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1 Introduction and preliminaries
Let E be a Banach space over R (or C) with respect to a certain norm ‖ · ‖. For any subsets
X and Y of E, we have the following notations:

X denotes the closure of X ;
conv(X) denotes the convex hull of X ;
P(X) denotes the set of nonempty subsets of X ;
X + Y and λX (λ ∈R) stand for algebraic operations on sets X and Y .

We denote by BE the family of all nonempty bounded subsets of E. Finally, if X is a
nonempty subset of E and T : X → X is a given operator, we denote by Fix(T) the set
of fixed points of T , that is,

Fix(T) = {x ∈ X : Tx = x}.

Banaś and Goebel [] introduced the following axiomatic definition of the concept of a
measure of noncompactness.

Definition . Let σ : BE → [,∞) be a given mapping. We say that σ is a BG-measure
of noncompactness (in the sense of Banaś and Gobel) on E if the following conditions are
satisfied:

(i) For every X ∈ BE , σ (X) =  iff X is precompact.
(ii) For every pair (X, Y ) ∈ BE ×BE , we have

X ⊆ Y �⇒ σ (X) ≤ σ (Y ).
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(iii) For every X ∈ BE , we have

σ (X) = σ (X) = σ
(
conv(X)

)
.

(iv) For every pair (X, Y ) ∈ BE ×BR and λ ∈ (, ), we have

σ
(
λX + ( – λ)Y

) ≤ λσ (X) + ( – λ)σ (Y ).

(v) If {Xn} ⊆ BE is a decreasing sequence (w.r.t. ⊆) of closed sets such that σ (Xn) → 
as n → ∞, then X∞ :=

⋂∞
n= Xn is nonempty.

Let X be a nonempty, bounded, closed, and convex subset of the Banach space E.
We denote by DX the set of self-mappings D : X → X satisfying the following condi-

tions:
(i) D is a continuous mapping.

(ii) There exist σ : BE → [,∞), a BG-measure of noncompactness on E, and a
constant k ∈ (, ) such that

σ (DW ) ≤ kσ (W ), W ∈ P(X ).

The following result is known as Darbo’s fixed point theorem (see [, ]).

Theorem . Let D : X → X be a mapping that belongs to DX . Then D has at least one
fixed point. Moreover, the set Fix(D) is precompact.

Many generalizations and extensions of Darbo’s fixed point theorem can be found in the
literature (see, for example, [–] and the references therein). Using the BG-measure of
noncompactness, Aghajani et al. [] obtained the following generalization of Darbo’s the-
orem. Let FX be the set of self-mappings D : X →X satisfying the following conditions:

(i) D is a continuous mapping.
(ii) There exists σ : BE → [,∞), a BG-measure of noncompactness on E, such that for

all ε > , there exists some δε >  for which

W ∈ P(X ), ε ≤ σ (W ) < ε + δε �⇒ σ (DW ) < ε.

Theorem . (Aghajani et al. []) Let D : X →X be a mapping that belongs to FX . Then
D has at least one fixed point.

Observe that DX ⊆FX . In fact, let D : X →X be a given mapping that belongs to DX .
Let ε > . From the definition of DX , there is some k ∈ (, ) such that

σ (DW ) ≤ kσ (W ),

for any nonempty subset W of X . Let δε = ( 
k – )ε. Then for any nonempty subset W of X ,

we have

ε ≤ σ (W ) < ε + δε =
ε

k
�⇒ σ (DW ) ≤ kσ (W ) < ε,

so D ∈FX .
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In [], Dhage introduced the following axiomatic definition of the measure of noncom-
pactness.

Definition . Let σ : BE → [,∞) be a given mapping. We say that σ is a D-measure of
noncompactness (in the sense of Dhage) on E if the following conditions are satisfied:

(i) For every X ∈ BE , σ (X) =  iff X is precompact.
(ii) For every pair (X, Y ) ∈ BE ×BE , we have

X ⊆ Y �⇒ σ (X) ≤ σ (Y ).

(iii) For every X ∈ BE , we have

σ (X) = σ (X) = σ
(
conv(X)

)
.

(iv) If {Xn} ⊆ BE is a decreasing sequence (w.r.t. ⊆) such that σ (Xn) →  as n → ∞,
then the X∞ :=

⋂∞
n= Xn is nonempty.

