
Bin Dehaish and Khamsi Fixed Point Theory and Applications  (2016) 2016:20 
DOI 10.1186/s13663-016-0505-8

R E S E A R C H Open Access

Browder and Göhde fixed point theorem
for monotone nonexpansive mappings
Buthinah Abdullatif Bin Dehaish1* and Mohamed Amine Khamsi2,3

*Correspondence:
bbindehaish@yahoo.com
1Department of Mathematics,
Faculty of Science-Al Faisaliah
Campus, King Abdulaziz University,
Jeddah, 21593, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
Let X be a Banach space or a complete hyperbolic metric space. Let C be a nonempty,
bounded, closed, and convex subset of X and T : C → C be a monotone
nonexpansive mapping. In this paper, we show that if X is a Banach space which is
uniformly convex in every direction or a uniformly convex hyperbolic metric space,
then T has a fixed point. This is the analog to Browder and Göhde’s fixed point
theorem for monotone nonexpansive mappings.
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1 Introduction
‘The theory of fixed points is one of the most powerful tools of modern mathematics’
said Felix Browder, who gave a new impetus to the modern fixed point theory via the
development of nonlinear functional analysis as an active and vital branch of mathematics.
The flourishing field of fixed point theory started in the early days of topology (the work of
Poincaré, Lefschetz-Hopf, and Leray-Schauder). For example, the existence problems are
usually translated into a fixed point problem like the existence of solutions to elliptic partial
differential equations, or the existence of closed periodic orbits in dynamical systems, and
more recently the existence of answer sets in logic programming.

Recently a new direction has been discovered dealing with the extension of the Banach
contraction principle [] to metric spaces endowed with a partial order. Ran and Reurings
[] successfully carried out the first attempt see also []. In particular, they showed how this
extension is useful when dealing with some special matrix equations. A similar approach
was carried out by Nieto and Rodríguez-López [] and used such arguments in solving
some differential equations. In [] Jachymski gave a more general unified version of these
extensions by considering graphs instead of a partial order. In this paper, we investigate
the existence of fixed points of monotone nonexpansive mappings. In particular, we prove
that if X is a uniformly convex hyperbolic metric space, then any monotone nonexpansive
mapping defined on a nonempty bounded convex subset has a fixed points.

In terms of content, this paper overlaps in places with the popular books on fixed point
theory by Aksoy and Khamsi [], by Goebel and Kirk [], by Dugundji and Granas [],
by Khamsi and Kirk [], and by Zeidler []. Material on the general theory of Banach
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space geometry and hyperbolic geometry is drawn from many sources but the books by
Beauzamy [], by Diestel [], by Goebel and Reich [], and by Bridson and Haefliger
[] are worth of special mention.

2 Preliminaries
The extension of the Banach contraction principle in metric spaces endowed with a partial
order was initiated by Ran and Reurings [] (see also [–]). In order to discuss such
extension, we will need to assume that the metric space (M, d) is endowed with a partial
order �. We will say that x, y ∈ M are comparable whenever x � y or y � x. Next we give
the definition of monotone mappings.

Definition . Let (M, d,�) be a metric space endowed with a partial order. Let T : M →
M be a map. T is said to be monotone or order-preserving if

x � y ⇒ T(x) � T(y),

for any x, y ∈ M.

Next we give the definition of monotone Lipschitzian mappings.

Definition . Let (M, d,�) be a metric space endowed with a partial order. Let T : M →
M be a map. T is said to be monotone Lipschitzian mapping if T is monotone and there
exists k ≥  such that

d
(
T(x), T(y)

) ≤ kd(x, y),

for any x, y ∈ M such that x and y are comparable. If k < , then we say that T is a monotone
contraction mapping. And if k = , T is called a monotone nonexpansive mapping. A point
x ∈ M is said to be a fixed point of T whenever T(x) = x. The set of fixed points of T will
be denoted by Fix(T).

Note that monotone Lipschitzian mappings are not necessarily continuous. They usually
have a good topological behavior of comparable elements but not the entire set on which
they are defined.

3 Monotone nonexpansive mappings in hyperbolic metric spaces
The fixed point theory for nonexpansive mappings finds its root in the works of Brow-
der [], Göhde [], and Kirk [] published in the same year . Basically it took
four decades to extend the contractive condition to the case of mappings with Lipschitz
constant k = . It was clear from the start that such mappings have a different behavior
from contraction mappings. The first results obtained in  were discovered in Banach
spaces. It took a few decades to extend the fixed point theory of nonexpansive mappings
to nonlinear domains. Similarly and following the extension of the Banach contraction
principle to the case of metric spaces endowed with a partial order, it was natural to try to
investigate the case of nonexpansive mappings into such metric spaces.

