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Abstract
It is well known that the concept of a best proximity point includes that of a fixed
point as a special case. In this paper, we show that the best proximity point theorems
of Basha and Shahzad (Fixed Point Theory Appl. 2012:42, 2012) and of
Fernández-León (J. Nonlinear Convex Anal. 15(2):313-324, 2014) can be regarded as a
fixed point theorem for multivalued mappings which is modified as regards the
results of Mizoguchi and Takahashi (J. Math. Anal. Appl. 141(1):177-188, 1989) and of
Kada et al. (Math. Jpn. 44(2):381-391, 1996).
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1 Introduction
Let X be any nonempty set and T : X → X be a given mapping. A point x ∈ X such that
x = Tx is called a fixed point of T . Many problems can be reformulated to the problem of
finding a fixed point of a certain mapping. If T is not a self-mapping, it is plausible that
the equation x = Tx has no solution. In this situation, we may find an element x ∈ X which
is close to Tx in some sense.

Now, we suppose that X is equipped with a metric d, that is, (X, d) is a metric space. For
two subsets A and B of X and T : A → B, we are interested in finding an element x ∈ A
such that

d(x, Tx) = inf
{

d(a, b) : a ∈ A, b ∈ B
}

=: d(A, B).

Such an element x is called a best proximity point of T . It follows immediately that the
problem of finding a best proximity point is more general than that of finding a fixed point.
In fact, if A = B, then d(A, B) =  and hence a best proximity point of T becomes a fixed
point of T . In this setting, we recall the following notions:

A :=
{

a ∈ A : d(a, b) = d(A, B) for some b ∈ B
}

B :=
{

b ∈ B : d(a, b) = d(A, B) for some a ∈ A
}

.

Basha [] proposed the following result for the existence of a best proximity point of a
non-self-mapping.
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Theorem  ([], Theorem .) Let (X, d) be a complete metric space and A, B be two subsets
of X such that A �= ∅ (and hence B �= ∅). Suppose that T : A → B is a mapping such that
T(A) ⊂ B. We make the following assumptions:

• A and B are closed;
• B is approximatively compact with respect to A;
• T is a proximal contraction, that is, there exists α ∈ [, ) such that, for all u, v, x, y ∈ A,

d(u, Tx) = d(A, B) = d(v, Ty)

implies

d(u, Tx) + d(Tx, Ty) + d(Ty, v) ≤ αd(x, y).

Then the following hold:
(a) there exists a unique element x ∈ A such that d(x, Tx) = d(A, B);
(b) if {xn} is a sequence in A satisfying d(xn+, Txn) = d(A, B) for all n ≥ , then

limn→∞ xn = x.

It is clear that Theorem  extends Banach’s contraction principle in the setting that A =
B = X. By the way, there are plenty of papers which had generalized this result (for example,
see [, , ]).

Basha and Shahzad [] introduced the following two concepts of contractiveness for
non-self-mappings.

Definition  ([]) Let (X, d) be a metric space. Let A and B be nonempty subsets of X. We
say that T : A → B is

(a) a generalized proximal contraction of the first kind if there exist non-negative
numbers α, β , γ with α + β + γ <  such that the condition

d(u, Tx) = d(A, B) = d(v, Ty)

implies

d(u, v) ≤ αd(x, y) + βd(x, u) + βd(y, v) + γ d(x, v) + γ d(y, u);

(b) a generalized proximal contraction of the second kind if there exist non-negative
numbers α, β , γ with α + β + γ <  such that the condition

d(u, Tx) = d(A, B) = d(v, Ty)

implies

d(Tu, Tv) ≤ αd(Tx, Ty) + βd(Tx, Tu) + βd(Ty, Tv)

+ γ d(Tx, Tv) + γ d(Ty, Tu).

Remark  Every proximal contraction is a generalized proximal contraction of the first
kind.
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In this paper, we show that the problem of finding a best proximity point recently estab-
lished by Fernández-León [] and Basha and Shahzad [] reduces to a problem of finding
a fixed point of a multivalued mapping. Recall that x ∈ X is a fixed point of a multivalued
mapping T : X → X \{∅} if x ∈ Tx. There are many conditions guaranteeing the existence
of a fixed point of a multivalued mapping. Two of the classical works in this research are
due to Nadler [] and Caristi []. The interested reader is referred to [], Chapter , for
more discussion.

2 Main results
By studying the works of [] and [], we obtain the following fixed point theorem for a
multivalued mapping.