Observe that if σ : BE → [,∞) is a BG-measure of noncompactess on E, then σ is a
D-measure of noncompactess on E.

In this paper, using the axiomatic definition of the measure of noncompactness given
by Dhage, we obtain new generalizations of Theorem .. Finally, an existence result for a
certain class of fractional integral equations will be given as an application.

2 Main results
Let X be a nonempty, bounded, closed, and convex subset of a Banach space E. We con-
tinue to use the same notations presented in the previous section of this paper.

Let F ′
X be the set of self-mappings D : X →X satisfying the following conditions:

(i) D is a continuous mapping.
(ii) There exists σ : BE → [,∞), a D-measure of noncompactness on E, such that for

all ε > , there exists some δε >  for which

W ∈ P(X ), ε ≤ σ (W ) < ε + δε �⇒ σ (DW ) < ε.

We have the following result.

Theorem . Let D : X → X be a mapping that belongs to F ′
X . Then D has at least one

fixed point.

The result of Theorem . can be obtained using the same arguments of the proof of
Theorem . in []. By Theorem ., we want just to mention that Theorem . is still
valid for any D-measure of noncompactness.

Let GX be the set of mappings D : X →X such that
(i) D is continuous.

(ii) There exists a function ω : [,∞) → [,∞) such that

(ω) ω(t) =  iff t = ;
(ω) ω is nondecreasing and right continuous;
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(ω) for every ε > , there exists γε >  such that

W ∈ P(X ), ε ≤ ω
(
σ (W )

)
< ε + γε �⇒ ω

(
σ (DW )

)
< ε,

where σ : BE → [,∞) is a D-measure of noncompactness.

The following lemma can be proved using a similar argument as in the proof of Theo-
rem . in [].

Lemma . We have

GX ⊆F ′
X .

Using Theorem . and Lemma ., we obtain the following result.

Corollary . Let D : X → X be a mapping that belongs to GX . Then D has at least one
fixed point.

Let � be the set of functions ϕ : [,∞) → [,∞) satisfying the conditions:

(�) ϕ ∈ L
loc[,∞);

(�) for every ξ > , we have

∫ ξ


ϕ(s) ds > .

Let HX be the set of mappings D : X →X such that

(H) D is continuous;
(H) for every ε > , there exists some γε >  such that

W ∈ P(X ), ε ≤
∫ σ (W )


ϕ(s) ds < ε + γε �⇒

∫ σ (DW )


ϕ(s) ds < ε,

where ϕ ∈ � and σ : BE → [,∞) is a D-measure of noncompactness.

Lemma . We have

HX ⊆ GX .

Proof Take

ω(t) =
∫ t


ϕ(s) ds, t ≥ ,

we obtain the desired result. �

Using Corollary . and Lemma ., we obtain the following result.

Corollary . Let D : X → X be a mapping that belongs to HX . Then D has at least one
fixed point.
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Let IX be the set of mappings D : X →X such that

(I) D is continuous;
(I) there exists some ϕ ∈ � such that

∫ σ (DW )


ϕ(s) ds ≤ k

∫ σ (W )


ϕ(s) ds, W ∈ P(X ),

where k ∈ (, ) is a constant and σ : BE → [,∞) is a D-measure of noncompactness.

Lemma . We have

IX ⊆HX .

Proof Let D : X →X be a mapping that belongs to IX . Let ε >  be fixed. Let γε = ( 
k – )ε.

Take W ∈ P(X ) such that

ε ≤
∫ σ (W )


ϕ(s) ds < ε + γε =

ε

k
.

From (I), we obtain

∫ σ (DW )


ϕ(s) ds ≤ k

∫ σ (W )


ϕ(s) ds < k

ε

k
= ε,

so D ∈HX . �

Using Corollary . and Lemma ., we obtain the following result.

Corollary . Let D : X → X be a mapping that belongs to IX . Then D has at least one
fixed point.

Remark . Take ϕ(t) = , t ≥  in Corollary ., we obtain Theorem ..

Let JX be the set of mappings D : X →X such that

(J) D is continuous;
(J) there exists a function η : (,∞) →R such that

(η) for each sequence {αn} ⊂ (,∞), we have

lim
n→∞η(αn) = –∞ �⇒ lim

n→∞αn = ;

(η) there exists τ >  such that

W ∈ P(X ), σ (W )σ (DW ) >  �⇒ τ + η
(
σ (DW )

) ≤ η
(
σ (W )

)
,

where σ : BE → [,∞) is a D-measure of noncompactness.

