtaining a strong convergence algorithm for SEPNM.

2 Preliminaries
Let H be a real Hilbert space, and C a nonempty closed convex subset of H. By PC we
denote the metric projection operator onto C, that is,

PC(x) ∈ C:
∥∥x – PC(x)

∥∥ ≤ ‖x – y‖, ∀y ∈ C.

The following well-known results will be used in the sequel.

Lemma  Suppose that C is a nonempty closed convex subset in H. Then PC has the fol-
lowing properties:

(a) PC(x) is singleton and well defined for every x;
(b) z = PC(x) if and only if 〈x – z, y – z〉 ≤ , ∀y ∈ C;
(c) ‖PC(x) – PC(y)‖ ≤ 〈PC(x) – PC(y), x – y〉, ∀x, y ∈H;
(d) ‖PC(x) – PC(y)‖ ≤ ‖x – y‖ – ‖x – PC(x) – y + PC(y)‖, ∀x, y ∈H.

Lemma  Let H be a real Hilbert space. Then, for all x, y ∈H and α ∈ [, ], we have

∥∥αx + ( – α)y
∥∥ = α‖x‖ + ( – α)‖y‖ – α( – α)‖x – y‖.

Lemma  (Opial’s condition) For any sequence {xk} ⊂H with xk ⇀ x, we have the inequal-
ity

lim inf
k→+∞

∥∥xk – x
∥∥ < lim inf

k→+∞
∥∥xk – y

∥∥

for all y ∈H such that y �= x.
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Definition  We say that an operator T : H → H is demiclosed at  if, for any sequence
{xk} such that xk ⇀ x and Txk →  as k → ∞, we have Tx = .

It is well known that, for a nonexpansive operator T : H → H, the operator I – T is
demiclosed at ; see [], Lemma .

Now, we assume that the equilibrium bifunctions g : Q × Q → R and f : C × C → R

satisfy the following assumptions, respectively.

Assumption A

(A) g is monotone on Q, that is, g(u, v) + g(v, u) ≤  for all u, v ∈ Q;
(A) g(u, ·) is convex and lower semicontinuous on Q for each u ∈ Q;
(A) for all u, v, w ∈ Q,

lim sup
λ↓

g
(
λw + ( – λ)u, v

) ≤ g(u, v).

Assumption B

(B) f is pseudomonotone on C, that is, if f (x, y) ≥  implies f (y, x) ≤  for all x, y ∈ C;
(B) f (x, ·) is convex and subdifferentiable on C for all x ∈ C;
(B) f is jointly weakly continuous on C × C in the sense that, if x, y ∈ C and {xk}, {yk} ⊂ C

converge weakly to x and y, respectively, then f (xk , yk) → f (x, y) as k → +∞.

Let ϕ be an equilibrium bifunction defined on C ×C. For x, y ∈ C, we denote by ∂ϕ(x, y)
the subgradient of the convex function ϕ(x, ·) at y, that is,

∂ϕ(x, y) :=
{
ξ̂ ∈H : ϕ(x, z) ≥ ϕ(x, y) + 〈ξ̂ , z – y〉,∀z ∈ C

}
.

In particular,

∂ϕ(x, x) =
{
ξ̂ ∈H : ϕ(x, z) ≥ 〈ξ̂ , z – x〉,∀z ∈ C

}
.

Let Δ be an open convex set containing C. The next lemma can be considered as an
infinite-dimensional version of Theorem . in [].

Lemma  ([], Proposition .) Let ϕ : Δ×Δ →R be an equilibrium bifunction satisfy-
ing conditions (A) on Δ and (A) on C. Let x̄, ȳ ∈ Δ, and let {xk}, {yk} be two sequences in
Δ converging weakly to x̄, ȳ, respectively. Then, for any ε > , there exist η >  and kε ∈ N

such that

∂ϕ
(
xk , yk) ⊂ ∂ϕ(x̄, ȳ) +

ε

η
B

for every k ≥ kε , where B denotes the closed unit ball in H.

Lemma  Let the equilibrium bifunction ϕ satisfy assumptions (A) on Δ and (A) on C,
and {xk} ⊂ C,  < ρ ≤ ρ̄ , {ρk} ⊂ [ρ, ρ̄]. Consider the sequence {yk} defined as

yk = arg min

{
ϕ
(
xk , y

)
+


ρk

∥∥y – xk∥∥ : y ∈ C
}

.

If {xk} is bounded, then {yk} is also bounded.
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Proof First, we show that if {xk} converges weakly to x∗, then {yk} is bounded. Indeed,

yk = arg min

{
ϕ
(
xk , y

)
+


ρk

∥
∥y – xk∥∥ : y ∈ C

}

and

ϕ
(
xk , xk) +


ρk

∥
∥xk – xk∥∥ = .

Therefore,

ϕ
(
xk , yk) +


ρk

∥∥yk – xk∥∥ ≤ , ∀k.

In addition, for all ξ̂ k ∈ ∂ϕ(xk , xk), we have

ϕ
(
xk , yk) +


ρk

∥
∥yk – xk∥∥ ≥ 〈

ξ̂ k , yk – xk 〉 +


ρk

∥
∥yk – xk∥∥.

This implies

–
∥
∥ξ̂ k∥∥

∥
∥yk – xk∥∥ +


ρk

∥
∥yk – xk∥∥ ≤ .

Hence,

∥
∥yk – xk∥∥ ≤ ρk

∥
∥ξ̂ k∥∥, ∀k.

