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Abstract
As an extension of the class of (α,ψ )-Meir-Keeler-Khan single-valued mappings
defined by Redjel et al., a new type of (α,ψ )-Meir-Keeler-Khan multivalued mappings
is presented. Fixed point theorems and endpoints theorems are established on such
mappings. Some main results by Redjel et al. and Khan et al. are extended and
generalized.
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1 Introduction and preliminaries
In , Khan [] proved a fixed point theorem for metric spaces. Fisher [] gave a revised
version of this result.

Theorem . ([]) Let T : X → X be a mapping on a complete metric space (X, d) such
that the following hypothesis holds:

d(Tx, Ty) ≤ μ
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

d(x, Ty) + d(y, Tx)
, μ ∈ [, [,

if

d(x, Ty) + d(y, Tx) �= ,

and

d(Tx, Ty) =  if d(x, Ty) + d(y, Tx) = .

Then T has a unique fixed point ς ∈ X. Moreover, for every x ∈ X, the sequence {Tnx}
converges to ς .

Samet et al. [] introduced the notion of an α-admissible mapping.
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Definition . ([]) Let T : X → X and α : X × X → [,∞) be two mappings. The map-
ping T is said to be α-admissible if the following condition is satisfied:

∀x, y ∈ X, α(x, y) ≥  ⇒ α(Tx, Ty) ≥ .

For some examples concerning the class of α-admissible mappings and other informa-
tion on the subject, we refer to [–].

A (c)-comparison function ψ is a nondecreasing self-mapping on [,∞) such that
∑∞

n= ψn(t) < ∞ for each t > , where ψn is the nth iteration of ψ . It is clear that ψ(t) < t
for all t >  and ψ() =  (see [, ]). We denote by � the family of all (c)-comparison
functions,

Meir and Keeler [] in  established a fixed point theorem on a metric space (X, d).
They studied the class of mappings satisfying the condition that for each ε > , there exists
δ(ε) >  such that

ε ≤ d(x, y) < ε + δ(ε) ⇒ d(Tx, Ty) < ε

for any x, y ∈ X.
Latif et al. [] defined the concept of (α,ψ)-Meir-Keeler self-mappings. Recently, Redjel

et al. [] introduced the concept of (α,ψ)-Meir-Keeler-Khan mappings.

Definition . ([]) Let T : X → X be a self-mapping on a metric space (X, d). T is said
to be an (α,ψ)-Meir-Keeler-Khan mapping if there exist ψ ∈ � and α : X × X → [,∞)
such that for every ε > , there exists δ(ε) such that if

ε ≤ ψ

(
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

d(x, Ty) + d(y, Tx)

)

< ε + δ(ε)

for any x, y ∈ X, then

α(x, y)d(Tx, Ty) < ε.

It is easily shown that if T is an (α,ψ)-Meir-Keeler-Khan mapping, then

α(x, y)d(Tx, Ty) ≤ ψ

(
d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)

d(x, Ty) + d(y, Tx)

)

for any x, y ∈ X.
Concerning the class of α-admissible mappings, Redjel et al. [] stated an existence the-

orem for fixed points of (α,ψ)-Meir-Keeler-Khan mappings with continuity assumption
on the mapping.

Theorem . ([]) Let T : X → X be an (α,ψ)-Meir-Keeler-Khan mapping on the complete
metric space (X, d). Suppose that the following hypotheses hold:

(i) T is an α-admissible mapping;
(ii) There exists x ∈ X such that α(x, Tx) ≥ ;

(iii) T is continuous.
Then there exists a fixed point of T in X.
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In addition, they also established an existence theorem for fixed points of (α,ψ)-Meir-
Keeler-Khan mappings without any continuity assumption on the mappings [].

Theorem . ([]) Let T : X → X be an (α,ψ)-Meir-Keeler-Khan mapping on the complete
metric space (X, d). Suppose that the following hypotheses hold:

(i) T is an α-admissible mapping;
(ii) There exists x ∈ X such that α(x, Tx) ≥ ;

(iii) If {xn} is a sequence such that α(xn, xn+) ≥  for every n ∈N and xn
d−→ x∗ as

n → ∞, then α(xn, x∗) ≥  for every n ∈N.
Then there exists a fixed point of T in X.

To state the result for uniqueness of fixed point of (α,ψ)-Meir-Keeler-Khan mapping,
some extra conditions [] are added to Theorem . and Theorem .; these conditions
can be defined as follows:

(U) α(x∗, x∗∗) ≥  for any fixed points x∗ and x∗∗ of the mapping T .
(U) There exists z ∈ X such that α(x∗, z) ≥  and α(x∗∗, z) ≥  for any fixed points x∗

and x∗∗ of the mapping T .

Theorem . ([]) In the statement of Theorem ., if the extra condition (U) or (U) is
added to it, then the fixed point mentioned in the statement is unique.

Theorem . ([]) In the statement of Theorem ., if the extra condition (U) or (U) is
added to it, then the fixed point mentioned in the statement is unique.

Inspired and motivated by Redjel et al. [], in Section , we introduce the new type
of contractive multivalued mappings based on Meir-Keeler-Khan-type contractive con-
dition. Via admissible mappings, we present the notion of (α,ψ)-Meir-Keeler-Khan mul-
tivalued mapping. We establish fixed point results for such mappings with continuity or
α-continuity in the setting of complete metric spaces and α-complete metric spaces. In
Section , some results of endpoints for (α,ψ)-Meir-Keeler-Khan multi-valued mapping
are claimed. Our results extend and generalize the main results of Redjel et al. and Khan
et al. in the literature [, , ]. To show the generality and effectiveness of main results, we
provide some examples in the relevant sections of the article.