Theorem  Let (X, d) be a complete metric space. Let Y be a nonempty subset of X and let
F : Y → (–∞,∞] be a proper function which is bounded below. Let S : Y → Y \ {∅} be a
multivalued mapping such that for each x ∈ Y there exists y ∈ Sx satisfying

F(y) + d(x, y) ≤ F(x). (.)

Assume that for z ∈ X

inf
{

d(x, z) + d(x, Sx) : x ∈ Y
}

=  	⇒ z ∈ Sz ∩ Y . (.)

Then there exists w ∈ Y such that w ∈ Sw.

Proof Let x be an element in Y such that F(x) < ∞. By the condition (.), there is an
x ∈ Sx such that F(x) + d(x, x) ≤ F(x). By induction, we have a sequence {xn} in Y
such that

xn+ ∈ Sxn and F(xn+) + d(xn, xn+) ≤ F(xn) for all n ≥ .

So {F(xn)} is a decreasing sequence. Since F is bounded below, limn→∞ F(xn) = α for some
α ∈ R. Let m ≥ . We have

n=m∑

n=

d(xn, xn+) ≤
n=m∑

n=

(
F(xn) – F(xn+)

)

= F(x) – F(xm+)

≤ F(x) – α.

Then
∑∞

n= d(xn, xn+) = limm→∞
∑n=m

n= d(xn, xn+) < ∞ and hence {xn} is a Cauchy se-
quence. So limn→∞ xn = w for some w ∈ X. Note that

lim
n→∞ d(xn, w) =  and lim

n→∞ d(xn, Sxn) ≤ lim
n→∞ d(xn, xn+) = .

By the condition (.), we have w ∈ Sw ∩ Y . �
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2.1 Results for a generalized proximal contraction of the first kind
We show that the following result of Fernández-León [] is a consequence of our Theo-
rem .

Theorem  ([], Proposition .) Let (X, d) be a complete metric space. Let A and B be
nonempty subsets of X such that A is nonempty. Let T : A → B be a mapping such that
T(A) ⊂ B. Let us assume the following conditions:

• A is closed;
• T is a generalized proximal contraction of the first kind.

Then the following hold:
(a) there exists a unique element x in A such that d(x, Tx) = d(A, B);
(b) if {xn} is a sequence in A satisfying d(xn+, Txn) = d(A, B) for each n ≥ , then

limn→∞ xn = x.

Proof For each x ∈ A, we let

Sx =
{

y : y ∈ A and d(y, Tx) = d(A, B)
}

.

It follows that S : A → A \ {∅}.
Since T is a generalized proximal contraction of the first kind, there are α,β ,γ ≥  with

α + β + γ <  such that d(u, Tx) = d(A, B) = d(v, Ty) implies

d(u, v) ≤ αd(x, y) + βd(x, u) + βd(y, v) + γ d(x, v) + γ d(y, u)

for all u, v, x, y ∈ A. Put c = α+β+γ

–β–γ
and b = c+

 . Then  ≤ c < b < .
Claim that, for all x, y, z ∈ A, if y ∈ Sx and z ∈ Sy, then d(z, y) ≤ cd(y, x). To see this, let

x, y, z be elements in A such that y ∈ Sx and z ∈ Sy. Then

d(y, Tx) = d(A, B) = d(z, Ty).

Since T is a generalized proximal contraction of the first kind,

d(z, y) ≤ αd(y, x) + βd(y, z) + βd(x, y) + γ d(y, y) + γ d(x, z)

≤ αd(y, x) + βd(y, z) + βd(x, y) + γ d(x, y) + γ d(y, z).

Hence

d(z, y) ≤ cd(y, x).

So we have the claim.
Next, we show that the condition (.) in Theorem  holds. Let x ∈ A. Since  < b < ,

we can choose y ∈ Sx so that

bd(x, y) ≤ d(x, Sx). (.)

Let z ∈ Sy, then we obtain by the claim

d(y, Sy) ≤ d(z, y) ≤ cd(y, x). (.)
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Using (.) and (.), we obtain

d(y, Sy) + bd(x, y) ≤ cd(x, y) + d(x, Sx).

Then


b – c

d(y, Sy) + d(y, x) ≤ 
b – c

d(x, Sx).

Let F : A → [,∞) be defined by F(x) = 
b–c d(x, Sx) for each x ∈ A. So F satisfies the

condition (.) in Theorem .
We show that the condition (.) in Theorem  holds. Let {xn} be a sequence in A and

z ∈ X satisfying

lim
n→∞ d(xn, z) =  and lim

n→∞ d(xn, Sxn) = .