Because {ρk} is bounded, {xk} converges weakly to x∗ and ξ̂ k ∈ ∂ϕ(xk , xk). By Lemma 
the sequence {ξ̂ k} is bounded; combining this with the boundedness of {xk}, we get that
{yk} is also bounded.

Now let us prove Lemma . Suppose that {yk} is unbounded, that is, there exists a subse-
quence {yki} ⊆ {yk} such that limi→∞ ‖yki‖ = +∞. By the boundedness of {xk} this implies
that {xki} is also bounded, and without loss of generality, we may assume that {xki} con-
verges weakly to some x∗. By the same argument as before, we get that {yki} is bounded,
a contradiction. Therefore, {yk} is bounded. �

The following lemmas are well known in the theory of monotone equilibrium problems.

Lemma  ([]) Let g satisfy Assumption A. Then, for all α >  and u ∈ H, there exists
w ∈ Q such that

g(w, v) +

α

〈v – w, w – u〉 ≥ , ∀v ∈ Q.

Lemma  ([]) Under the assumptions of Lemma , the mapping Tg
α defined on H as

Tg
α(u) =

{
w ∈ Q : g(w, v) +


α

〈v – w, w – u〉 ≥ ,∀v ∈ Q
}

has following properties:
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(i) Tg
α is single-valued;

(ii) Tg
α is firmly nonexpansive, that is, for any u, v ∈ H,

∥
∥Tg

α(u) – Tg
α(v)

∥
∥ ≤ 〈

Tg
α(u) – Tg

α(v), u – v
〉
;

(iii) Fix(Tg
α) = Sol(Q, g);

(iv) Sol(Q, g) is closed and convex.

Lemma  ([]) Under the assumptions of Lemma , for α,β >  and u, v ∈H, we have

∥
∥Tg

α(u) – Tg
β (v)

∥
∥ ≤ ‖v – u‖ +

|β – α|
β

∥
∥Tg

β (v) – v
∥
∥.

3 A weak convergence algorithm
Algorithm 

Initialization. Pick x ∈ C and choose the parameters β ,η, θ ∈ (, ),  < ρ ≤ ρ̄ ,
{ρk} ⊂ [ρ, ρ̄],  < γ ≤ γ̄ < , {γk} ⊂ [γ , γ̄ ],  < α, {αk} ⊂ [α, +∞), μ ∈ (, 

‖A‖ ).
Iteration k (k = , , , . . .). Having xk , do the following steps:

Step . Solve the strongly convex program

CP
(
xk) min

{
f
(
xk , y

)
+


ρk

∥∥y – xk∥∥ : y ∈ C
}

to obtain its unique solution yk .
If yk = xk , then set uk = xk and go to Step . Otherwise, go to Step .

Step . (Armijo linesearch rule) Find mk as the smallest positive integer number m
such that

⎧
⎨

⎩
zk,m = ( – ηm)xk + ηmym,

f (zk,m, xk) – f (zk,m, yk) ≥ θ
ρk

‖xk – yk‖.
(.)

Set ηk = ηmk , zk = zk,mk .
Step . Select ξ k ∈ ∂f (zk , xk) and compute σk = f (zk ,xk )

‖ξk‖ , uk = PC(xk – γkσkξ
k).

Step .

⎧
⎨

⎩
vk = ( – β)uk + βSuk ,

wk = Tg
αk Avk .

Step . Take xk+ = PC(vk + μA∗(Twk – Avk)) and go to iteration k with k replaced
by k + .

Lemma  Suppose that p ∈ Sol(C, f ), f (x, ·) is convex and subdifferentiable on C for all
x ∈ C and that f is pseudomonotone on C. Then, we have:

(a) The Armijo linesearch rule (.) is well defined;
(b) f (zk , xk) > ;
(c)  /∈ ∂f (zk , xk);
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(d)

∥∥uk – p
∥∥ ≤ ∥∥xk – p

∥∥ – γk( – γk)
(
σk

∥∥ξ k∥∥).

Proof The proof of Lemma  when H is a finite-dimensional space can be found, for
example, in []. When its dimension is infinite, it can be done in the same way. So we
omit it. �

Theorem  Let C and Q be two nonempty closed convex subsets in H and H, respectively.
Let S : C → C; T : Q → Q be nonexpansive mappings, and let bifunctions g and f satisfy
Assumptions A and B, respectively. Let A : H → H be a bounded linear operator with its
adjoint A∗. If Ω = {x∗ ∈ Sol(C, f )∩Fix(S) : Ax∗ ∈ Fix(Q, g)∩Fix(T)} �= ∅, then the sequences
{xk}, {uk}, {vk} converge weakly to an element p ∈ Ω , and {wk} converges weakly to Ap ∈
Sol(Q, g) ∩ Fix(T).

Proof Let x∗ ∈ Ω . Then x∗ ∈ Sol(C, f ) ∩ Fix(S) and Ax∗ ∈ Sol(Q, g) ∩ Fix(T).
From Lemma (d) we have

∥
∥uk – x∗∥∥ ≤ ∥

∥xk – x∗∥∥ – γk( – γk)
(
σk

∥
∥ξ k∥∥)

≤ ∥
∥xk – x∗∥∥.

By Step  we get

∥
∥vk – x∗∥∥ =

∥
∥( – β)uk + βSuk – x∗∥∥

=
∥∥( – β)

(
uk – x∗) + β

(
Suk – Sx∗)∥∥

≤ ( – β)
∥∥uk – x∗∥∥ + β

∥∥Suk – Sx∗∥∥

≤ ( – β)
∥∥uk – x∗∥∥ + β

∥∥uk – x∗∥∥

=
∥
∥uk – x∗∥∥.