2 Main results
In , the class of multivalued mappings on metric spaces is introduced by Nadler [] as
an extension of the class of Banach contraction mappings; henceforth, the investigations
of fixed points of multivalued mappings have received much attention. We give some no-
tation and recall some needed definitions. In the sequel, N denotes the set of all nonneg-
ative integers, R+ denotes the set of all positive real numbers, N (X) denotes the family of
nonempty subsets of X, CL(X) denotes the family of nonempty closed subsets of X, and
K(X) denotes the family of nonempty compact subsets of X.

Let T : X → N (X) be a multivalued mapping on a metric space (X, d). The point x ∈ X
is called a fixed point of T if x ∈ Tx. Set ∅ �= A ⊆ X and x ∈ X. Defining the function

dist : X ×N (X) → [,∞), dist(x, A) = inf
{

d(x, y) : y ∈ A
}
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for any x ∈ X, A ∈ N (X), dist(x, A) is called the distance from x to A. It is obvious that for
fixed A ∈K(X), the function dist(x, A) is continuous at every x ∈ X.

For any A, B ∈ CL(X), the generalized Hausdorff distance H on the metric d is given by

H(A, B) =

{
max{supx∈A dist(x, B), supy∈B dist(y, A)} if it exists,
∞ otherwise.

In , following Samet’s definition, Mohammadi et al. [] extended the concept of an
α-admissible single-valued mapping to the class of α-admissible multivalued mappings as
follows.

Definition . ([]) Let α : X × X → [,∞) and T : X → N (X) be two mappings on a
metric space (X, d). Then T is called an α-admissible mapping if for any x ∈ X and y ∈ Tx
with α(x, y) ≥ , we have α(y, z) ≥  for any z ∈ Ty.

Next, we introduce the class of (α,ψ)-Meir-Keeler-Khan multi-valued mappings. Some
results on existence and uniqueness conditions for fixed points were established for such
mappings via α-admissible meaning. Hereafter, all mappings T : X →K(X) considered in
the sequel of this paper satisfy

∀x, y ∈ X, x �= y ⇒ dist(x, Ty) + dist(y, Tx) �= . (.)

Definition . Let T : X →K(X) be a mapping on a metric space (X, d). Then T is called
an (α,ψ)-Meir-Keeler-Khan multivalued mapping if there exist ψ ∈ � and α : X × X →
[,∞) such that

H(Tx, Ty) �=  ⇒ α(x, y)H(Tx, Ty) ≤ ψ
(
P(x, y)

)
(.)

for any x, y ∈ X, where

P(x, y) =
dist(x, Tx) dist(x, Ty) + dist(y, Ty) dist(y, Tx)

dist(x, Ty) + dist(y, Tx)
.

First, we state an existence theorem for fixed points of (α,ψ)-Meir-Keeler-Khan multi-
valued mappings.

Theorem . Let T : X →K(X) be an (α,ψ)-Meir-Keeler-Khan multivalued mapping on
a metric space (X, d). Suppose that the following hypotheses hold:

(i) (X, d) is a complete metric space;
(ii) T is an α-admissible multi-valued mapping;

(iii) There exist x and x ∈ Tx such that α(x, x) ≥ ;
(iv) T is continuous.

Then there exists a fixed point of T in X.

Proof We construct a sequence starting from x. If x ∈ Tx, then x is a fixed point. Sup-
pose that x /∈ Tx. Because Tx is a compact subset of X, then d(x, Tx) > . If x ∈ Tx,
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then x is a fixed point, and subsequently, this proof is complete. Assume that x /∈ Tx.
Then it is clear that dist(x, Tx) >  because Tx is a compact subset of X. We have

H(Tx, Tx) ≤ α(x, x)H(Tx, Tx)

≤ ψ

(
dist(x, Tx) dist(x, Tx) + dist(x, Tx) dist(x, Tx)

dist(x, Tx) + dist(x, Tx)

)

= ψ
(
dist(x, Tx)

)
. (.)

Moreover, by the definition of the Hausdorff metric and the fact that x ∈ Tx we get

dist(x, Tx) ≤ H(Tx, Tx) ≤ ψ
(
dist(x, Tx)

)
. (.)

In addition, the compactness of Tx implies that there exists x ∈ Tx such that

d(x, x) = dist(x, Tx). (.)

In combination with equations (.) and (.), we obtain that

d(x, x) ≤ ψ
(
dist(x, Tx)

)
. (.)

We continue constructing the sequence similarly. If x ∈ Tx, then this proof is done. Thus,
we assume that x /∈ Tx. Because α(x, x) ≥  and x ∈ Tx, x ∈ Tx, we have α(x, x) ≥ .
Furthermore, using condition (.), we obtain that

H(Tx, Tx) ≤ α(x, x)H(Tx, Tx)

≤ ψ

(
dist(x, Tx) dist(x, Tx) + dist(x, Tx) dist(x, Tx)

dist(x, Tx) + dist(x, Tx)

)

= ψ
(
dist(x, Tx)

)
(.)

and, subsequently,

dist(x, Tx) ≤ H(Tx, Tx)

≤ ψ
(
dist(x, Tx)

)

= ψ
(
d(x, x)

)
. (.)

