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1 Introduction and preliminaries

In software engineering, algorithms are designed by means of recursive denotational spec-
ifications. The running time and the memory space of computing such algorithms are two
important factors that determine the efficiency of the software.

Scott [1] used a Ty model for lambda calculus to construct a system of logic. He then
employed fixed point techniques as a suitable mathematical tool for program verifications
in denotational semantics of programming languages.

Scott results were extended by Matthews [2] by defining a partial ordering on T models.
He introduced the notion of partial metric spaces and studied their essential topological
properties. Matthews successfully reinforced Scott’s fixed point techniques with a met-
ric. His approach turned out to be very productive and attracted the attention of several
researchers, who studied fixed point results on partial metric spaces.

Arshad et al. [3] proved the existence of some fixed point results for mappings satis-
fying a contractive condition in a closed neighborhood of a certain point in an ordered
dislocated metric space.

The aim of this paper is to introduce a notion of generalized partial metric spaces called
dislocated A,-quasi-metric spaces. We study basic topological properties of dislocated A;-
quasi-metric spaces and provide some examples to support the concepts defined herein.
We also obtain common fixed point results of weakly compatible mappings satisfying local
contractive condition in such spaces. Our results unify, improve, and generalize several
comparable results in [4] and [3].
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In the sequel, the letters N, Ny, R, and R* denote the sets of positive integers, nonneg-
ative integers, real numbers, and positive real numbers, respectively.

Definition 1.1 Let X be a nonempty set, and s > 1 a given real number. A function A, :
X" — [0,00) is called a dislocated A,-quasi-metric on X if for any a,x; € X,i=1,2,...,n,
n > 3, the following conditions hold:

(Apy) Ap(X1,%2,%3, .., X1, %n) = Ap(Xn» X1, Xp_25 ..., %2,%1) = 0 implies that x; = x;, = x3 =
=Xl = X
(Ap,)
Ap(1,%2,%3, -« X1, %)

< s[Ap (020,51, ..., (%) (n-1), @)
+ Ap (%2, %2, %2, ..., (%2) (41, @)

+ Ab(xs,xsyxs, cees (x3)(n—1),6l)

+ Ab (x(n—l)rx(n—l)y K(n—1)s+++> (x(n—l))(n—l)r ﬂ)

+ Ap (%0 %0 %05 -, () (1), @) |-
The pair (X, A,) is called a dislocated Aj,-quasi-metric space with coefficient s.

Lemma 1.2 Let (X,Aj) be a dislocated A,-quasi-metric space with coefficient s > 1. Then
Ap(x,2,%,...,%,9) = Ap(1, 3,9, ..., 9, %) for all x,y € X.

Example 1.3 Let X = R. Define the function A, : X" — [0, o0) by

Ap (1, 20,23, 0, %1, %) = 220 = 2|2+ 201 — 3% 4+ 4 220 — 20,

+ 2000 — x3)% + 2% — x4 + -+ 200 — %)

2 2
+ |2xn—2 - xn—1| + |2xn—2 _xn|
2
+|2%,-1 — xu|".

Indeed, if Ap(x1,%0,%3,...,%5-1,%1) = Ap(Xp, Xn_1,%0_2,...,%2,%1) = 0, then x; = xp = x3 =
-+ =%,_1 = %,. Note that

Ap(x1, %2, %3, .., %1, %) = |21 — %2 |* + |21 — 03 [% 4 -+ + |20 — x5,

41200 —x3]% + 2000 — 4>+ - + | 220 — %, ]2

2 2
+ |2xn—2 - xn—l| + |2xn—2 - xn'
+ 2%, —xnl2

< (1221 —al + | —al)’
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+ (125 —al + |xs —al)’
oot (1200 —al + 1, —al)’
+ (12%, — al + |23 —al)’
+ (12, — al + x4 —al)’

+o+ (12x2 — al +|xn—a|)2

+ (122 — al + |1 —al)’
+ (12%,0 — al + 1, — al)’
+ (121 — al + |x, —al)?