Thus,

∥
∥vk – x∗∥∥ ≤ ∥

∥uk – x∗∥∥ ≤ ∥
∥xk – x∗∥∥. (.)

Assertions (iii) and (ii) in Lemma  imply that

∥
∥Tg

αk
Avk – Ax∗∥∥ =

∥
∥Tg

αk
Avk – Tg

αk
Ax∗∥∥

≤ 〈
Tg

αk
Avk – Tg

αk
Ax∗, Avk – Ax∗〉

=
〈
Tg

αk
Avk – Ax∗, Avk – Ax∗〉

=


[∥∥Tg

αk
Avk – Ax∗∥∥ +

∥
∥Avk – Ax∗∥∥ –

∥
∥Tg

αk
Avk – Avk∥∥].

Hence,

∥∥Tg
αk

Avk – Ax∗∥∥ ≤ ∥∥Avk – Ax∗∥∥ –
∥∥Tg

αk
Avk – Avk∥∥.
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Because of the nonexpansiveness of the mapping T , we receive from the last inequality
that

∥∥Twk – Ax∗∥∥ =
∥∥TTg

αk
Avk – TAx∗∥∥

≤ ∥∥Tg
αk

Avk – Ax∗∥∥

≤ ∥∥Avk – Ax∗∥∥ –
∥∥Tg

αk
Avk – Avk∥∥. (.)

Using (.), we have

〈
A

(
vk – x∗), Twk – Avk 〉 =

〈
A

(
vk – x∗) + Twk – Avk –

(
Twk – Avk), Twk – Avk 〉

=
〈
Twk – Ax∗, Twk – Avk 〉 –

∥
∥Twk – Avk∥∥

=


[∥∥Twk – Ax∗∥∥ +

∥
∥Twk – Avk∥∥ –

∥
∥Avk – Ax∗∥∥]

–
∥
∥Twk – Avk∥∥

=


[(∥∥Twk – Ax∗∥∥ –

∥
∥Avk – Ax∗∥∥) –

∥
∥Twk – Avk∥∥]

≤ –


∥
∥Tg

αk
Avk – Avk∥∥ –



∥
∥Twk – Avk∥∥. (.)

By the definition of xk+ we have

∥∥xk+ – x∗∥∥ =
∥∥PC

(
vk + μA∗(Twk – Avk)) – PC

(
x∗)∥∥

≤ ∥∥(
vk – x∗) + μA∗(Twk – Avk)∥∥

=
∥∥vk – x∗∥∥ +

∥∥μA∗(Twk – Avk)∥∥ + μ
〈
vk – x∗, A∗(Twk – Avk)〉

≤ ∥
∥vk – x∗∥∥ + μ∥∥A∗∥∥∥∥Twk – Avk∥∥ + μ

〈
A

(
vk – x∗), Twk – Avk 〉.

In combination with (.) and (.), the last inequality becomes

∥∥xk+ – x∗∥∥ ≤ ∥∥vk – x∗∥∥ + μ∥∥A∗∥∥∥∥Twk – Avk∥∥

– μ
∥∥Twk – Avk∥∥ – μ

∥∥Tg
αk

Avk – Avk∥∥

=
∥∥vk – x∗∥∥ – μ

(
 – μ‖A‖)∥∥Twk – Avk∥∥ – μ

∥∥wk – Avk∥∥

≤ ∥∥xk – x∗∥∥ – μ
(
 – μ‖A‖)∥∥Twk – Avk∥∥ – μ

∥∥wk – Avk∥∥. (.)

In view of (.), (.), and μ ∈ (, 
‖A‖ ), we get

∥∥xk+ – x∗∥∥ ≤ ∥∥vk – x∗∥∥ ≤ ∥∥uk – x∗∥∥ ≤ ∥∥xk – x∗∥∥ (.)

and

μ
(
 – μ‖A‖)∥∥Twk – Avk∥∥ + μ

∥∥wk – Avk∥∥ ≤ ∥∥xk – x∗∥∥ –
∥∥xk+ – x∗∥∥. (.)
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Therefore, limk→+∞ ‖xk – x∗‖ does exist, and we get from (.) and (.) that

lim
k→+∞

∥
∥xk – x∗∥∥ = lim

k→+∞
∥
∥vk – x∗∥∥ = lim

k→+∞
∥
∥uk – x∗∥∥ and

lim
k→+∞

∥
∥Twk – Avk∥∥ = lim

k→+∞
∥
∥wk – Avk∥∥ = .

(.)

From (.) and the inequality

∥
∥Twk – wk∥∥ ≤ ∥

∥Twk – Avk∥∥ +
∥
∥wk – Avk∥∥

we get

lim
k→+∞

∥∥Twk – wk∥∥ = . (.)

Besides, Lemma (d) implies

∥∥uk – x∗∥∥ ≤ ∥∥xk – x∗∥∥ – γk( – γk)
(
σk

∥∥ξ k∥∥).

Hence,

γk( – γk)
(
σk

∥
∥ξ k∥∥) ≤ ∥

∥xk – x∗∥∥ –
∥
∥uk – x∗∥∥

=
(∥∥xk – x∗∥∥ –

∥∥uk – x∗∥∥)(∥∥xk – x∗∥∥ +
∥∥uk – x∗∥∥)

.