Likewise, by the compactness of Tx, there exists x ∈ Tx such that

d(x, x) = dist(x, Tx). (.)

In combination with equations (.), (.), and (.), we obtain that

d(x, x) ≤ ψ
(
dist(x, Tx)

)

= ψ
(
d(x, x)

)

≤ ψ(dist(x, Tx)
)
. (.)
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By induction, we can obtain a sequence {xn} satisfying

xn+ ∈ Txn, xn+ /∈ Txn+, α(xn, xn+) ≥ 

and

d(xn, xn+) ≤ ψn(dist(x, Tx)
)

(.)

for all n ∈N.
Next task is to verify that {xn} is a Cauchy sequence. Regarding the properties of the

function ψ , for any ε > , there exists n(ε) such that

n–∑

k≥n(ε)

ψk(dist(x, Tx)
)

< ε. (.)

Let n > m > n(ε). Applying the triangle inequality repeatedly, we get

d(xm, xn) ≤
n–∑

k=m

d(xk , xk+)

≤
n–∑

k=m

ψk(dist(x, Tx)
)

≤
n–∑

k≥n(ε)

ψk(dist(x, Tx)
)

< ε, (.)

which means that {xn} is a Cauchy sequence in (X, d). By the completeness of (X, d) there
exists x∗ ∈ X such that xk

d−→ x∗ as k → ∞. Since T is continuous, we have that Txk
H−→ Tx∗

as k → ∞, and thus

dist
(
x∗, Tx∗) = lim

k→∞
dist

(
xk+, Tx∗) ≤ lim

k→∞
H

(
Txk , Tx∗) = , (.)

which shows that x∗ ∈ Tx∗ because Tx∗ is compact, and the proof is done. �

Remark . Observe that Theorem . (see also []) follows immediately from Theo-
rem ..

In , Hussain et al. [] introduced the concept of the α-completeness of metric
spaces.

Definition . ([]) Let α : X × X → [,∞) be a mapping on a metric space (X, d). The
space (X, d) is said to be α-complete if each Cauchy sequence {xn} in X with α(xn, xn+) ≥ 
for all n ∈N converges in X.

Recently, Kutbi and Sintunavarat [] introduced the concept of an α-continuous mul-
tivalued mapping.
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Definition . ([]) Let α : X × X → [,∞) and T : X → CL(X) be two given mappings
on a metric space (X, d). The mapping T is called an α-continuous multivalued mapping
if, for every sequence {xn} with xn

d−→ x∗ as n → ∞ and α(xn, xn+) ≥  for each n ∈ N, we
have Txn

H−→ Tx∗ as n → ∞.

Remark . Notice that the concept of α-completeness of metric spaces is weaker than
the concept of completeness and the concept of an α-continuous multivalued mapping is
weaker than the concept of continuity in metric spaces.

Addressing to Remark ., we provide two examples to illustrate it.

Example . Let X = R
\{}, and let the metric d : X → R be defined by d(x, y) = [(x –

x) + (y – y)]/ for any x, y ∈ X, where x = (x, x), y = (y, y). Let

Y =
{

(x, y) ∈R
\{} :  ≤ (x – x) + (y – y) ≤ 

}
.

Define the mapping α : X × X → [,∞) by

α(x, y) =

{
d(x,y), x, y ∈ Y ,

 otherwise.

Note that (X, d) is just an α-complete metric space, not a complete metric space. Indeed,
if {xn} ⊂ X is a Cauchy sequence with α(xn, xn+) ≥  for each n ∈ N, then xn ∈ Y for each
n ∈N. Since Y is a closed subset of X, it follows that (Y , d) is a complete metric space, and
so there exists x∗ ∈ Y such that xn

d−→ x∗ as n → ∞.

Example . Let X = (R+ ∪ {}) × (R+ ∪ {}), and let the metric d : X → R be defined
by d(x, y) = max{|x – x|, |y – y|} for any x, y ∈ X, where x = (x, x), y = (y, y). Let A =
[, ] × [, ] ⊂ X. Define the mapping α : X × X → [,∞) by

α(x, y) =

{


d(x,y)+ + 
 , x ∈ A,


 otherwise

and define mapping T : X → CL(X) by

Tx =

{
{λx}, x ∈ A,
{x}, x ∈ X\A,

where λ ∈ [, ]. It is clear that T is not a continuous multivalued mapping from X into
CL(X) on H , but we can verify that T is an α-continuous multivalued mapping from X into
CL(X) on H . In fact, if {xn} ⊂ X is a sequence defined by xn = ( + 

n+ ,  + 
n+ ) for every

n ∈N, then xn ∈ X\A for every n ∈N. Note that xn
d−→ (, ) as n → ∞; however, Txn = ( +


n+ , + 

n+ ) H−→ {(, )} �= {(λ,λ)} = T(, ) as n → ∞. If {xn} is a sequence with α(xn, xn+) ≥ 

for every n ∈ N and xn
d−→ x as n → ∞, then xn, x ∈ A for every n ∈ N, and, subsequently,

Txn = {λxn} H−→ {λx} = Tx as n → ∞, that is, T is an α-continuous multivalued mapping
from CL(X) into H .
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Remark . It is easy to observe from the proof of Theorem . that if we weaken con-
ditions (i) and (iv) of theorem to α-completeness and α-continuity, respectively, then the
conclusion still holds.

We state the following theorem with the α-completeness assumption of a metric space
(X, d) and the α-continuity assumption of the mapping instead of the completeness as-
sumption and α-continuity assumption.