Theorem . Let D : X → X be a mapping that belongs to JX . Then D has at least one
fixed point.
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Proof Consider the sequence {Xn} of subsets of E defined by

{
X := X ,
Xn+ := conv(DXn), n = , , , . . . .

(.)

By induction, we observe easily that

Xn+ ⊆Xn, n = , , , . . . . (.)

If for some N , we have σ (XN ) = , then by the property (i) of the D-measure of noncom-
pactness, XN is compact. Since D(XN ) ⊆XN (from (.)), Schauder’s fixed point theorem
applied to the self-mapping D : XN → XN gives the desired result. So, without loss of the
generality, we may assume that

σ (Xn) > , n = , , , . . . .

For n = , since σ (X) >  and σ (DX) = σ (X) > , from the property (η) we have

τ + η
(
σ (DX)

) ≤ η
(
σ (X)

)
,

which yields

η
(
σ (X)

) ≤ η
(
σ (X)

)
– τ .

Similarly, for n = , we have

η
(
σ (X)

) ≤ η
(
σ (X)

)
– τ ≤ η

(
σ (X)

)
– τ .

By induction, we obtain

η
(
σ (Xn)

) ≤ η
(
σ (X)

)
– nτ , n = , , , . . . .

Since

lim
n→∞η

(
σ (X)

)
– nτ = –∞,

we deduce that

lim
n→∞η

(
σ (Xn)

)
= –∞,

so from the property (η) we have

lim
n→∞σ (Xn) = . (.)

From the property (iv) of the D-measure of noncompactness, the set M :=
⋂∞

n= Xn is
nonempty. Moreover, for every p = , , , . . . , we have

M ⊆Xp, (.)



Jleli et al. Fixed Point Theory and Applications  (2016) 2016:11 Page 7 of 17

which implies from (.) that

DM ⊆ DXp ⊆Xp+ ⊆Xp, p = , , , . . . .

Then D : M → M is well defined. On the other hand, from (.) and the property (ii) of
the D-measure of noncompactness, we have

σ (M) ≤ σ (Xp), p = , , , . . . .

Passing to the limit as p → ∞ and using (.), we obtain

σ (M) = ,

which implies from the property (i) of the D-measure of noncompactness that M = M is
compact. Applying Schauder’s fixed point theorem to the mapping D : M → M, we obtain
the desired result. �

Remark . Observe that DX ⊆ JX . In fact, if D : X →X belongs to DX , that is,

σ (DW ) ≤ kσ (W ), W ∈ P(X ),

then

W ∈ P(X), σ (W )σ (DW ) >  �⇒ lnσ (DW ) – ln k ≤ lnσ (W ).

Then D ∈ JX with η(t) = ln t, t > . Therefore, Theorem . is a generalization of Theo-
rem ..

Let KX be the set of mappings D : X →X such that

(K) D is continuous;
(K) there exists a function θ : (,∞) → (,∞) such that

(θ) for each sequence {un} ⊂ (,∞), we have

lim
n→∞ θ (un) =  �⇒ lim

n→∞ un = ;

(θ) there exist k ∈ (, ) and a D-measure of noncompactness σ : BE → [,∞) such
that

W ∈ P(X ), σ (W )σ (DW ) >  �⇒ θ
(
σ (DW )

) ≤ [
θ
(
σ (W )

)]k .

We have the following result.

Theorem . Let D : X →X be a mapping that belongs to KX . Then D has at least one
fixed point.
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Proof Consider the sequence {Xn} of subsets of E defined by (.). As in the proof of The-
orem ., without loss of the generality, we may assume that

σ (Xn) > , n = , , , . . . .

For n = , since σ (X) >  and σ (DX) = σ (X) > , we have

θ
(
σ (DX)

) ≤ [
θ
(
σ (X)

)]k ,

that is,

θ
(
σ (X)

) ≤ [
θ
(
σ (X)

)]k .

Again, for n = , since σ (X) >  and σ (DX) = σ (X) > , we have

θ
(
σ (DX)

) ≤ [
θ
(
σ (X)

)]k ,

that is,

θ
(
σ (X)

) ≤ [
θ
(
σ (X)

)]k ,

so

θ
(
σ (X)

) ≤ [
θ
(
σ (X)

)]k
.