Since A is closed, we have z ∈ A and Tz ∈ T(A) ⊂ B. Then there exists u ∈ A such
that

d(u, Tz) = d(A, B). (.)

We choose a sequence {un} in A so that un ∈ Sxn and

d(xn, un) < d(xn, Sxn) +

n

for each n ≥ . Hence, limn→∞ d(xn, un) = . Since un ∈ Sxn for each n ≥ ,

d(un, Txn) = d(A, B). (.)

Since limn→∞ d(xn, z) =  and limn→∞ d(xn, un) = , we get limn→∞ un = z. Using (.),
(.), and the fact that T is a generalized proximal contraction of the first kind, we have,
for each n ≥ ,

d(u, un) ≤ αd(z, xn) + βd(z, u) + βd(xn, un) + γ d(z, un) + γ d(xn, u).

As n → ∞, we get

d(u, z) ≤ (β + γ )d(z, u).

So z = u and hence d(z, Tz) = d(A, B), that is, z ∈ Sz. Therefore, the condition (.) in The-
orem  holds. Using Theorem , there exists w ∈ A such that w ∈ Sw, that is,

d(w, Tw) = d(A, B).

To see the uniqueness, we assume that d(ŵ, Tŵ) = d(A, B) for some ŵ ∈ A. Since T is a
generalized proximal contraction of the first kind, we have

d(w, ŵ) ≤ (α + γ )d(w, ŵ).

That is, w = ŵ. So we have (a).
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To see (b), let {xn} be a sequence in A such that

d(xn+, Txn) = d(A, B) for all n ≥ .

Thus xn+ ∈ Sxn. By the claim, we get, for each n ≥ ,

d(xn+, xn+) ≤ cd(xn+, xn).

So {xn} is a Cauchy sequence and hence limn→∞ xn = x for some x ∈ A. Since T is a gen-
eralized proximal contraction of the first kind, we have

d(xn+, w) ≤ αd(xn, w) + βd(xn, xn+) + βd(w, w) + γ d(xn, w) + γ d(w, xn+)

for each n ≥ . As n → ∞, we get d(x, w) ≤ (α + γ )d(x, w). That is, x = w. Hence,
limn→∞ xn = w. So we have (b). �

2.2 Results for a generalized proximal contraction of the second kind
The following result of Fernández-León [] is also a consequence of our Theorem .

Theorem  ([], Proposition .) Let (X, d) be a complete metric space. Let A and B be
nonempty subsets of X such that A is nonempty. Let T : A → B be a mapping such that
T(A) ⊂ B. Let us assume the following conditions:

• T(A) is closed;
• T is a generalized proximal contraction of the second kind.

Then the following hold:
(a) there exists x ∈ A such that d(x, Tx) = d(A, B);
(b) if there is x̂ ∈ A such that d(̂x, Tx̂) = d(A, B), then Tx̂ = Tx;
(c) if {xn} is a sequence in A satisfying d(xn+, Txn) = d(A, B) for each n ≥ , then

limn→∞ Txn = Tx.

Proof For each x ∈ T(A), we let

Sx =
{

y : y = Tu where u ∈ A and d(u, x) = d(A, B)
}

.

It follows that S : T(A) → T(A) \ {∅}. Since T is a generalized proximal contraction of
the second kind, there are α,β ,γ ≥  with α + β + γ <  such that d(u, Tx) = d(A, B) =
d(v, Ty) implies

d(Tu, Tv) ≤ αd(Tx, Ty) + βd(Tx, Tu) + βd(Ty, Tv)

+ γ d(Tx, Tv) + γ d(Ty, Tu)

for all u, v, x, y ∈ A. Put c = α+β+γ

–β–γ
and b = c+

 . Then  ≤ c < b < .
Claim : for each u, v, x, y ∈ T(A) if u ∈ Sx and v ∈ Sy, then

d(u, v) ≤ αd(x, y) + βd(x, u) + βd(y, v)

+ γ d(x, v) + γ d(y, u).
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To see this claim, let u, v, x, y be elements in T(A) such that u ∈ Sx and v ∈ Sy. So u = Tû,
v = Tv̂, x = Tx̂ and y = Tŷ for some û, v̂, x̂, ŷ ∈ A with

d(̂u, Tx̂) = d(A, B) = d(̂v, Tŷ).