Theorem . Let T : X → K(X) be an (α,ψ)-Meir-Keeler-Khan multivalued mapping
on a metric space (X, d). Suppose that the following hypotheses hold:

(i) (X, d) is an α-complete metric space;
(ii) T is an α-admissible multivalued mapping;

(iii) There exist x and x ∈ Tx such that α(x, x) ≥ ;
(iv) T is an α-continuous multivalued mapping.

Then there exists a fixed point of T in X.

Proof See the proof of Theorem .. �

Remark . As an application of Theorem . and Remark ., we find Redjel’s theorem
(see Theorem .) in [].

Example . Let X = [, ) with the metric d(x, y) = |x – y| for any x, y ∈ X. Define the
mapping α : X → [,∞) by

α(x, y) =

{
, x, y ∈ [, ],
 otherwise.

Define the mapping T : X → CL(X) by Tx = [, x
 ] for  ≤ x ≤  and Tx = [, x – 

 ] for
 < x < . Then it is easy to check that T is α-admissible and X is not complete.

H(Tx, Ty) =

⎧
⎪⎨

⎪⎩

|x–y|
 , x, y ∈ [, ],

|y – x
 |, x ∈ [, ], y ∈ (, ),

|x – y|, x, y ∈ (, ).

We can prove that T is not a continuous multivalued mapping on (CL(X), H), but T is a
α-continuous multivalued mapping on (CL(X), H). Indeed, we have H(Tx, T) = |x–|

 → 
when x ∈ [, ] and x → . H(Tx, T) = |x – 

 | → 
 when x →  and x ∈ (, ), that is, T is

not continuous at  ∈ [, ). If {xn} ⊂ X is a sequence with α(xn, xn+) ≥  for each n ∈ N

and xn
d−→ x as n → ∞, then xn, x ∈ [, ] for all n ∈ N, and, subsequently, Txn = [, xn

 ] H−→
[, x

 ] = Tx as n → ∞, that is, T is an α-continuous multivalued mapping on (CL(X), H).
Let ψ(t) = 

 t for all t ≥ . Because α(x, y) =  whenever x, y ∈ [, ] and α(x, y) =  when-
ever x /∈ [, ] or y /∈ [, ], it is clear that

α(x, y)H(Tx, Ty) ≤ ψ

(
dist(x, Tx) dist(x, Ty) + dist(y, Ty) dist(y, Tx)

dist(x, Ty) + dist(y, Tx)

)

whenever x /∈ [, ] or y /∈ [, ].
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In the sequel, we only consider x, y ∈ [, ]; for x, y ∈ [, ], we calculate that

α(x, y)H(Tx, Ty) =
|x – y|



and

ψ

(
dist(x, Tx) dist(x, Ty) + dist(y, Ty) dist(y, Tx)

dist(x, Ty) + dist(y, Tx)

)

=



x
 dist(x, Ty) + y

 dist(y, Tx)
dist(x, Ty) + dist(y, Tx)

. (.)

Since x �= y, the inequalities x ≤ y
 and y ≤ x

 cannot be simultaneously true; otherwise,
x = y =  from x ≤ x

 or y ≤ y
 .

If x > y
 and y ≤ x

 , then dist(y, Tx) = , and hence

ψ

(
dist(x, Tx) dist(x, Ty) + dist(y, Ty) dist(y, Tx)

dist(x, Ty) + dist(y, Tx)

)

=



x
 dist(x, Ty) + y

 dist(y, Tx)
dist(x, Ty) + dist(y, Tx)

=
x


. (.)

Note that if x > y
 , y ≤ x

 , then x–y
 ≤ x

 . Hence,

α(x, y)H(Tx, Ty) ≤ ψ

(
dist(x, Tx) dist(x, Ty) + dist(y, Ty) dist(y, Tx)

dist(x, Ty) + dist(y, Tx)

)

. (.)

Similarly, we can obtain that when y > x
 , x ≤ y

 , x, y ∈ [, ], the following inequality holds:

α(x, y)H(Tx, Ty) ≤ ψ

(
dist(x, Tx) dist(x, Ty) + dist(y, Ty) dist(y, Tx)

dist(x, Ty) + dist(y, Tx)

)

. (.)

If x > y
 , y > x

 , x, y ∈ [, ], then

ψ

(
dist(x, Tx) dist(x, Ty) + dist(y, Ty) dist(y, Tx)

dist(x, Ty) + dist(y, Tx)

)

=



x
 (x – y

 ) + y
 (y – x

 )
(x – y

 ) + (y – x
 )

=



x(x – y
 ) + y(y – x

 )
(x – y

 ) + (y – x
 )

=
(x + y) – xy

(x + y)
. (.)

Notice that

|x – y|


<
(x + y) – xy

(x + y)

whenever x > y or y > x.
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Moreover, there exist x = 
 ∈ [, ] and x = 

 ∈ Tx such that α(x, x) ≥ . Thus,
condition (iii) in Theorem . holds. Therefore, by Theorem . it follows that there
exists a fixed point of T in X. In this case, T has infinitely many fixed points such as 
and .

Theorem . Let T : X → K(X) be an (α,ψ)-Meir-Keeler-Khan multivalued mapping
on a metric space (X, d). Suppose that the following hypotheses hold:

(i) (X, d) is an α-complete metric space;
(ii) T is an α-admissible multivalued mapping;

(iii) There exist x and x ∈ Tx such that α(x, x) ≥ ;
(iv) If {xn} is a sequence with xn

d−→ x as n → ∞ and α(xn, xn+) ≥ , then α(xn, x) ≥  for
each n ∈N.