< 2[Ap (1, 20,51, .., (¥1)(r-1), @)

+ Ap (%2, 22,2, ..., (%2) (n-1), )
+ Ap (%3, %3,%3, .., (¥3) (n-1), 4)
+ Ap (%(1-1)» X(1-1) X(n-1)5 + - - » E(n-1)) (2-1), @)

+ Ap (%0 %0 %15 > () (1), @) |-
Hence, (X, Ap) is a dislocated A,-quasi-metric space with coefficient s = 2.
Example 1.4 Let X = R. Consider the dislocated A;-quasi-metric on X3 given by
Ap(xr, %0, %3) = |21 — %2 |” + 221 — x3]* + 225 — x5 ]

If x; =4, xy = 6, and w3 = 10, then A;(4,6,10) # A,(10, 6,4) implies that (X, A;) is not a
Gp,-metric space [5].

Definition 1.5 Let (X, A;) be a dislocated Aj,-quasi-metric space with s > 1, xy € X, and r
a positive real number r. The set

B(x()’ I’) = {}’ eX 1Ab(,)/,y,y, .. ~ryrx0) = T}
is called a closed ball centered at xo with radius r.

Definition 1.6 A subset G of a dislocated Aj,-quasi-metric space (X, Ap) is said to be an
open set if for each x € G, there exists a positive real number r such that B(x,7) C G. A set
F C X is called closed if X \ F is open. The collection of open sets in a dislocated A,-quasi-
metric space (X, A}) is called the topology induced by the metric A;.

Lemma 1.7 Let (X,Ap) be a dislocated Ap-quasi-metric space with s > 1. Then for all
x,y € X, we have

Ap(x,x,%,...,%,2) < s[(n —1DA(x,x,%,...,%,9) +Ab(y,y,y,...,y,z)].
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Definition 1.8 Let (X, A,) be a dislocated A,-quasi-metric space with s > 1 and n > 3.
A sequence {x;} in X is said to be convergent in X if there exists a point x € X such that

limg_,s o0 Ap (X, Xk, Xk - - ., Xk, %) = 0. In this case, we write limy_, o X = .

Lemma 1.9 Let (X, Ay) be a dislocated Ay-quasi-metric space with s > 1 and n > 3. The
limit of a convergent sequence {x} in X is unique.

Proof Suppose that {x;} converges to x and y. Then given € > 0, there exist N;,N; € N
such that

( )< ————
Ap(Xies Xy Xiey o o+ » Kkey X) <
b\Xies Xies Xk k 2 1

for every k > N and

€
Ap(Kies Xie» Kies + .+ X ¥) < %

for every k > N;. Choose N = max{Nj, N, }. Note that

Ap(x,%,%,...,%,9)

< s[(n = 1)Ap06,%,%, ..., 5,50) + Ap(, Xk X - %)) |

s[ (1 = DAy (ks Xy Kk - ., %k ) + Ap (s Xier X -5 Y) |

1 € el
<s|:(n— )xm+g]_

for every k > N. Since € is arbitrary, Ap(x,%,%,...,%,9) = As(0,9,9,...,%,%) = 0, and hence
x=y. g

Definition 1.10 Let (X, A;) be a dislocated A,-quasi-metric space with s > 1 and # > 3.
A sequence {x;} in X is called Cauchy if limy ;oo Ap(Xk> Xk> Xks - - - Xk Xy) = O, that is, if
for each € > 0, there exists N € N such that for all k,m > N, we have Ap(xr, Xr, X, - . ., Xk

Xm) < €.

Lemma 1.11 Every convergent sequence in a dislocated Ay-quasi-metric space is a Cauchy
sequence.