Since T is a generalized proximal contraction of the second kind,

d(Tû, Tv̂) ≤ αd(Tx̂, Tŷ) + βd(Tx̂, Tû) + βd(Tŷ, Tv̂)

+ γ d(Tx̂, Tv̂) + γ d(Tŷ, Tû).

That is,

d(u, v) ≤ αd(x, y) + βd(x, u) + βd(y, v) + γ d(x, v) + γ d(y, u).

So we have Claim .
Claim : for each x, y, z ∈ T(A) if y ∈ Sx and z ∈ Sy, then d(z, y) ≤ cd(x, y). To see this,

let x, y, z be elements in T(A) such that y ∈ Sx and z ∈ Sy. Using Claim , we have

d(z, y) ≤ αd(y, x) + βd(y, z) + βd(x, y) + γ d(y, y) + γ d(x, z)

≤ αd(y, x) + βd(y, z) + βd(x, y) + γ d(x, y) + γ d(y, z).

So d(z, y) ≤ cd(x, y). That is, Claim  holds.
Now, we show that the condition (.) in Theorem  holds. Let x ∈ T(A). Since  < b < ,

there exists y ∈ Sx such that

bd(x, y) ≤ d(x, Sx). (.)

Let z ∈ Sy, then we obtain by Claim 

d(y, Sy) ≤ d(z, y) ≤ cd(x, y). (.)

Using (.) and (.), we get

d(y, Sy) + bd(x, y) ≤ cd(x, y) + d(x, Sx).

Then


b – c

d(y, Sy) + d(x, y) ≤ 
b – c

d(x, Sx).

Let F : T(A) → [,∞) be defined by F(x) = 
b–c d(x, Sx) for each x ∈ T(A). So F satisfies

the condition (.) in Theorem .
Next, we show that the condition (.) in Theorem  holds. Let z ∈ X and let {xn} be a

sequence in T(A) such that

lim
n→∞ d(xn, z) =  and lim

n→∞ d(xn, Sxn) = .
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Since T(A) is closed, z ∈ T(A) and hence we can let

ẑ ∈ Sz. (.)

We show that ẑ = z. Since limn→∞ d(xn, Sxn) = , we can choose a sequence {yn} in T(A)
so that

yn ∈ Sxn (.)

for each n ≥  and

lim
n→∞ d(xn, yn) = .

Since limn→∞ d(xn, z) =  and limn→∞ d(xn, yn) = , we obtain limn→∞ yn = z. Using (.),
(.), and Claim ,

d(̂z, yn) ≤ αd(z, xn) + βd(z, ẑ) + βd(xn, yn) + γ d(z, yn) + γ d(xn, ẑ).

As n → ∞, we get d(̂z, z) ≤ (β + γ )d(z, ẑ), that is, ẑ = z. Hence, the condition (.) in The-
orem  holds. Using Theorem , there exists w ∈ T(A) such that w ∈ Sw, that is, there
exists w∗ ∈ A such that w = Tw∗ and

d
(
w∗, Tw∗) = d(A, B).

So we have (a).
To see (b), let v be an element in A such that d(v, Tv) = d(A, B). Since T is a generalized

proximal contraction of the second kind,

d
(
Tv, Tw∗) ≤ αd

(
Tv, Tw∗) + βd(Tv, Tv) + βd

(
Tw∗, Tw∗)

+ γ d
(
Tv, Tw∗) + γ d

(
Tw∗, Tv

)
.

Then d(Tv, Tw∗) ≤ (α + γ )d(Tv, Tw∗), which implies that Tv = Tw∗. So we have (b).
We show that (c) holds. Let {xn} be a sequence in A such that d(xn+, Txn) = d(A, B) for

all n ≥ . So we get Txn+ ∈ STxn. By using Claim , we have, for all n ≥ ,

d(Txn+, Txn+) ≤ cd(Txn+, Txn).

Thus {Txn} is a Cauchy sequence and hence limn→∞ Txn = s for some s ∈ X. Since w ∈ Sw
and Txn+ ∈ STxn, we have

d(w, Txn+) ≤ αd(w, Txn) + βd(w, w) + βd(Txn, Txn+)

+ γ d(w, Txn+) + γ d(Txn, w).

As n → ∞, we have d(w, s) ≤ (α + γ )d(w, s). So w = s. That is, limn→∞ Txn = w. So (c)
holds. �
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Remark  The conclusion (c) of Theorem  is not mentioned in [], Proposition ..