In view of (.), we get

lim
k→+∞

σk
∥
∥ξ k∥∥ = . (.)

In addition, by the definition of uk , uk = PC(xk – γkσkξ
k). We have

∥∥uk – xk∥∥ ≤ γkσk
∥∥ξ k∥∥.

So we get from (.) that

lim
k→+∞

∥∥uk – xk∥∥ = . (.)

Using vk = ( – β)uk + βSuk , Lemma , and the nonexpansiveness of S, we have

∥∥vk – x∗∥∥ =
∥∥( – β)uk + βSuk – x∗∥∥

=
∥
∥( – β)

(
uk – x∗) + β

(
Suk – x∗)∥∥

= ( – β)
∥
∥uk – x∗∥∥ + β

∥
∥Suk – x∗∥∥ – β( – β)

∥
∥Suk – uk∥∥

= ( – β)
∥
∥uk – x∗∥∥ + β

∥
∥Suk – Sx∗∥∥ – β( – β)

∥
∥Suk – uk∥∥

≤ ( – β)
∥
∥uk – x∗∥∥ + β

∥
∥uk – x∗∥∥ – β( – β)

∥
∥Suk – uk∥∥

=
∥∥uk – x∗∥∥ – β( – β)

∥∥Suk – uk∥∥. (.)
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Therefore,

β( – β)
∥∥Suk – uk∥∥ ≤ ∥∥uk – x∗∥∥ –

∥∥vk – x∗∥∥.

Combining the last inequality with (.), we obtain that

lim
k→+∞

∥
∥Suk – uk∥∥ = . (.)

In addition,

∥
∥vk – xk∥∥ ≤ ∥

∥vk – uk∥∥ +
∥
∥uk – xk∥∥

= α
∥∥Suk – uk∥∥ +

∥∥uk – xk∥∥.

Therefore, we get from (.) and (.) that

lim
k→+∞

∥
∥vk – xk∥∥ = . (.)

Because limk→+∞ ‖xk – x∗‖ exists, {xk} is bounded. By Lemma , {yk} is bounded, and
consequently {zk} is bounded. By Lemma , {ξ k} is bounded. Step  and (.) yield

lim
k→∞

f
(
zk , xk) = lim

k→∞
[
σk

∥∥ξ k∥∥]∥∥ξ k∥∥ = . (.)

We have

 = f
(
zk , zk) = f

(
zk , ( – ηk)xk + ηkyk)

≤ ( – ηk)f
(
zk , xk) + ηkf

(
zk , yk),

so, we get from (.) that

f
(
zk , xk) ≥ ηk

[
f
(
zk , xk) – f

(
zk , yk)]

≥ θ

ρk
ηk

∥∥xk – yk∥∥.

Combining this with (.), we have

lim
k→∞

ηk
∥
∥xk – yk∥∥ = . (.)

Suppose that p is a weak accumulation point of {xk}, that is, there exists a subsequence
{xkj} of {xk} such that xkj converges weakly to p ∈ C as j → +∞. Then, it follows from (.)
and (.) that ukj ⇀ p, vkj ⇀ p, and Avkj ⇀ Ap.

Since limk→+∞ ‖wk – Avk‖ = , we deduce that wkj ⇀ Ap. Because {wk} ⊂ Q and Q is
closed and convex, we have that Ap ∈ Q.

From (.) we get

lim
i→∞ηki

∥∥xki – yki
∥∥ = . (.)

We now consider two distinct cases.
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Case . lim supi→∞ ηki > .
In this case, there exist η̄ >  and a subsequence of {ηki}, denoted again by {ηki}, such

that, for some i > , ηki > η̄ for all i ≥ i. Using this fact and (.), we have

lim
i→∞

∥∥xki – yki
∥∥ = . (.)

Recall that xk ⇀ p, together with (.), implies that yki ⇀ p as i → ∞.
By the definition of yki ,

yki = arg min

{
f
(
xki , y

)
+


ρki

∥
∥y – xki

∥
∥ : y ∈ C

}
,

we have

 ∈ ∂f
(
xki , yki

)
+


ρki

(
yki – xki

)
+ NC

(
yki

)
,

so there exists ξ̂ ki ∈ ∂f (xki , yki ) such that

〈
ξ̂ ki , y – yki

〉
+


ρki

〈
yki – xki , y – yki

〉 ≥ , ∀y ∈ C.

Combining this with

f
(
xki , y

)
– f

(
xki , yki

) ≥ 〈
ξ̂ ki , y – yki

〉
, ∀y ∈ C,

yields

f
(
xki , y

)
– f

(
xki , yki

)
+


ρki

〈
yki – xki , y – yki

〉 ≥ , ∀y ∈ C. (.)

Since

〈
yki – xki , y – yki

〉 ≤ ∥∥yki – xki
∥∥∥∥y – yki

∥∥,

from (.) we get that

f
(
xki , y

)
– f

(
xki , yki

)
+


ρki

∥
∥yki – xki

∥
∥
∥
∥y – yki

∥
∥ ≥ . (.)

Letting i → ∞, by the weak continuity of f and (.), from (.) we obtain in the limit
that

f (p, y) – f (p, p) ≥ .

Hence,

f (p, y) ≥ , ∀y ∈ C,

which means that p is a solution of EP(C, f ).
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Case . limi→∞ ηki = .
From the boundedness of {yki}, without loss of generality, we may assume that yki ⇀ ȳ

as i → ∞.
Replacing y by xki in (.), we get

f
(
xki , yki

) ≤ –


ρki

∥∥yki – xki
∥∥. (.)