Therefore, by induction, we get

 < θ
(
σ (Xn)

) ≤ [
θ
(
σ (X)

)]kn
, n = , , , . . . .

Passing to the limit as n → ∞, we obtain

lim
n→∞ θ

(
σ (Xn)

)
= ,

so from the property (θ) we have

lim
n→∞σ (Xn) = .

The rest of the proof is similar to that in the proof of Theorem .. �

Corollary . Let D : X → X be a continuous mapping. Suppose that there exist a con-
stant k ∈ (, ) and a D-measure of noncompactness σ : BE → [,∞) such that

 –

π

arctan

(
√

σ (DW )

)
≤

[
 –


π

arctan

(
√

σ (W )

)]k

,

for any W ∈ P(X ) with σ (W )σ (DW ) > . Then D has at least one fixed point.
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Proof Taking

θ (t) =  –

π

arctan

(
√
t

)
, t > ,

in Theorem ., we obtain the desired result. �

Remark . Observe that DX ⊆KX . In fact, if D : X →X belongs to DX , that is,

σ (DW ) ≤ kσ (W ), W ∈ P(X ),

then

W ∈ P(X ), σ (W )σ (DW ) >  �⇒ eσ (DW ) ≤ [
eσ (W )]k .

Therefore D ∈KX with θ (t) = et .

Let LX be the set of mappings D : X →X such that

(L) D is continuous;
(L) there exists a function ζ : [,∞) × [,∞) →R such that

(ζ) ζ (z, z) < z – z, for all z, z > ;
(ζ) if {un} and {vn} are two sequences in (,∞) such that limn→∞ un = limn→∞ vn =

� > , then

lim sup
n→∞

ζ (un, vn) < ,

(ζ)

ζ
(
σ (DW ),σ (W )

) ≥ , W ∈ P(X ),

where σ : BE → [,∞) is a D-measure of noncompactness.

Theorem . Let D : X →X be a mapping that belongs to LX . Then D has at least one
fixed point.

Proof Consider the sequence {Xn} of subsets of E defined by (.). From the property (ζ),
we have

ζ
(
σ (Xn+),σ (Xn)

) ≥ , n = , , , . . . . (.)

As before, without loss of the generality, we may assume that

σ (Xn) > , n = , , , . . . . (.)

From the property (ζ), (.) and (.), we get

σ (Xn) ≥ σ (Xn+), n = , , , . . . .
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Then there is some r ≥  such that

lim
n→∞σ (Xn) = r.

If r > , then from the property (ζ), we have

lim sup
n→∞

ζ
(
σ (Xn+),σ (Xn)

)
< ,

which contradicts (.). As consequence, we have

lim
n→∞σ (Xn) = .

The rest of the proof is similar to the proof of Theorem .. �

Remark . Taking

ζ (z, z) = kz – z,

where k ∈ (, ) is a constant, we obtain Theorem ..

Corollary . Let D : X →X be a continuous mapping such that

σ (DW ) ≤ σ (W ) – �
(
σ (W )

)
, W ∈ P(X ),

where � : [,∞) → [,∞) is a lower semi-continuous function with �–() = {} and σ :
BE → [,∞) is a D-measure of noncompactness. Then D has at least one fixed point.

Proof Taking

ζ (z, z) = z – �(z) – z

in Theorem ., we obtain the desired result. �

Corollary . Let D : X →X be a continuous mapping such that

σ (DW ) ≤ ψ
(
σ (W )

)
, W ∈ P(X ),

where ψ : [,∞) → [,∞) is an upper semi-continuous function with ψ(t) < t for all t > 
and σ : BE → [,∞) is a D-measure of noncompactness. Then D has at least one fixed
point.

Proof Taking

ζ (z, z) = ψ(z) – z

in Theorem ., we obtain the desired result. �
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3 An existence result for a fractional integral equation
The measure of noncompactness argument is a useful tool in Nonlinear Analysis. In par-
ticular, such argument can be used to obtain existence results for various classes of integral
equations. For more details on the applications of the measure of noncompactness con-
cept, we refer the reader to [, , , , –] and the references therein.

In this section, we discuss the existence of solutions to the fractional integral equation

y(t) =
f (t, y(t))

�(α)

∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds, t ∈ [, T], (.)

where T > , α ∈ (, ), u, f : [, T] ×R →R and g : [, T] →R.
We suppose that the following conditions are satisfied.