Definition  ([]) Let (X, d) be a metric space. Let A and B be nonempty subsets of X.
The set B is said to be approximatively compact with respect to A if every sequence {yn} of
B satisfying the condition that limn→∞ d(x, yn) = d(x, B) for some x in A has a convergent
subsequence.

We show that the following theorem of Basha and Shahzad [] is also a consequence of
our Theorem .

Theorem  ([], Theorem .) Let (X, d) be a complete metric space. Let A and B be
nonempty subsets of X such that A is nonempty. Let T : A → B be a mapping such that
T(A) ⊂ B. Let us assume the following conditions:

• A, B are closed;
• A is approximatively compact with respect to B;
• T is continuous;
• T is a generalized proximal contraction of the second kind.

Then the following hold:
(a) there is an element x in A such that d(x, Tx) = d(A, B);
(b) if there exists x̂ ∈ A such that d(̂x, Tx̂) = d(A, B), then Tx̂ = Tx;
(c) if {xn} is a sequence in A satisfying d(xn+, Txn) = d(A, B) for each n ≥ , then

limn→∞ Txn = Tx.

Proof We define the mappings S : T(A) → T(A) \ {∅} and F : T(A) → [,∞) as the
ones in the proof of Theorem . It follows that the condition (.) in Theorem  holds.

Next, we show that the condition (.) in Theorem  holds. Let {xn} be a sequence in
T(A) and let z ∈ X. Assume that

lim
n→∞ d(xn, z) =  and lim

n→∞ d(xn, Sxn) = . (.)

Since xn ∈ T(A) ⊂ T(A) ⊂ B and B is closed, z ∈ B. We choose a sequence {yn} in T(A)
so that yn ∈ Sxn for each n ≥  and

lim
n→∞ d(xn, yn) = . (.)

Since yn ∈ Sxn for each n ≥ , we write yn = Tun for some un ∈ A with

d(un, xn) = d(A, B).

We have

d(A, B) ≤ d(un, z) ≤ d(un, xn) + d(xn, z) = d(A, B) + d(xn, z).

So limn→∞ d(un, z) = d(A, B). Since A is approximatively compact with respect to B, there
is a subsequence {unk } of {un} such that unk → u for some u ∈ A. Since T is continuous,
we get Tunk → Tu. Using (.) and (.), we get yn → z and hence

Tu = lim
k→∞

Tunk = lim
n→∞ Tun = lim

n→∞ yn = z.
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Therefore,

d(u, Tu) = d(u, z) = lim
k→∞

d(unk , xnk ) = d(A, B).

That is, Tu ∈ STu or z ∈ Sz∩T(A). Therefore, the condition (.) in Theorem  holds. Us-
ing Theorem , there is w ∈ T(A) such that w ∈ Sw, that is, w = Tŵ for some ŵ ∈ A with
d(ŵ, Tŵ) = d(A, B). So (a) holds. The rest of the conclusions follow from Theorem . �

For a generalized proximal contraction of the first kind, the closedness of A is more
general than the condition that B is approximatively compact with respect to A (see Propo-
sition . of []). Hence Proposition . of [] (see our Theorem ) is a generalized version
of Theorem . of []. However, this is not the case for a generalized proximal contraction
of the second kind. The following example is applicable in Theorem  but not in Theo-
rem . That is, there is a continuous generalized proximal contraction of the second kind
T : A → B such that T(A) is not closed but A is approximatively compact with respect
to B.

Example  We consider the -dimensional Euclidean metric space R
. Let A = {(a, ) :

a ≥ } and B = {(b, ) : b ≥ }. We have A = A and B = B. Let T : A → B be a mapping
defined by, for each (a, ) ∈ A,

T(a, ) =
(
f (a), 

)
,

where

f (a) =



–


a + 
.

It is clear that, for each a, b ≥ ,

∣∣f (a) – f (b)
∣∣ ≤ 


|a – b|.

Note that T(A) = T(A) = {(x, ) : x ∈ [, 
 )} is not closed. It is clear that A is approxima-

tively compact with respect to B and T is continuous. We show that T is a generalized
proximal contraction of the second kind. In fact, let u, v, x, y be elements in A such that
d(u, Tx) = d(v, Ty) = d(A, B). We write x = (a, ) and y = (a, ) for some a, a ≥ . So
u = (f (a), ) and v = (f (a), ). We obtain

d(Tu, Tv) =
∣∣f (a) – f (a)

∣∣ ≤ 


∣∣f (a) – f (a)
∣∣ =




d(Tx, Ty).
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