In this section, we will establish Browder and Göhde’ s fixed point theorem for mono-
tone nonexpansive mappings. The setting will be uniformly convex hyperbolic metric
spaces.
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Let (X, d) be a metric space. Suppose that there exist a family F of metric segments such
that any two points x, y in X are endpoints of a unique metric segment [x, y] ∈ F ([x, y] is
an isometric image of the real line interval [, d(x, y)]). We shall denote by βx ⊕ ( – β)y
the unique point z of [x, y] which satisfies

d(x, z) = ( – β)d(x, y) and d(z, y) = βd(x, y),

where β ∈ [, ]. Such metric spaces with a family F of metric segments are usually called
convex metric spaces []. Moreover, if we have

d
(
αp ⊕ ( – α)x,αq ⊕ ( – α)y

) ≤ αd(p, q) + ( – α)d(x, y),

for all p, q, x, y in X, and α ∈ [, ], then X is said to be a hyperbolic metric space (see []).
Obviously, normed linear spaces are hyperbolic spaces. As nonlinear examples, one can
consider the Hadamard manifolds [], the Hilbert open unit ball equipped with the hy-
perbolic metric [], and the CAT() spaces [–]. We will say that a subset C of a
hyperbolic metric space X is convex if [x, y] ⊂ C whenever x, y are in C.

Definition . Let (M, d) be a hyperbolic metric space. We say that M is uniformly convex
(in short, UC) if for any a ∈ M, for every r > , and for each ε > 

δ(r, ε) = inf

{
 –


r

d
(




x ⊕ 


y, a
)

; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε
}

> .

From now onwards we assume that M is a hyperbolic metric space and if (M, d) is uni-
formly convex, then for every s ≥ , ε > , there exists η(s, ε) >  depending on s and ε

such that

δ(r, ε) > η(s, ε) >  for any r > s.

Remark . []
(i) Let us observe that δ(r, ) = , and δ(r, ε) is an increasing function of ε for every

fixed r.
(ii) For r ≤ r we have

 –
r

r

(
 – δ

(
r, ε

r

r

))
≤ δ(r, ε).

(iii) If (M, d) is uniformly convex, then (M, d) is strictly convex, i.e., whenever

d
(




x ⊕ 


y, a
)

= d(x, a) = d(y, a)

for any x, y, a ∈ M, then we must have x = y.

Among the nice properties satisfied by uniformly convex hyperbolic metric space (X, d)
is the property (R) [] which says that if {Cn} is a decreasing sequence of nonempty,
bounded, convex, and closed subsets of X, then

⋂
n≥ Cn 
= ∅. The following technical

lemma will be useful.
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Lemma . Let C be a nonempty closed convex subset of uniformly convex hyperbolic met-
ric space (X, d). Let τ : C → [, +∞) be a type function, i.e., there exists a bounded sequence
{xn} ∈ X such that

τ (x) = lim sup
n→+∞

d(xn, x),

for any x ∈ C. Then τ is continuous. Since X is hyperbolic, τ is convex, i.e., the subset
{x ∈ C; τ (x) ≤ r} is convex for any r ≥ . Moreover, there exists a unique minimum point
z ∈ C such that

τ (z) = inf
{
τ (x); x ∈ C

}
.

Proof The continuity and convexity of τ are obvious. Let us show the existence of the
minimum point of τ . Set τ = inf{τ (x); x ∈ C}. Then for any n ≥ , the subset Cn =
{x ∈ C; τ (x) ≤ τ + /n} is not empty and is a closed convex subset of C. The property
(R) will then imply that C∞ =

⋂
n≥ Cn 
= ∅. Clearly we have C∞ = {z ∈ C; τ (z) = τ}. Let us

prove that C∞ is reduced to one point. Let z and z be in C∞. Assume that z 
= z. In this
case, we must have τ 
= . Let α ∈ (, τ). Then there exists n ≥  such that for any n ≥ n

we have

d(xn, z) ≤ τ + α and d(xn, z) ≤ τ + α.

Since d(z, z) ≥ (τ + α)d(z, z)/τ,

d
(

xn,



z ⊕ 


z

)
≤ (τ + α)

(
 – δ

(
τ + α,

d(z, z)
τ

))
,

which implies

d
(

xn,



z ⊕ 


z

)
≤ (τ + α)

(
 – η

(
τ,

d(z, z)
τ

))
.

If we let n → +∞, we get

τ

(



z ⊕ 


z

)
≤ (τ + α)

(
 – η

(
τ,

d(z, z)
τ

))
.

Finally let α →  to get

τ

(



z ⊕ 


z

)
≤ τ

(
 – η

(
τ,

d(z, z)
τ

))
.