(i) The function f : [, T] ×R →R is continuous.
(ii) There exists an upper semi-continuous function ψ : [,∞) → [,∞) such that

ψ() = , ψ(t) < t for all t > , ψ is nondecreasing, and

∣∣f (t, x) – f (t, y)
∣∣ ≤ ψ

(|x – y|), (t, x, y) ∈ [, T] ×R×R.

(iii) The function u : [,∞) → [,∞) is continuous and there exists a nondecreasing
function ω : [,∞) → [,∞) such that

∣∣u(t, z)
∣∣ ≤ ω

(|z|), (t, z) ∈ [, T] ×R.

(iv) The function g : [, T] →R is C and nondecreasing.
(v) There exists r >  such that

(
ψ(r) + F

)
ω(r)

(
g(T) – g()

)α ≤ r�(α + )

and

ω(r)
�(α + )

(
g(T) – g()

)α ≤ ,

where F = max{|f (t, ) : t ∈ [, T]}.
Let E = C([, T];R) be the set of real continuous functions defined in [, T]. The set E

endowed with the norm

‖z‖ = max
{∣∣z(t)

∣∣ : t ∈ [, T]
}

, z ∈ E,

is a Banach space. Let W be a nonempty and bounded subset of E. Let us define the map-
ping γ : W × [,∞) → [,∞) by

γ (z,ρ) = sup
{∣∣z(a) – z(b)

∣
∣ : a, b ∈ [, T], |a – b| ≤ ρ

}
, z ∈ W ,ρ ≥ .

Set

γ (W ,ρ) = sup
{
γ (z,ρ) : z ∈ W

}
, ρ ≥ .



Jleli et al. Fixed Point Theory and Applications  (2016) 2016:11 Page 12 of 17

Let BE be the set of all nonempty bounded subsets of E. Then the mapping

σ : BE → [,∞)

defined by

σ (W ) = lim
ρ→+

γ (W ,ρ), W ∈ BE,

is a BG-measure of noncompactness (then it is a D-measure of noncompactness) on the
space E (see []).

We have the following existence result.

Theorem . Under the assumptions (i)-(v), equation (.) has at least one solution y∗ ∈ E.
Moreover, we have ‖y∗‖ ≤ r.

Proof Let us consider the operator D defined on E by

(Dy)(t) =
f (t, y(t))

�(α)

∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds, (y, t) ∈ E × [, T]. (.)

At first, we show that the operator D maps E into itself. Set

(Hy)(t) =
∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds, (y, t) ∈ E × [, T]. (.)

From the assumption (i), we have just to show that H maps E into itself. In order to prove
this fact, let us fix some y ∈ E. Observe that Hy : [, T] → R is a well-defined function. In
fact, using the assumptions (iii) and (iv), for all t ∈ [, T] we have

∣∣(Hy)(t)
∣∣ ≤

∫ t



g ′(s)|u(s, y(s))|
(g(t) – g(s))–α

ds

≤ ω
(‖y‖)

∫ t



g ′(s)
(g(t) – g(s))–α

ds

=
ω(‖y‖)

α

(
g(t) – g()

)α ,

that is,

∣
∣(Hy)(t)

∣
∣ ≤ ω(‖y‖)

α

(
g(t) – g()

)α < ∞, t ∈ [, T]. (.)

Let us prove the continuity of Hy at . To do this, let {tn} be a sequence in [, T] such that
tn → + as n → ∞. From (.), for all n we have

∣∣(Hy)(tn)
∣∣ ≤ ω(‖y‖)

α

(
g(tn) – g()

)α .

Passing to the limit as n → ∞ and using the continuity of g at , we obtain

lim
n→∞(Hy)(tn) =  = (Hy)().

Then Hy is continuous at .
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Now, let t ∈ (, T] be fixed and {tn} be a sequence in (, T] such that tn → t as n → ∞.
Without restriction of the generality, we may assume that tn ≥ t for n large enough. For
every n, we have

∣
∣(Hy)(tn) – (Hy)(t)

∣
∣ =

∣∣
∣∣

∫ tn



g ′(s)u(s, y(s))
(g(tn) – g(s))–α

ds –
∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds
∣∣
∣∣.