Remark 1.12 The converse of Lemma 1.11 does not hold in general. Let X = Q (the set of
rational numbers), and let A;, be a dislocated Aj,-quasi-metric defined in Example 1.18. Let
{xx} be a sequence defined by x; = (1 + %)k. Note that

Ap Xy Xy Xy« Kby o) = S — 1) |2 — %0

k m
:s(n—l)‘<1+l> —<1+i>
k m

as k,m —> o0o. Thus, {x¢} is a Cauchy sequence. But xx — e as k — co. Hence, {x;} is

2
—0

not convergent in Q.
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Definition 1.13 A dislocated Aj,-quasi-metric space X is said to be complete if every
Cauchy sequence in (X, Ap) is convergent.

Definition 1.14 Let (X, A, ) and (Y, A,,) be dislocated Aj-quasi-metric spaces with s > 1
and z > 3. A function f : X — Y is called continuous if, given x € X and € > 0, we can find
a 8(x¢) > 0 such that Ay, (f(x),f(x),...,f(%),f(¥) < € whenever Ay, (x,%,...,%,¥) < Sxe).

Theorem 1.15 Let (X, Ay, ) and (Y,Ap,) be dislocated Ay-quasi-metric spaces with s >
1 and n > 3. A function f : X — Y is continuous at a point xy € X if and only if it is
sequentially continuous at xy.

Lemma 1.16 Let (X, A}) be a dislocated Ay-quasi-metric space. Then the function Ap(x, x,
X,...,%,9) is continuous in all of its arguments. In other words, if there exist sequences {x}
and {yi} such that limg_, oo xx = x and limy_, o Y = y, then limg_, oo Ap(Xg> Xk Xk» - - - » Xk» Vi) =
Ap(x,2,%,...,%,9) and img_ 00 A (Vi Vie Vier - - > Vi Xk) = Ap (0, Y5 -, 9, X).

Definition 1.17 Let X be a nonempty set, and s > 1 a given real number. A function A, :
X" — [0,00) is called Ap-quasi-metric-like on X if for any a,x; € X, i=1,2,...,n, n >3,
the following conditions hold:

(Ap,) Ap(x1,%2,%3,...,%,-1,%,) = 0 implies ¥ =Xy =x3 = - - - =%,,_1 = X5

(Ap,y)
Ah(xlrx27x31 ey Xn-1s xn)

< s[Ap (%121, %1, .., (¥1) (n-1), )
+ Ap (%2, %2, %2, ..., (%2) (41, )

+ Ab(xs,xsyxs, vy (x3)(n—1),6l)

+ Ap (X1 X(1-1) K1)y - - - » F(-1)) (1), 1)

+ Ap (%0 %0 %15 > () (1), @) |-
The pair (X, Ap) is called an Aj,-quasi-metric-like space.
Example 1.18 Let X = R. Define the function A, : X" — [0, 00) by
Ap(1, %, %35, %01, %) = |21 = 2 + |1 — 23] + -+ |y — x5,

2 2 2
+ |xp = x3]7 + |2 —xa "+ -+ X — ]

2 2
+ |xn—2 - xn—1| + |xn—2 - xnl

2
+ |xn—1 _xn| .

Then (X, Ap) is an A,-quasi-metric-like space with coefficient s = 2. Indeed, if # = 3, then
we have

2 2 2
Ap(x1,%0,%3) = |1 — %2|° + [y — 3| + [0 — x3]".
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Note that A,(x;,%2,%3) = 0 implies that x; = xy = x3. Also,

2 2 2
Ap(x1,%2,%3) = |1 — 22| + [0 —x3]" + %2 — 3]
_ 2 2
=|x—a+a—-x|"+|x1—a+a—xs|
2
+ %y —a+a— x3|
2 2
< (s —al+lx2—al)” + (Ix —al + |xs —al)
2
+ (l%2 — al + x5 — al)
_ 2 2
= |wy —al” +2|x; — allxy — al + [x — al
2 2
+ @1 —al” + 2|x; — allxs —al + |x3 — al
2 2
+ Xy — a|” + 2|xy — al|xs — al| + |x3 — al
52[2|x1—a|2+2|x2—a|2+2|x3—a|2]

= Z[Ab(xlx X1» ﬂ) + Ab(?Cz, X2, 6{) + Ab(xf)" X3, ﬂ)]
Thus, (X, Ap) is an Ap-quasi-metric-like space with coefficient s = 2.