On the other hand, by the Armijo linesearch rule (.), for mki – , we have

f
(
zki ,mki –, xki

)
– f

(
zki ,mki –, yki

)
<

θ

ρki

∥∥yki – xki
∥∥.

Combining this with (.), we get

f
(
xki , yki

) ≤ –


ρki

∥∥yki – xki
∥∥ ≤ 

θ

[
f
(
zki ,mki –, yki

)
– f

(
zki ,mki –, xki

)]
. (.)

According to the algorithm, we have zki ,mki – = (–η
mki –)xki +η

mki –yki . Since η
ki ,mki – → ,

xki converges weakly to p, and yki converges weakly to ȳ, this implies that zki ,mki –
⇀ p as

i → ∞. Beside that, { 
ρki

‖yki – xki‖} is bounded, so without loss of generality we may
assume that limi→+∞ 

ρki
‖yki – xki‖ exists. Hence, in the limit, from (.) we get that

f (p, ȳ) ≤ – lim
i→+∞


ρki

∥
∥yki – xki

∥
∥ ≤ 

θ
f (p, ȳ).

Therefore, f (p, ȳ) =  and limi→+∞ ‖yki – xki‖ = . By Case  we get p ∈ Sol(C, f ).
Besides that, (.) implies that ‖Sukj – ukj‖ →  as j → ∞; together with ukj ⇀ p and

the demiclosedness of I – S, we get p ∈ Fix(S).
Therefore,

p ∈ Sol(C, f ) ∩ Fix(S). (.)

Next, we need to show that Ap ∈ Sol(Q, g) ∩ Fix(T).
Indeed, we have Sol(Q, g) = Fix(Tg

β ). So, if Tg
βAp �= Ap, then, using Opial’s condition, we

have

lim inf
j→+∞

∥
∥Avkj – Ap

∥
∥ < lim inf

j→+∞
∥
∥Avkj – Tg

βAp
∥
∥

= lim inf
j→+∞

∥∥Avkj – wkj + wkj – Tg
βAp

∥∥

≤ lim inf
j→+∞

(∥∥Avkj – wkj
∥
∥ +

∥
∥Tg

βAp – wkj
∥
∥)

.

So it follows from (.) and Lemma  that

lim inf
j→+∞

∥∥Avkj – Ap
∥∥ < lim inf

j→+∞
∥∥Tg

βAp – wkj
∥∥

= lim inf
j→+∞

∥
∥Tg

βAp – Tg
αkj

Avkj
∥
∥
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≤ lim inf
j→+∞

{∥∥Avkj – Ap
∥∥ +

|αkj – β|
αkj

∥∥Tg
αkj

Avkj – Avkj
∥∥
}

= lim inf
j→+∞

{∥∥Avkj – Ap
∥∥ +

|αkj – β|
αkj

∥∥wkj – Avkj
∥∥
}

= lim inf
j→+∞

∥∥Avkj – Ap
∥∥,

a contradiction. Thus, Ap ∈ Fix(Tg
α) = Sol(Q, g).

Moreover, (.) shows that limj→∞ ‖Twkj – wkj‖ = . Combining this with wkj ⇀ Ap and
the fact that I – T is demiclosed at , it is immediate that Ap ∈ Fix(T). Therefore,

Ap ∈ Sol(Q, g) ∩ Fix(T). (.)

From (.) and (.) we obtain that p ∈ Ω .
To complete the proof, we must show that the whole sequence {xk} converges weakly

to p. Indeed, if there exists a subsequence {xli} of {xk} such that xli ⇀ q with q �= p, then
we have q ∈ Ω . By Opial’s condition this yields

lim inf
i→+∞

∥
∥xli – q

∥
∥ < lim inf

i→+∞
∥
∥xli – p

∥
∥

= lim inf
j→+∞

∥∥xk – p
∥∥

= lim inf
j→+∞

∥
∥xkj – p

∥
∥

< lim inf
j→+∞

∥∥xkj – q
∥∥

= lim inf
i→+∞

∥
∥xli – q

∥
∥,

a contradiction. Hence, {xk} converges weakly to p.
Combining this with (.), it is immediate that {uk}, {vk} also converge weakly to p and

wk ⇀ Ap ∈ Sol(Q, g) ∩ Fix(T). �

A particular case of the problem SEPNM is the split equilibrium problem SEP, that
is, S = IH and T = IH . In this case, we have the following linesearch algorithm for
SEP.

Algorithm 
Initialization. Pick x ∈ C and choose the parameters η, θ ∈ (, ),  < ρ ≤ ρ̄ ,
{ρk} ⊂ [ρ, ρ̄],  < γ ≤ γ̄ < , {γk} ⊂ [γ , γ̄ ],  < α, {αk} ⊂ [α, +∞), μ ∈ (, 

‖A‖ ).
Iteration k (k = , , , . . .). Having xk , do the following steps:

Step . Solve the strongly convex program

CP
(
xk) min

{
f
(
xk , y

)
+


ρk

∥∥y – xk∥∥ : y ∈ C
}

to obtain its unique solution yk .
If yk = xk , then set uk = xk and go to Step . Otherwise, go to Step .
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Step . (Armijo linesearch rule) Find mk as the smallest positive integer number m
such that

⎧
⎨

⎩
zk,m = ( – ηm)xk + ηmym,

f (zk,m, xk) – f (zk,m, yk) ≥ θ
ρk

‖xk – yk‖.