Then there exists a fixed point of T in X.

Proof Following the proof of Theorem ., we obtain a Cauchy sequence {xn} with
α(xn, xn+) ≥  for all n ∈ N that converges to some x∗ ∈ X. Applying condition (iv), we
have α(xn, x∗) ≥  for all n ∈ N. Next, assume that dist(x∗, Tx∗) �= . Then, for each n ∈ N,
we can derive

dist
(
xn+, Tx∗)

≤ H
(
Txn, Tx∗)

≤ α
(
xn, x∗)H

(
Txn, Tx∗)

≤ ψ

(
dist(xn, Txn) dist(xn, Tx∗) + d(x∗, Tx∗)d(x∗, Txn)

dist(xn, Tx∗) + dist(x∗, Txn)

)

≤ ψ

(
dist(xn, Txn) dist(xn, Tx∗) + dist(x∗, Tx∗)d(x∗, xn+)

dist(xn, Tx∗) + dist(x∗, Txn)

)

. (.)

Since ψ(t) ≤ t, t ∈ [,∞), and ψ(t) = t if and only if t = , we thus have

dist
(
xn+, Tx∗) ≤ ψ

(
dist(xn, Txn) dist(xn, Tx∗) + dist(x∗, Tx∗)d(x∗, xn+)

dist(xn, Tx∗) + dist(x∗, Txn)

)

≤ dist(xn, Txn) dist(xn, Tx∗) + dist(x∗, Tx∗)d(x∗, xn+)
dist(xn, Tx∗) + dist(x∗, Txn)

. (.)

Letting n → ∞ on the two sides of this inequality, we get

dist
(
x∗, Tx∗) ≤ limn→∞ dist(xn, Txn) dist(xn, Tx∗)

limn→∞[dist(xn, Tx∗) + dist(x∗, Txn)]

≤ limn→∞ dist(xn, Txn) limn→∞ dist(xn, Tx∗)
limn→∞ dist(xn, Tx∗)

=
limn→∞ dist(xn, Txn) dist(x∗, Tx∗)

dist(x∗, Tx∗)

= lim
n→∞ dist(xn, Txn)

≤ lim
n→∞ d(xn, xn+)

= , (.)
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which contradicts to dist(x∗, Tx∗) �= . As a consequence, dist(x∗, Tx∗) =  implies that x∗ ∈
Tx∗ because Tx∗ is a compact subset of X, and we complete this proof. �

Example . Reconsidering Example ., we can find a sequence {xn = 
n+ }n∈N with

xn
d−→  as n → ∞ and α(xn, xn+) ≥ , α(xn, ) =  ≥  for all n ∈ N. Thus, conditions (i)-

(iv) in Theorem . hold. Therefore, by Theorem .,  is a fixed point of T .

Remark . As an application of Theorem . and Remark ., Redjel’s conclusion (see
Theorem .) in [] is a direct result of Theorem . and Remark ..

Uniqueness of α-admissible mappings usually requires some extra conditions on the
mapping itself or on the space on which the mapping is defined. These conditions can be
defined as follows:

(H) α(x∗, x∗∗) ≥  for any fixed points x∗ and x∗∗ of T .
(H) There exists z ∈ X with α(x∗, z) ≥ , α(x∗∗, z) ≥  and α(x∗, y) ≥ , α(x∗∗, y) ≥  for

any y ∈ Tz and any fixed points x∗, x∗∗ of T .
(H) There exists z ∈ Tx∗ ∩ Tx∗∗ such that α(x∗, z) ≥  and α(x∗∗, z) ≥  for any fixed

points x∗, x∗∗ of T .

Theorem . In the statements of Theorem . and Theorem ., if the extra condition
(H) is added to them, then the fixed point mentioned in these two statements is unique.

Proof Following the proof of Theorem . (resp. Theorem .), there exists a fixed point
x∗ under the conditions of Theorem . (resp. Theorem .). Assume that the mapping
T has another fixed point x∗∗ and x∗ �= x∗∗. Using condition (H), we get α(x∗, x∗∗) ≥ , and
hence

H
(
Tx∗, Tx∗∗)

≤ α
(
x∗, x∗∗)H

(
Tx∗, Tx∗∗)

≤ ψ

(
dist(x∗, Tx∗) dist(x∗, Tx∗∗) + dist(x∗∗, Tx∗∗) dist(x∗∗, Tx∗)

dist(x∗, Tx∗∗) + dist(x∗∗, Tx∗)

)

. (.)

Notice that x∗ ∈ Tx∗, x∗∗ ∈ Tx∗∗, and ψ() = ; therefore,

H
(
Tx∗, Tx∗∗)

≤ ψ

(
dist(x∗, Tx∗) dist(x∗, Tx∗∗) + dist(x∗∗, Tx∗∗)d(x∗∗, Tx∗)

dist(x∗, Tx∗∗) + d(x∗∗, Tx∗)

)

= ψ()

= , (.)

and hence H(Tx∗, Tx∗∗) = , which implies that Tx∗ = Tx∗∗. In addition,

d
(
x∗, x∗∗) = H

({
x∗},

{
x∗∗})

≤ H
(
Tx∗, Tx∗∗)
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= H
(
Tx∗, Tx∗)

= , (.)

and thus d(x∗, x∗∗) = , which implies x∗ = x∗∗. �

Theorem . In the statement of Theorem ., if the extra condition (H) is added to it,
then the fixed point mentioned in the statement is unique.