For n large enough, we can write

∣
∣(Hy)(tn) – (Hy)(t)

∣
∣ ≤

∣∣
∣∣

∫ t



(
g ′(s)u(s, y(s))

(g(tn) – g(s))–α
–

g ′(s)u(s, y(s))
(g(t) – g(s))–α

)
dτ

∣∣
∣∣

+
∣∣∣
∣

∫ tn

t

g ′(s)u(s, y(s))
(g(tn) – g(s))–α

ds
∣∣∣
∣

≤ ω
(‖y‖)

∫ t



(
g ′(s)

(g(t) – g(s))–α
–

g ′(s)
(g(tn) – g(s))–α

)
ds

+ ω
(‖y‖)

∫ tn

t

g ′(s)
(g(tn) – g(s))–α

ds

=
ω(‖y‖)

α

((
g(t) – g()

)α +
(
g(tn) – g(t)

)α –
(
g(tn) – g()

)α)

+
ω(‖y‖)

α

(
g(tn) – g(t)

)α .

Since g is continuous in [, T], we have

lim
n→∞

ω(‖y‖)
α

((
g(t)–g()

)α +
(
g(tn)–g(t)

)α –
(
g(tn)–g()

)α)
+

ω(‖y‖)
α

(
g(tn)–g(t)

)α = ,

which yields limn→∞ |(Hy)(tn) – (Hy)(t)| = . Then Hy is continuous at t. As consequence,
Hy ∈ E, for all y ∈ E, and D : E → E is well defined.

On the other hand, using the assumptions (ii) and (iii), for an arbitrarily fixed y ∈ E and
t ∈ [, T], we have

∣
∣(Dy)(t)

∣
∣ ≤ |f (t, y(t))|

�(α)

∫ t



g ′(s)|u(s, y(s))|
(g(t) – g(s))–α

ds

≤ |f (t, y(t)) – f (t, )| + |f (t, )|
�(α)

∫ t



g ′(s)ω(|y(s)|)
(g(t) – g(s))–α

ds

≤ (ψ(|y(t)|) + F)ω(‖y‖)
�(α + )

(
g(t) – g()

)α

≤ (ψ(‖y‖) + F)ω(‖y‖)
�(α + )

(
g(T) – g()

)α .

Then

‖Dy‖ ≤ (ψ(‖y‖) + F)ω(‖y‖)
�(α + )

(
g(T) – g()

)α , y ∈ E.

Using the above inequality, the fact that the functions ψ ,ω : [,∞) → [,∞) are nonde-
creasing, and the assumption (v), we infer that the operator D maps B(, r) into itself,
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where

B(, r) =
{

z ∈ E : ‖z‖ ≤ r
}

.

Now, we claim that the operator D : B(, r) → B(, r) is continuous. From (.), we can
write D in the form

Dy =


�(α)
Gy · Hy, y ∈ E,

where

(Gy)(t) = f
(
t, y(t)

)
, (y, t) ∈ E × [, T],

and Hy is defined by (.). In order to prove our claim, it is sufficient to show that the
operators G and H are continuous on B(, r). First of all, we show that G is a continuous
operator on B(, r). To do this, we take a sequence {yn} ⊂ B(, r) and y ∈ B(, r) such
that ‖yn – y‖ →  as n → ∞, and we have to prove that ‖Gyn – Gy‖ →  as n → ∞. In
fact, for all t ∈ [, T], using the condition (ii), we have

∣∣(Gyn)(t) – (Gy)(t)
∣∣ =

∣∣f
(
t, yn(t)

)
– f

(
t, y(t)

)∣∣

≤ ψ
(∣∣yn(t) – y(t)

∣∣)

≤ ψ
(‖yn – y‖)

≤ ‖yn – y‖.

Thus we have

‖Gyn – Gy‖ ≤ ‖yn – y‖, for all n.

Passing to the limit as n → ∞ in the above inequality, we obtain

lim
n→∞‖Gyn – Gy‖ = .

This proves that G is a continuous operator on B(, r). Next, we show that H is a con-
tinuous operator on B(, r). To do this, we fix a real number ε >  and we take arbitrary
functions x, y ∈ B(, r) such that ‖x – y‖ < ε. For all t ∈ [, T], we have

∣∣(Hx)(t) – (Hy)(t)
∣∣ ≤

∫ t



g ′(s)|u(s, x(s)) – u(s, y(s))|
(g(t) – g(s))–α

ds

≤ u(r, ε)
∫ t



g ′(s)
(g(t) – g(s))–α

ds

≤ u(r, ε)
α

(
g(T) – g()

)α ,

where

u(r, ε) = sup
{∣∣u(τ , v) – u(τ , w)

∣∣ : τ ∈ [, T], v, w ∈ [–r, r], |v – w| < ε
}

.
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Therefore,

‖Hx – Hy‖ ≤ u(r, ε)
α

(
g(T) – g()

)α .