Proposition 1.19 If (X, A,) is a quasi-metric-like space, then it is a dislocated A,-quasi-
metric space, but the converse does not hold in general.

Proof Let (X, Ap) be an A,-quasi-metric-like space with coefficient s > 1. Then Ay (x1, %2,
X3,...,%,-1,%,) = 0 implies that x; = xy = %3 = --- = x,.1 = x,,, which in turn gives that
Ap(Xpy Xp_1,%n_2s ..., %2,%1) = 0.

Let (X,Ap) be a dislocated Aj-quasi-metric space considered in Example 1.3. Since
Ap(®1,%2,%3,...,%4-1,%,) = 0 does not imply x; = x5 =x3 = -+ = %,_1 = &y, (X,Ap) is not
an A,-quasi-metric-like space. O

Example 1.20 Let X = R. Define the function 4, : X?> — [0, 00) by
Ap(x1,%0) = 221 — 2|,

Then (X, Ap) is a dislocated quasi-b-metric space.

Definition 1.21 Let (X, d) be a metric space, and f,g : X — X. The pair (f, g) is said to be
weakly compatible on X if f and g commute at their coincidence points, that is, if fx = gx
for some x € X, then gfx = fgx.

2 Main results

In this section, we obtain a common fixed point result for mappings satisfying generalized
local contractive condition in the setup of dislocated Aj,-quasi-metric space X. We start
with the following result.

Theorem 2.1 Letf, g, T, and S be self mappings on a dislocated A,-quasi-metric space X
withs > 1,x0,%1 € X, yo = Sxo = gx1, and r > 1. Suppose that S(Y) C g(Y), T(Y) C f(Y), and
one of S(Y), g(Y), T(Y), or f(Y) is a complete subspace of Y, where Y = B(yo, ). Suppose
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that there exists o € [0, %) such that 0 <y = (n - 1)sa <1 with 0 < % <1 and for any
x,y €Y, we have

Ap(Sx,Sx,...,5%, Ty) <aM(x,y) and Ap(¥o,Yo,---,Y0, Tx1) <r(1 - h), (2.1)
where

M(x,y) = max{Ab(fx,fx,...,fx,gy),Ab(fx,f s f%, Sx), Ap(gy, gy, .- 2, TY),
Ap(Sx,Sx,...,S5%,gy), Ap(fx, fx, ..., fx, Ty)}.
Then (f,S) and (g, T) have a unique point of coincidence in Y. Furthermore, if (f,S) and

(g, T) are weakly compatible, then there exists a unique common fixed point of f, T, S, and
ginY.

Proof Since T(Y) C f(Y), there exists a point x; in Y such that y; = T(x1) = f(x2),..., so
there exist {x¢} and {yx} in Y such that yox = Swox = gor1 and yois1 = Thoks1 = fXokso for all
k in Ny.

Now we show that y, € Y for all k e N.