Proof As shown in the proof of Theorem ., there exists a fixed point x∗ under the hy-
potheses of Theorem .. Assume that T has another fixed point x∗∗ and x∗ �= x∗∗. By
condition (H), an element z ∈ X satisfying

α
(
x∗, z

) ≥ , α
(
x∗∗, z

) ≥ , α
(
x∗, y

) ≥ , α
(
x∗∗, y

) ≥ 

can be found in X for any y ∈ Tz.
Defining the sequence {zn} by z = z, zn+ ∈ Tzn for all n ∈N, we get

α
(
x∗, zn

) ≥  and α
(
x∗∗, zn

) ≥ 

for each n ∈ N. Hence,

d
(
x∗, zn+

)
= H

({
x∗}, {zn+}

)

≤ H
(
Tx∗, Tzn+

)

≤ α
(
x∗, zn+

)
H

(
Tx∗, Tzn+

)

≤ ψ

(
dist(x∗, Tx∗) dist(x∗, Tzn+) + d(zn+, Tzn+) dist(zn+, Tx∗)

dist(x∗, Tzn+) + dist(zn+, Tx∗)

)

= ψ

(
dist(zn+, Tzn+) dist(zn+, Tx∗)
dist(x∗, Tzn+) + dist(zn+, Tx∗)

)

.

Note that ψ(t) ≤ t and

dist
(
zn+, Tx∗) ≤ dist

(
x∗, Tzn+

)
+ dist

(
zn+, Tx∗),

d
(
x∗, zn+

)
= ψ

(
dist(zn+, Tzn+) dist(zn+, Tx∗)
dist(x∗, Tzn+) + dist(zn+, Tx∗)

)

≤ ψ
(
dist(zn+, Tzn+)

)
. (.)

On the other hand,

dist(zn+, Tzn+) = H(Tzn, Tzn+)

≤ H(Tzn, Tzn+)

≤ α(zn, zn+)H(Tzn, Tzn+)

≤ ψ

(
dist(zn, Tzn) dist(zn, Tzn+) + d(zn+, Tzn+) dist(zn+, Tzn)

dist(zn, Tzn+) + dist(zn+, Tzn)

)
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= ψ

(
dist(zn, Tzn) dist(zn, Tzn+)

dist(zn, Tzn+) + dist(zn+, Tzn)

)

≤ ψ
(
dist(zn, Tzn)

)
. (.)

Iteratively, this inequality implies

dist(zn+, Tzn+) ≤ ψn+(d(z, Tz)
)

for each n ∈ N. In combination with (.) and (.), we have

d
(
x∗, zn+

) ≤ ψn+(d(z, Tz)
)
.

Letting n → ∞, we obtain

lim
n→∞ d

(
x∗, zn

)
= .

Similarly, we get

lim
n→∞ d

(
x∗∗, zn

)
= .

Immediately, x∗ = x∗∗ due to the uniqueness of the limit, and this completes the proof.
�

Theorem . In the statement of Theorem ., if the extra condition (H) is added to it,
then the fixed point mentioned in the statement is unique.

Proof The existence of a fixed point is proved in Theorem .. To prove the uniqueness,
let x∗ and x∗∗ be any two fixed points of T with x∗ �= x∗∗ under the conditions of Theo-
rem .. By condition (H), there exists z ∈ Tx∗ ∩ Tx∗∗ such that

α
(
x∗, z

) ≥  and α
(
x∗∗, z

) ≥ .

From the proof of Theorem . and Remark ., we can construct a sequence {zn} by
z = x∗, z = z, zn+ ∈ Tzn for any n ∈ N such that zn converges to a fixed point ζ of T
as n → ∞. Define the sequence {wn} by w = x∗∗, wi = zi for i ∈ N \ {}. Because T is
α-admissible, we have

α(zn, zn+) ≥  and α(wn, wn+) ≥ 

for any n ∈ N. Note that the difference between the sequences {zn} and {wn} only lies in
the first terms, so that wn

d−→ ζ as n → ∞. Applying condition (iv) of Theorem ., we get

α(zn, ζ ) ≥  and α(wn, ζ ) ≥ 

for all n ∈N. In particular, α(z, ζ ) = α(x∗, ζ ) ≥  and α(w, ζ ) = α(x∗∗, ζ ) ≥ .
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If x∗ �= ζ , then

d
(
x∗, ζ

)
= H

({
x∗}, {ζ })

≤ H
(
Tx∗, Tζ

)

≤ α
(
x∗, ζ

)
H

(
Tx∗, Tζ

)

≤ ψ

(
dist(x∗, Tx∗) dist(x∗, Tζ ) + d(ζ , Tζ ) dist(ζ , Tx∗)

dist(x∗, Tζ ) + dist(ζ , Tx∗)

)

= ψ()

= . (.)

Thus, x∗ = ζ , which contradicts x∗ �= ζ . So x∗ = ζ . Similarly, we get x∗∗ = ζ , and therefore
x∗ = x∗∗. This completes the proof. �

3 Endpoint property
Let T : X → N (X) be a multivalued mapping on a metric space (X, d). An element x ∈ X
is called an endpoint of T if Tx = {x}. It is obvious that an endpoint of T is a fixed point
of T . In recent years, some problems on the existence and uniqueness of endpoints have
been studied extensively (see, e.g., [–]).