This is a contradiction with the fact that C∞ is convex which implies

τ

(



z ⊕ 


z

)
= τ < τ. �

We have noted before that monotone Lipschitzian mappings may not be continuous be-
cause they fail to have nice global behavior. For this reason, one approach to study such
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mappings is to use iterative methods. Indeed, let (X, d) be a hyperbolic metric space en-
dowed with a partial order �. Throughout, we will assume that order intervals are convex
and closed. Recall that an order interval is any of the subsets [a,→) = {x ∈ X; a � x} and
(←, b] = {x ∈ X; x � b}, for any a, b ∈ X. Let C be a nonempty convex subset of X not re-
duced to one point. Let T : C → C be monotone nonexpansive mapping. Fix λ ∈ (, ) and
x ∈ C. Consider the Krasnoselskii-Ishikawa [, ] iteration sequence {xn} in C defined
by

xn+ = ( – λ)xn ⊕ λT(xn), n ≥ . (KIS)

Assume that x and T(x) are comparable. Without loss of any generality, we assume
that x � T(x). Since order intervals are convex, we have x � x � T(x). Since T is
monotone, we get T(x) � T(x). By induction, we will prove that

xn � xn+ � T(xn) � T(xn+),

for any n ≥ , which implies, since T is monotone nonexpansive,

d
(
T(xn+), T(xn)

) ≤ d(xn+, xn).

In order to proceed, we will need the following fundamental result. Its origin may be
found in [, ].

Proposition . Let (X, d,�) be a partially ordered hyperbolic metric space having the
above properties. Let C be a convex and bounded subset of X not reduced to one point. Let
T : C → C be a monotone nonexpansive mapping. Fix λ ∈ (, ) and x ∈ C such that x

and T(x) are comparable. Consider the sequence {xn} in C defined by (KIS). Hence

( + nλ)d
(
T(xi), xi

) ≤ d
(
T(xi+n), xi

)

+ ( – λ)–n(d
(
T(xi), xi

)
– d

(
T(xi+n), xi+n

))
(GK)

for any i, n ∈N. Then we have

lim
n→+∞ d

(
xn, T(xn)

)
= ,

i.e., {xn} is an approximate fixed point sequence of T .

Proof The first part of the proposition may be found in [, ] and is obtained by an induc-
tion argument. As for the second part, note that the sequence {d(xn+, xn)} is decreasing.
This follows from the inequalities, which hold since X is hyperbolic,

d(xn+, xn+) = d
(
( – λ)xn+ ⊕ λT(xn+), ( – λ)xn ⊕ λT(xn)

)

≤ ( – λ)d(xn+, xn) + λd
(
T(xn+), T(xn)

)

≤ ( – λ)d(xn+, xn) + λd(xn+, xn)

= d(xn+, xn)
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for any n ≥ . Since d(T(xn), xn) = d(xn+, xn)/( – λ), we conclude that the sequence
{d(T(xn), xn)} is also decreasing. Set r = limn→+∞ d(T(xn), xn). Then if we let i → +∞
in the inequality (GK), we get ( + nλ)r ≤ δ(C), for any n ≥ , where δ(C) = sup{d(x, y);
x, y ∈ C} < +∞. This will obviously imply r = , i.e., limn→+∞ d(xn, T(xn)) = . �

Now we are ready to state the main result of this section.

Theorem . Let (X, d,�) be a partially ordered hyperbolic metric space as described
above. Assume (X, d) is uniformly convex. Let C be a nonempty convex closed bounded
subset of X not reduced to one point. Let T : C → C be a monotone nonexpansive mapping.
Assume there exists x ∈ C such that x and T(x) are comparable. Then T has a fixed
point.

Proof Without loss of any generality, assume that x � T(x). Consider the Krasnoselskii-
Ishikawa sequence {xn} generated by (KIS) starting at x with λ ∈ (, ). Since X is uni-
formly convex, it satisfies the property (R). Using the properties of {xn}, we know that

C∞ =
⋂

n≥

[xn,→) ∩ C =
⋂

n≥

{x ∈ C; xn � x} 
= ∅.

Let x ∈ C∞, then xn � x and since T is monotone, we get xn � T(xn) � T(x), for any n ≥ ,
i.e., T(C∞) ⊂ C∞. Consider the type function τ : C∞ → [, +∞) generated by {xn}, i.e.,
τ (x) = lim supn→+∞ d(xn, x). Since {xn} is an approximate fixed point sequence of T , we
get τ (x) = lim supn→+∞ d(T(xn), x), for any x ∈ C∞. Lemma . implies the existence of a
unique z ∈ C∞ such that τ (z) = inf{τ (x); x ∈ C∞}. Since z ∈ C∞, we have xn ≤ z, for any
n ≥ , which implies

τ
(
T(z)

)
= lim sup

n→+∞
d
(
T(xn), T(z)

) ≤ lim sup
n→+∞

d(xn, z) = τ (z).