Since Ap(¥0, Y0, - - -» Y0, Tx1) = Ap(¥0, Yo, - - -» Y0, ¥1) < r(1—h) < r, it follows that y; € Y. Sup-
pose that {y,,y3,...,;} C Y for some j € N. If j = 2, then by (2.1) we have

ApYars Yatr - -5 Yot Yars1)

= Ap(Sxos, Sxog, ..., Sxop, Tops)

<a (max{Ab(fxzt,fxzt, weerfXot, 8%0141), Ab(fXor, fXot, - - o, fXor, SXot),
Ap(gXars1, &X2r415 - - +» 82141, Th2111), Ap(Sxar, Sk, - - Sty gX2141),
Ap(fxas, fXog, - fXor, szm)})

= (maX{Ab()/Zt—l,th—h e Y201 Y2 ) Ab(Y2r-1, Y2015 -+ 5 Y2r-1, Vo),
Aot Yaer -5 Yot Yors1)s Ab(Vaes Yots - -+ Yar Vo),
Ap(2e-1 Y261 -5 Y2u-1,Y2041) })

= ar(max{Ap(¥ae-1, Y2615 - > ¥2e-1,Y26)s Ap Y2, Yats - o Yas Yars1)s
Ap(V2e-1,26-15 -5 Y2e-1,Y2e41) })

< a(max{Ap(ae-1, Y201 - Y21, Y26 ) Ab(V21s Vats - - - Yot Yot41)s
s[(n = DA 3ae-1 Y261, - 2 V2u-1,Y22) + Ap(26: V2er -+ > Y2 Y241 | })

= as[(n = DAy Y21, Y2e-15 - > Y2e-1,Y20) + ApY2ts V2t - Y2 Yoes) |

< as(n = D[ApY2e-1,Y2e-15- - Yar-1Y26) + Ap Y2 Yats s Yars Yars1) |-

Thus, we obtain that Ay(Yar, ¥ars - - -» Var Yare1) < B(Ap(Y2r-1, ¥2e-15 - - > Var-1,Y2r)), where h =

%' Similarly, for j = 2t + 1, we have Ap(yare1,Y20415- -2 Y2001, Y2r42) < HA (Y2, Y205+
Yot ¥2e1). Thus,

AV Ves oo s Vs Vis1) < HAL(Yi-1,Y-15- -+, Ye-1,y:) foreacht e N,
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Note that

Ao Ve Y6 Vi) < BAL Y1, Ye-1s -5 Vo1, Ye)

<A Ye-2 Y20 » V-2, Y1-1)

< H'Ay(¥0,%0,...,Y0,y1) foreachteN.
By Lemma 1.7 we have

Ab()’o;yo, .. ';yOr‘yHl) < S[(}’l - 1)Ab()/0,y0; .. ~1y0;y1)
+ h(}’l - 1)Ab(yo,y0; .. ')y()’yl)

+h(n— 1DA,(%0,Y05 Y0, Y1)

+(n - l)ht_lAb()lo,yoy caY0s Y1) + htAb()’o,yO, e ,J/o;yl)]
<s(n- 1)(h0 Iy Ty 1) Ap (50, Y05 - Y0, 31)

t+1

1-h
<r foreachteN.

=s(n-1)

Ab()’o,yo, “ee ,yo,yl)

Page 8 of 14

Thatis, y;,1 € Y. By induction, {yx} C Y. Now we show that {yx} is a Cauchy sequencein Y.

For this, let m, k € N with m > k. By Lemma 1.7 we have

ApOks Vs Yoo Ym) < S[(11 = D)ApYkes Yoo - - Vi Yies1)

+ (1 = DApYkests Yiests - - -0 Vi1 Yiew2)

+ (I’l - I)Ab (ym—Z;ym—Z: e Ym-2» ym—l)
+ Ab(ym—l)ym—l) cee ,)’m—l,ym)]
< s[(n - 1)hkAb()’o;y0, v )yOryl)

+ (}’1 — 1)hk+1Ab(yO1y0$ oo ;)’0;)’1)

+ (}’1 - l)hmizAb(yOvyO) o ,yo,)’l) + hmilAb(yO)_y(M e 7y0)y1)]
<(m- l)s(hk I h’"‘l)Ah(yo,yo,...,yO,yl)

< (n=D)s(K + K+ ) A(30,50, - Yos 1)

hk
=(n- 1)S<E)Ab(yo,yo, Y0 Y1)