Let T : X →N (X) be a multivalued mapping on a metric space (X, d). We say that T has
the approximate endpoint property if

inf
x∈X

sup
y∈Tx

d(x, y) = 

or, equivalently, if there exists a sequence {xn} such that limn→∞ H({xn}, Txn) = . Con-
cerning a single-valued map f : X → X, f has the approximate endpoint property if and
only if f has the approximate fixed point property, that is,

inf
x∈X

d
(
x, f (x)

)
= ,

or, equivalently, if there exists a sequence {xn} such that limn→∞ d(xn, f (xn)) = .

Theorem . Let T : X →K(X) be an (α,ψ)-Meir-Keeler-Khan multivalued mapping on
a metric space (X, d). Suppose that the following conditions hold:

(i) (X, d) is an α-complete metric space;
(ii) T is an α-admissible multi-valued mapping;

(iii) There exist u and v ∈ Tu such that α(u, v) ≥ ;
(iv) If {xn} is a sequence of X with limn→∞ H({xn}, Txn) = , then u, v ∈ {xn},

α(xn, xn+) ≥ , and xn+ ∈ Txn for all n ∈N; moreover, if xn
d−→ y∗ as n → ∞, then

α(xn, y∗) ≥  for every n ∈N;
(v) For all endpoints y∗ and y∗∗ of the mapping T , we have α(y∗, y∗∗) ≥ .

Then T has a unique endpoint if and only if T has the approximate endpoint property.

Proof It is obvious that if T has an endpoint, then T has the approximate endpoint prop-
erty. Conversely, suppose that T has the approximate endpoint property, that is, we can



Wang and Li Fixed Point Theory and Applications  (2016) 2016:12 Page 15 of 18

find a sequence {xn} ⊂ X with limn→∞ H({xn}, Txn) = . Hence, there exist m, n ∈ N,
m > n, such that u = xn , v = xm . Construct a subsequence {yn} of {xn}, letting

y = u, y = v, y = xm+, . . . , yn = xm+n–, . . . .

It is obvious that limn→∞ H({yn}, Tyn) =  and α(yn, yn+) ≥  for all n ∈N.
As proved in Theorem ., we can deduce that the sequence {yn} ⊂ X is a Cauchy se-

quence. Note that T is α-complete; thus, there exists y∗ ∈ X such that yn
d−→ y∗, and it

follows from (iv) that α(yn, y∗) ≥  for all n ∈N. Additionally,

H
(
y∗, Ty∗) – H

({yn}, Tyn
) ≤ H

(
Tyn, Ty∗)

≤ α
(
yn, y∗)H

(
Tyn, Ty∗)

≤ ψ
(
M

(
yn, y∗))

≤ M
(
yn, y∗)

≤ H
({yn}, Tyn

)
+ H

({
y∗}, Ty∗), (.)

where

M
(
yn, y∗) =

H({yn}, Tyn) dist(yn, Ty∗) + H({y∗}, Ty∗) dist(y∗, Tyn)
dist(yn, Ty∗) + dist(y∗, Tyn)

.

This shows that limn→∞ M(yn, y∗) = H({y∗}, Ty∗), and we thus have

lim sup
n→∞

ψ
(
M

(
yn, y∗)) = ψ

(
H

({
y∗}, Ty∗)). (.)

By (.) and (.) we conclude that

H
({

y∗}, Ty∗) ≤ ψ
(
H

({
y∗}, Ty∗)).

Therefore,

H
({

y∗}, Ty∗) = ,

which means that {y∗} = Ty∗, that is, y∗ is an endpoint of X.
Assume that there exists another endpoint y∗∗ ∈ X. Then

H
({

y∗},
{

y∗∗}) = H
(
Ty∗, Ty∗∗)

≤ α
(
y∗, y∗∗)H

(
Ty∗, Ty∗∗)

≤ ψ

(
dist(y∗, Ty∗) dist(y∗, Ty∗∗) + dist(y∗∗, Ty∗∗) dist(y∗∗, Ty∗)

dist(y∗, Ty∗∗) + dist(y∗∗, Ty∗)

)

. (.)

Notice that y∗ ∈ Ty∗, y∗∗ ∈ Ty∗∗, and ψ() = ; therefore,

H
({

y∗},
{

y∗∗})

≤ ψ

(
dist(y∗, Ty∗) dist(y∗, Ty∗∗) + dist(y∗∗, Ty∗∗) dist(y∗∗, Ty∗)

dist(y∗, Ty∗∗) + dist(y∗∗, Ty∗)

)
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= ψ()

= , (.)

and thus {y∗} = {y∗∗}, which implies y∗ = y∗∗. �

The following corollary on a single-valued mapping f is a direct consequence of Theo-
rem ..

Corollary . Let f : X → X be an (α,ψ)-Meir-Keeler-Khan mapping on a metric space
(X, d). Suppose that the following conditions hold:

(i) (X, d) is an α-complete metric space;
(ii) f is an α-admissible mapping;

(iii) There exist u and v ∈ f (u) such that α(u, v) ≥ ;
(iv) If there exists a sequence {xn} of X with d(xn, f (xn)) = , then u, v ∈ {xn} and

α(xn, xn+) ≥ ; moreover, if xn
d−→ x∗ as n → ∞, then α(xn, x∗) ≥  for all n ∈N;

(v) α(x∗, x∗∗) ≥  for all the fixed points x∗, x∗∗ of the mapping f .
Then f has a unique fixed point if and only if f has the approximate fixed point property.