Since u is uniformly continuous on the compact [, T] × [–r, r], we have u(r, ε) →  as
ε → + and, therefore, the last inequality gives us

lim
ε→+

‖Hx – Hy‖ = .

Then H is continuous on B(, r) and D maps continuously the set B(, r) into itself.
Further, let W be a nonempty subset of B(, r). Let ρ >  be fixed, y ∈ W , and t, t ∈

[, T] be such that |t – t| ≤ ρ . Without restriction of the generality, we may assume that
t ≥ t. We have

∣∣(Dy)(t) – (Dy)(t)
∣∣

≤
∣∣∣
∣
f (t, y(t))

�(α)

∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds –
f (t, y(t))

�(α)

∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds
∣∣∣
∣

≤
∣
∣∣
∣
f (t, y(t))

�(α)

∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds –
f (t, y(t))

�(α)

∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds
∣
∣∣
∣

+
|f (t, y(t))|

�(α)

∣∣
∣∣

∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds –
∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds
∣∣
∣∣

≤ |f (t, y(t)) – f (t, y(t))| + |f (t, y(t)) – f (t, y(t))|
�(α)

∫ t



g ′(s)|u(s, y(s))|
(g(t) – g(s))–α

ds

+
|f (t, y(t)) – f (t, )| + |f (t, )|

�(α)

∣∣
∣∣

∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds

–
∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds
∣∣∣
∣

+
|f (t, y(t)) – f (t, )| + |f (t, )|

�(α)

∣
∣∣
∣

∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds

–
∫ t



g ′(s)u(s, y(s))
(g(t) – g(s))–α

ds
∣∣
∣∣

≤ ψ(|y(t) – y(t)|) + ωf (r,ρ)
�(α + )

ω(r)
(
g(t) – g()

)α

+
(ψ(r) + F)ω(r)

�(α)

∫ t

t

g ′(s)
(g(t) – g(s))–α

ds

+
(ψ(r) + F)ω(r)

�(α + )
((

g(t) – g()
)α +

(
g(t) – g(t)

)α –
(
g(t) – g()

)α)

≤ ψ(γ (y,ρ)) + ωf (r,ρ)
�(α + )

ω(r)
(
g(T) – g()

)α +
(ψ(r) + F)ω(r)

�(α + )
(
g(t) – g(t)

)α

≤ ψ(γ (y,ρ)) + ωf (r,ρ)
�(α + )

ω(r)
(
g(T) – g()

)α +
(ψ(r) + F)ω(r)

�(α + )
[
γ (g,ρ)

]α ,
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where

ωf (r,ρ) = sup
{∣∣f (t, u) – f (s, u)

∣∣ : u ∈ [–r, r], t, s ∈ [, T], |t – s| ≤ ρ
}

.

Therefore,

γ (DW ,ρ) ≤ ψ(γ (W ,ρ)) + ωf (r,ρ)
�(α + )

ω(r)
(
g(T)–g()

)α +
(ψ(r) + F)ω(r)

�(α + )
[
ω(g,ρ)

]α .

Passing to the limit superior as ρ → + and using the fact that ψ is upper semi-continuous,
we obtain

σ (DW ) ≤ ψ(σ (W ))
�(α + )

ω(r)
(
g(T) – g()

)α .

Then, from the assumption (v), we obtain

σ (DW ) ≤ ψ
(
σ (W )

)
.

As a consequence, for any nonempty subsets W of B(, r), we have

ζ
(
σ (DW ),σ (W )

) ≥ ,

where ζ : [,∞) × [,∞) →R is defined by

ζ (z, z) = ψ(z) – z, (z, z) ∈ [,∞) × [,∞).

Under the assumptions on the function ψ , the operator D : B(, r) → B(, r) belongs to
the family of operators LX , where X = B(, r). Then by Theorem ., we deduce that D
has at least one fixed point y∗ ∈ B(, r), which is a solution to equation (.). �
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