Set ηk = ηmk , zk = zk,mk .
Step . Select ξ k ∈ ∂f (zk , xk) and compute σk = f (zk ,xk )

‖ξk‖ , uk = PC(xk – γkσkξ
k).

Step . wk = Tg
αk Auk .

Step . Take xk+ = PC(uk + μA∗(wk – Auk)) and go to iteration k with k is replaced
by k + .

The following corollary is an immediate consequence of Theorem .

Corollary  Suppose that g , f are bifunctions satisfying Assumptions A and B, respectively.
Let A : H → H be a bounded linear operator with its adjoint A∗. If Ω = {x∗ ∈ Sol(C, f ) :
Ax∗ ∈ Sol(Q, g)} �= ∅, then the sequences {xk} and {uk} converge weakly to an element p ∈ Ω ,
and {wk} converges weakly to Ap ∈ Sol(Q, g).

4 A strong convergence algorithm
Algorithm 

Initialization. Pick xg ∈ C = C and choose the parameters β ,η, θ ∈ (, ),  < ρ ≤ ρ̄ ,
{ρk} ⊂ [ρ, ρ̄],  < γ ≤ γ̄ < , {γk} ⊂ [γ , γ̄ ],  < α, {αk} ⊂ [α, +∞), μ ∈ (, 

‖A‖ ).
Iteration k (k = , , , . . .). Having xk , do the following steps:

Step . Solve the strongly convex program

CP
(
xk) min

{
f
(
xk , y

)
+


ρk

∥∥y – xk∥∥ : y ∈ C
}

to obtain its unique solution yk .
If yk = xk , then set uk = xk and go to Step . Otherwise, go to Step .

Step . (Armijo linesearch rule) Find mk as the smallest positive integer number m
such that

⎧
⎨

⎩
zk,m = ( – ηm)xk + ηmym,

f (zk,m, xk) – f (zk,m, yk) ≥ θ
ρk

‖xk – yk‖.
(.)

Set ηk = ηmk , zk = zk,mk .
Step . Select ξ k ∈ ∂f (zk , xk) and compute σk = f (zk ,xk )

‖ξk‖ , uk = PC(xk – γkσkξ
k).

Step .

⎧
⎨

⎩
vk = ( – β)uk + βSuk ,

wk = Tg
βk

Avk .

Step . tk = PC(vk + μA∗(Twk – Avk)).
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Step . Define Ck+ = {x ∈ Ck : ‖x – tk‖ ≤ ‖x – vk‖ ≤ ‖x – xk‖}. Compute
xk+ = PCk+ (xg) and go to iteration k with k is replaced by k + .

Theorem  Let C and Q be two nonempty closed convex subsets in H and H, respectively.
Let S : C → C; T : Q → Q be nonexpansive mappings, and let bifunctions g and f satisfy
Assumptions A and B, respectively. Let A : H → H be a bounded linear operator with its
adjoint A∗. If Ω = {x∗ ∈ Sol(C, f )∩Fix(S) : Ax∗ ∈ Sol(Q, g)∩Fix(T)} �= ∅, then the sequences
{xk}, {uk}, {vk} converge strongly to an element p ∈ Ω , and {wk} converges strongly to Ap ∈
Sol(Q, g) ∩ Fix(T).

Proof First, we observe that the linesearch rule (.) is well defined by Lemma . Let
x∗ ∈ Ω . From (.), (.), and (.) we have

∥
∥tk – x∗∥∥ ≤ ∥

∥vk – x∗∥∥ – μ
(
 – μ‖A‖)∥∥Twk – Avk∥∥ – μ

∥
∥wk – Avk∥∥

≤ ∥
∥uk – x∗∥∥ – β( – β)

∥
∥Suk – uk∥∥

– μ
(
 – μ‖A‖)∥∥Twk – Avk∥∥ – μ

∥∥wk – Avk∥∥

≤ ∥∥xk – x∗∥∥ – β( – β)
∥∥Suk – uk∥∥

– μ
(
 – μ‖A‖)∥∥Twk – Avk∥∥ – μ

∥
∥wk – Avk∥∥. (.)

Since μ ∈ (, 
‖A‖ ), (.) implies that

∥∥tk – x∗∥∥ ≤ ∥∥vk – x∗∥∥ ≤ ∥∥uk – x∗∥∥ ≤ ∥∥xk – x∗∥∥, ∀k. (.)

Since x∗ ∈ C, from(.) we get by induction that x∗ ∈ Ck for all k ∈N
∗and, consequently,

Ω ⊂ Ck for all k.
By setting

Dk =
{

x ∈ H :
∥
∥x – tk∥∥ ≤ ∥

∥x – vk∥∥ ≤ ∥
∥x – xk∥∥}

, k ∈N,

it is clear that Dk is closed and convex for all k. In addition, C = C is also closed and
convex, and Ck+ = Ck ∩ Dk . Hence, Ck is closed and convex for all k.

From the definition of xk+ we have xk+ ∈ Ck+ ⊂ Ck and xk = PCk (xg), so

∥
∥xk – xg∥∥ ≤ ∥

∥xk+ – xg∥∥ for all k.

Since x∗ ∈ Ck+, this implies that

∥
∥xk+ – xg∥∥ ≤ ∥

∥x∗ – xg∥∥.

Thus,

∥∥xk – xg∥∥ ≤ ∥∥xk+ – xg∥∥ ≤ ∥∥x∗ – xg∥∥, ∀k.