Proof Let fx = {f (x)} and apply Theorem .. �

Theorem . Let f : X → X be an (α,ψ)-Meir-Keeler-Khan mapping on a metric space
(X, d). Suppose that the following conditions hold:

(i′) (X, d) is an α-complete metric space;
(ii′) f is an α-admissible mapping;
(iii′) There exists x ∈ X such that α(x, f (x)) ≥ ;
(iv′) If {xn} is a sequence with xn

d−→ x∗ as n → ∞ and α(xn, xn+) ≥ , then α(xn, x∗) ≥  for
every n ∈N.

Then condition (iii) in Corollary . holds, and f has the approximate endpoint property.

Proof It is clear that conditions (iii′) and (iv′) imply condition (iv) of Corollary .. In addi-
tion, following (iii′), there exists x ∈ X such that α(x, f (x)) ≥ . We define the sequence
{xn} in X by xn+ = f (xn) for all n ∈ N. If xn+ = f (xn ) for some n, then xn = xn for all
n ≥ n. Hence, d(xn, f (xn)) = d(xn , xn ) =  for n ≥ n, that is, d(xn, f (xn)) →  as n → ∞.
This means that f has the approximate endpoint property. We assume that xn+ �= xn for
all n ∈N. The fact that f is α-admissible implies that

α
(
x, f (x)

)
= α(x, x) ≥  ⇒ α

(
x, f (x)

)
= α(x, x) ≥ .

By induction we deduce that

α(xn, xn+) ≥ 

for all n ∈N. Moreover, for n ≥ , n ∈N, we deduce that

d(xn, xn+) = d
(
f (xn–), f (xn)

)

≤ α(xn–, xn)d
(
f (xn–), f (xn)

)
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≤ ψ

(
d(xn–, f (xn–))d(xn–, f (xn)) + d(xn, f (xn))d(xn, f (xn–))

d(xn–, f (xn)) + d(xn, f (xn–))

)

= ψ

(
d(xn–, xn)d(xn–, f (xn)) + d(xn, f (xn))d(xn, xn)

d(xn–, f (xn)) + d(xn, xn)

)

= ψ

(
d(xn–, xn)d(xn–, f (xn))

d(xn–, f (xn))

)

= ψ
(
d(xn–, xn)

)
. (.)

Iteratively, this inequality implies

d(xn, xn+) ≤ ψn(d(x, x)
)

for all n ∈N.
Letting n → ∞, we obtain

lim
n→∞ d(xn, xn+) = d

(
xn, f (xn)

)
= ,

which implies that f has the approximate endpoint property. �

Remark . As an application of Corollary . and Theorem ., the result of Redjel’s
theorem (adding condition (U) to the statement of Theorem ., the uniqueness of the
fixed point can be obtained. Ref. Theorem .) is a direct result of Corollary . and The-
orem ..

In Theorem ., let (X, d) be complete, and let α(x, y) =  for any x, y ∈ X. Then condi-
tions (i)-(v) hold clearly, and thus as an application of Theorem ., we have the following
corollary.

Corollary . Let T : X →K(X) be a mapping on a complete metric space (X, d). Suppose
that, for any x, y ∈ X,

H(Tx, Ty) ≤ μP(x, y)

for some  ≤ μ < , where

P(x, y) =
dist(x, Tx) dist(x, Ty) + dist(y, Ty) dist(y, Tx)

dist(x, Ty) + dist(y, Tx)
.

Then T has a unique endpoint if and only if T has the approximate endpoint property.

Proof Apply Theorem . for α(x, y) =  and ψ(t) = μt. �

Especially, we will mention the case of μ =  in Corollary .. When X is a reflexive
Banach space, using the notion of normal structure set, the existence and uniqueness of
fixed points is established by Redjel and Dehici [].

Remark . It is easy to observe that the Khan theorem (see Theorem .) by Fisher is a
direct result of Theorem ., Corollary ., Theorem ., and Corollary ..
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Point Theory Appl. 2013, Article ID 24 (2013)
11. Hussain, N, Kutbi, MA, Salimi, P: Fixed point theory in α-complete metric spaces with applications. Abstr. Appl. Anal.

2014, Article ID 280817 (2014)
12. Kutbi, M, Sintunavarat, W: On new fixed point results for (α,ψ )-contractive multi-valued mappings on complete

metric spaces and their consequences. Fixed Point Theory Appl. 2015, Article ID 2 (2015)
13. Lin, LJ, Du, WS: From an abstract maximal element principle to optimization problems, stationary point theorems and

common fixed point theorems. J. Glob. Optim. 46, 261-271 (2010)
14. Fakhar, M: Endpoints of set-valued asymptotic contractions in metric spaces. Appl. Math. Lett. 24, 428-431 (2011)
15. Amini-Harandi, A: Endpoints of set-valued contractions in metric spaces. Nonlinear Anal. 72, 132-134 (2010)
16. Moradi, S, Khojasteh, F: Endpoints of multi-valued generalized weak contraction mappings. Nonlinear Anal. 74,

2170-2174 (2011)
17. Redjel, N, Dehici, A: Some results in fixed point theory and application to the convergence of some iterative

processes. Fixed Point Theory Appl. 2015, Article ID 173 (2015)


	Fixed point theorems and endpoint theorems for (alpha,psi)-Meir-Keeler-Khan multivalued mappings
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Endpoint property
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