The uniqueness of the minimum point implies that z = T(z), i.e., z is a fixed point of T . �

In the next section, we will show how to weaken the uniform convexity property when
we assume that X is a vector space.

4 Monotone nonexpansive mappings in Banach spaces
Let (X,‖ · ‖) be a Banach space. We say that X is uniformly convex in the direction z ∈ X,
with ‖z‖ = , if δ(ε, z) > , where

δ(ε, z) = inf

{
 –

∥
∥∥
∥

x + y


∥
∥∥
∥;‖x‖ ≤ ,‖y‖ ≤ , x – y = αz, and ‖x – y‖ ≥ ε

}
,

for any ε ∈ (, ]. Uniform convexity in every direction was introduced by Garkavi []
in connection with his study of Chebyshev centers. Zizler [] proved that any separable
Banach space has an equivalent norm which is uniformly convex in every direction. It
is also known that uniformly convex Banach spaces are super-reflexive [] which shows
that the class of uniformly convex is a lot smaller that the class of uniformly convex in
every direction. We have a similar conclusion to Lemma . in Banach spaces which are
uniformly convex in every direction.
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Lemma . Let (X,‖ · ‖) be a Banach space which is uniformly convex in every direction.
Let C be a weakly compact nonempty convex subset of X. Let τ : C → [, +∞) be a type
function. Then there exists a unique minimum point z ∈ C such that

τ (z) = inf
{
τ (x); x ∈ C

}
.

Proof Let {xn} be a bounded sequence such that τ (x) = lim supn→+∞ ‖xn – x‖, for x ∈ C.
Note that the continuity and convexity of τ are obvious. Let us show the existence of
the minimum point of τ . Set τ = inf{τ (x); x ∈ C}. Then for any n ≥ , the subset Cn =
{x ∈ C; τ (x) ≤ τ + /n} is not empty and is a closed convex subset of C. Since C is weakly
compact, C∞ =

⋂
n≥ Cn 
= ∅. Clearly we have C∞ = {z ∈ C; τ (z) = τ}. Let us prove that C∞

is reduced to one point. Let z and z be in C∞. Assume that z 
= z. In this case, we must
have τ 
= . Set z = (z – z)/‖z – z‖. Let α ∈ (, τ). Then there exists n ≥  such that
for any n ≥ n we have

‖xn – z‖ ≤ τ + α and ‖xn – z‖ ≤ τ + α.

Since ‖z – z‖ ≥ (τ + α)‖z – z‖/τ,
∥
∥∥∥xn –

z + z



∥
∥∥∥ ≤ (τ + α)

(
 – δ

(‖z – z‖
τ

, z
))

,

for any n ≥ n. If we let n → +∞, we get

τ

(
z + z



)
≤ (τ + α)

(
 – δ

(‖z – z‖
τ

, z
))

.

Finally let α →  to get

τ

(
z + z



)
≤ τ

(
 – δ

(‖z – z‖
τ

, z
))

.

This is a contradiction with the fact that C∞ is convex, which implies

τ

(
z + z



)
= τ < τ. �

Since Banach spaces are hyperbolic metric spaces, we have a similar conclusion to
Proposition ..

Proposition . Let (X,‖ · ‖,�) be a partially ordered Banach such that order intervals
are closed and convex. Let C be a convex and bounded subset of X not reduced to one point.
Let T : C → C be a monotone nonexpansive mapping. Fix λ ∈ (, ) and x ∈ C such that
x and T(x) are comparable. Consider the sequence {xn} in C defined by (KIS). Hence

( + nλ)
∥
∥T(xi) – xi

∥
∥ ≤ ∥

∥T(xi+n) – xi
∥
∥

+ ( – λ)–n(∥∥T(xi) – xi
∥∥ –

∥∥T(xi+n) – xi+n
∥∥)

,

for any i, n ∈ N. Then we have limn→+∞ ‖xn – T(xn)‖ = , i.e., {xn} is an approximate fixed
point sequence of T .
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Using the same ideas in the proof of Theorem ., we get the following fixed point result.

Theorem . Let (X,‖ · ‖,�) be a partially ordered Banach such that order intervals are
closed and convex. Assume X is uniformly convex in every direction. Let C be a nonempty
weakly compact convex subset of X not reduced to one point. Let T : C → C be a monotone
nonexpansive mapping. Assume there exists x ∈ C such that x and T(x) are comparable.
Then T has a fixed point.
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