Consequently, {‖xk – xg‖} is nondecreasing and bounded, so limk→+∞ ‖xk – xg‖ does exist.
Combining this with (.), we obtain that {tk} and {vk} are also bounded.



Dinh et al. Fixed Point Theory and Applications  (2016) 2016:27 Page 16 of 21

For all m > n, we have that xm ∈ Cm ⊂ Cn and xn = PCn (xg). Combining this fact with
Lemma , we get

∥
∥xm – xn∥∥ ≤ ∥

∥xm – xg∥∥ –
∥
∥xn – xg∥∥

=
(∥∥xm – xg∥∥ –

∥
∥xn – xg∥∥)(∥∥xm – xg∥∥ +

∥
∥xn – xg∥∥)

.

Since limk→+∞ ‖xk – xg‖ exists, this implies that limm,n→∞ ‖xm – xn‖ = , i.e., {xk} is a
Cauchy sequence, so

lim
k→∞

xk = p. (.)

By Step  we get

∥
∥tk – xk+∥∥ ≤ ∥

∥vk – xk+∥∥ ≤ ∥
∥xk – xk+∥∥.

Therefore,

∥∥tk – xk∥∥ ≤ ∥∥tk – xk+∥∥ +
∥∥xk+ – xk∥∥

≤ ∥∥xk – xk+∥∥ +
∥∥xk – xk+∥∥

= 
∥∥xk – xk+∥∥ (.)

and

∥
∥vk – xk∥∥ ≤ ∥

∥vk – xk+∥∥ +
∥
∥xk+ – xk∥∥

≤ ∥
∥xk – xk+∥∥ +

∥
∥xk – xk+∥∥

= 
∥∥xk – xk+∥∥. (.)

So, from (.), (.), and (.) we get that

lim
k→∞

∥∥tk – xk∥∥ = lim
k→∞

∥∥vk – xk∥∥ = . (.)

In view of (.) and (.), we have

β( – β)
∥∥Suk – uk∥∥ + μ

(
 – μ‖A‖)∥∥Twk – Avk∥∥ + μ

∥∥wk – Avk∥∥

≤ ∥∥xk – x∗∥∥ –
∥∥tk – x∗∥∥

=
(∥∥xk – x∗∥∥ +

∥∥tk – x∗∥∥)(∥∥xk – x∗∥∥ –
∥∥tk – x∗∥∥)

≤ ∥
∥xk – tk∥∥(∥∥xk – x∗∥∥ +

∥
∥tk – x∗∥∥) →  as k → ∞. (.)

Since β ∈ (, ) and μ ∈ (, 
‖A‖ ), we deduce from (.) that

lim
k→+∞

∥∥Suk – uk∥∥ = , lim
k→+∞

∥∥Twk – Avk∥∥ = , and

lim
k→+∞

∥
∥wk – Avk∥∥ = .

(.)
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In addition, from the inequality

∥∥Twk – wk∥∥ ≤ ∥∥Twk – Avk∥∥ +
∥∥wk – Avk∥∥,

combined with (.), we get

lim
k→+∞

∥
∥Twk – wk∥∥ = . (.)

Besides, (.), (.), and limk→+∞ xk = p it imply

lim
k→+∞

uk = p, lim
k→+∞

vk = p. (.)

Since

‖Sp – p‖ ≤ ∥
∥Sp – Suk∥∥ +

∥
∥Suk – uk∥∥ +

∥
∥uk – p

∥
∥

≤ ∥∥p – uk∥∥ +
∥∥Suk – uk∥∥ +

∥∥uk – p
∥∥

= 
∥∥uk – p

∥∥ +
∥∥Suk – uk∥∥,

from (.) and (.) we get that ‖Sp – p‖ = , that is, p ∈ Fix(S).
From (.) we have

lim
k→∞

ηk
∥∥xk – yk∥∥ = . (.)

We now consider two distinct cases.
Case . lim supk→∞ ηk > .
Then there exist η̄ >  and a subsequence {ηki} ⊂ {ηk} such that ηki > η̄ for all i. So we

get from (.) that

lim
i→∞

∥∥xki – yki
∥∥ = . (.)

Since xk → p, (.) implies that yki → p as i → ∞.
For each y ∈ C, we get from (.) that

f
(
xki , y

)
– f

(
xki , yki

)
+


ρki

∥∥yki – xki
∥∥∥∥y – yki

∥∥ ≥ . (.)

Letting i → ∞, by the continuity of f , since xki → p and yki → p, in the limit, from (.)
we obtain that

f (p, y) – f (p, p) ≥ .

Hence,

f (p, y) ≥ , ∀y ∈ C,

so p is a solution of EP(C, f ).
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Case . limk→∞ ηk = .
From the boundedness of {yk} we deduce that there exists {yki} ⊂ {yk} such that yki ⇀ ȳ

as i → ∞.
Replacing y by yki in (.), we get

f
(
xki , yki

)
+


ρki

∥
∥yki – xki

∥
∥ ≤ . (.)

In the other hand, by the Armijo linesearch rule (.), for mki – , there exists zki ,mki – such
that

f
(
zki ,mki –, xki

)
– f

(
zki ,mki –, yki

)
<

θ

ρki

∥∥yki – xki
∥∥.

Combining this with (.), we get

f
(
zki ,mki –, yki

)
– f

(
zki ,mki –, xki

)
> –

θ

ρki

∥∥yki – xki
∥∥ ≥ 

θ
f
(
xki , yki

)
. (.)

According to the algorithm, we have zki ,mki – = (–η
mki –)xki +η

mki –yki . Since η
ki ,mki – → ,

xki converges strongly to p, and yki converges weakly to ȳ, this implies that zki ,mki – → p
as i → ∞. Besides that, { 

ρki
‖yki – xki‖} is bounded, so, without loss of generality, we may

assume that limi→+∞ 
ρki

‖yki – xki‖ exists. Hence, we get in the limit (.) that

f (p, ȳ) ≥ – lim
i→+∞


ρki

∥
∥yki – xki

∥
∥ ≥ θ f (p, ȳ).

Therefore, f (p, ȳ) =  and limi→+∞ ‖yki – xki‖ = . By Case  it is immediate that p ∈
Sol(C, f ). So

p ∈ Sol(C, f ) ∩ Fix(S). (.)

We obtain from (.) that limk→+∞ Avk = Ap. Combining this with (.) yields

lim
k→+∞

wk = Ap. (.)

Moreover,

‖TAp – Ap‖ ≤ ∥
∥TAp – Twk∥∥ +

∥
∥Twk – wk∥∥ +

∥
∥wk – Ap

∥
∥

≤ ∥
∥Ap – wk∥∥ +

∥
∥Twk – wk∥∥ +

∥
∥wk – Ap

∥
∥

= 
∥
∥wk – Ap

∥
∥ +

∥
∥Twk – wk∥∥.

In view of (.) and (.), we obtain ‖TAp – Ap‖ = . Hence, Ap ∈ Fix(T).
In addition,

∥∥Tg
βAp – Ap

∥∥ ≤ ∥∥Tg
βAp – Tg

αk
Avk∥∥ +

∥∥Tg
αk

Avk – Avk∥∥ +
∥∥Avk – Ap

∥∥

=
∥∥Tg

βAp – Tg
αk

Avk∥∥ +
∥∥wk – Avk∥∥ +

∥∥Avk – Ap
∥∥
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≤ ∥∥Avk – Ap
∥∥ +

|αk – β|
αk

∥∥Tg
αk

Avk – Avk∥∥ +
∥∥wk – Avk∥∥ +

∥∥Avk – Ap
∥∥

= 
∥∥Avk – Ap

∥∥ +
|αk – β|

αk

∥∥wk – Avk∥∥ +
∥∥wk – Avk∥∥,

where the last inequality comes from Lemma . Letting k → ∞ and recalling that
limk→+∞ Avk = Ap, from (.) we get

∥
∥Tg

αAp – Ap
∥
∥ = .

Therefore, Ap ∈ Fix(Tg
α) = Sol(Q, g).

Hence,

Ap ∈ Sol(Q, g) ∩ Fix(T).

Combining this with (.), we conclude that p ∈ Ω . The proof is completed. �

When S = IH and T = IH , Algorithm  becomes as follows.

Algorithm 
Initialization. Pick xg ∈ C = C and choose the parameters η, θ ∈ (, ),  < ρ ≤ ρ̄ ,
{ρk} ⊂ [ρ, ρ̄],  < γ ≤ γ̄ < , {γk} ⊂ [γ , γ̄ ],  < α, {αk} ⊂ [α, +∞), μ ∈ (, 

‖A‖ ).
Iteration k (k = , , , . . .). Having xk , do the following steps:

Step . Solve the strongly convex program

CP
(
xk) min

{
f
(
xk , y

)
+


ρk

∥∥y – xk∥∥ : y ∈ C
}

to obtain its unique solution yk .
If yk = xk , then set uk = xk and go to Step . Otherwise, go to Step .

Step . (Armijo linesearch rule) Find mk as the smallest positive integer number m
such that

⎧
⎨

⎩
zk,m = ( – ηm)xk + ηmym,

f (zk,m, xk) – f (zk,m, yk) ≥ θ
ρk

‖xk – yk‖.

Set ηk = ηmk , zk = zk,mk .
Step . Select ξ k ∈ ∂f (zk , xk) and compute σk = f (zk ,xk )

‖ξk‖ , uk = PC(xk – γkσkξ
k).

Step . wk = Tg
βk

Auk .
Step . tk = PC(uk + μA∗(wk – Auk)).
Step . Define Ck+ = {x ∈ Ck : ‖x – tk‖ ≤ ‖x – uk‖ ≤ ‖x – xk‖}. Compute

xk+ = PCk+ (xg) and go to iteration k with k is replaced by k + .

The following result is an immediate consequence of Theorem .

Corollary  Let g : Q×Q →R be a bifunction satisfying Assumption A, and f : C×C →R

be a bifunction satisfying Assumption B. Let A : H → H be a bounded linear operator with
its adjoint A∗. If Ω = {x∗ ∈ Sol(C, f ) : Ax∗ ∈ Sol(Q, g)} �= ∅, then the sequences {xk} and {uk}
converge strongly to an element p ∈ Ω , and {wk} converges strongly to Ap ∈ Sol(Q, g).
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5 Conclusion
Two linesearch algorithms for solving a split equilibrium problem and nonexpansive map-
ping SEPNM(C, Q, A, f , g, S, T) in Hilbert spaces have been proposed, in which the bifunc-
tion f is pseudomonotone on C with respect to its solution set, the bifunction g is mono-
tone on Q, and S and T are nonexpansive mappings. The weak and strong convergence of
iteration sequences generated by the algorithms to a solution of this problem are obtained.
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