Hence, limy ;- 00 A (Vi Vi Vi - - -» Vi ¥m) = 0, that is, {yx} is a Cauchy sequence in Y.
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Next, we assume that 7'(Y) is a complete subspace of Y. We choose a point x* in T(Y)
such that limg_, o yx = #*. Then it follows that

lim Swyr = lim gxogs1 = lim Thorer = lim frop,n = x™
k— o0 k— 00 k— 00 k— 00
Since T(Y) C f(Y), there exists a point y in Y such that f(y) = x*. It follows from (2.1) that

Ay (Sy, Sy, Sy, x*) < (n—1)sAp(Sy, Sy, ..., Sy, Txoxs1)
+ 545 (T2t Trokon, - -, Toogs1, %)

< ¥ (M, x241)) + A5 (Do 1, Thoksns - Thogsr, %),

where

M(y’ x2k+l) = maX{Ab(f)’»f yeee ’fy7gx2k+1)rAb(fyxf yeoe )fyx SJ’);
Ap(g%2k158X0ki15 - + - 8X02k+1s T0k11) Ab(SY, SYs - . ., Y5 @%oks1)s

A1y, - Troarsn) }

= max{Ab (x*,x*, ... ,x*,gx2k+1),Ab(x*,x*, ... ,x*,Sy),
Ap(gXoks1,X2k+15 + - - 2k+15 Tx24i1), Ab(SY, Y5 - . o, SV, GX2ke1)s

Ab(x*,x*, cooxt Tx2k+1) }

We consider the following cases:

(i) If M(y, %2x41) = Ap(x™, 5%, ..., %%, g%2441), then we have

Ap(S9, 95, Sy, x%)

< VA (x5 x%, . x", @) + SAB(Txoker, Tkt - > Tooks1, 67).
Taking the limit as k — 0o, we have
Ab(Sy,Sy,...,Sy,x*) < yAb(x*,x*,...,x*,x*) =0.

Hence, Ay(Sy, Sy, ..., Sy, x*) = Ap(x*,x*,...,x%,Sy) = 0 implies that Sy = x*.
(ii) If M(y, xox41) = Ap(x™, x*, ..., %%, Sy), then we obtain that

Ap(S9, 95, Sy, x%)

= yAb(Sy1 Sy; e Sy; x*) + SAb (Tx2k+11 Tx2k+l’ ceen Tx2k+1; x*)
Taking the limit as k — oo, we have
Ap(S9, Sy, S1:x") < v Ap(S9, S, Sy ™),

which further implies that Sy = x™*.
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(iii) When M(y, Xox41) = Ap(@Xoks1, §¥2k+15 - - - » §¥2k+15 TX2k41), We have

Ap(S9, 5y, S, x%) < y Ap(ghoka1, @akets - - -» §¥ok1> THok41)

+ SAb(szkur TX2k415 -+ -5 Tx2k+1,x*),
which by taking the limit as k — oo gives that
Ap(S9, 895, Sy, x") < yd(x*,x%,...,x%,x%) =0,

and hence Sy = x™.
(iv) If M(y, x0x41) = Ap(SY, Sy, - - ., Sy, gxok+1), then we have

Ap(S9, 95, Sy, x%)

< yAp(SY, Sy, ..., Sy, gxous1) + SAb(szku, TX2k41 -+ -5 Tx2k+1,x*).
Taking the limit as k — oo, we obtain that
Ap(9,59,., 1, %") < VAL (SY, S, Sy, %),

which implies that Sy = x*.
(v) When M(y, xax41) = Ap(x*, 5%, ..., 5, Txoxs1), we have
Ap(S9, 95, Sy, x")

<yAp (x*,x*, e X, Tx2k+1) + SAb(szku, TXoks1r -+ +» Tx2k+1,x*),
which by taking the limit as kK — oo implies that
Ap(S9, 595, S, x") < yAp(a®, ", ..., a7, x%),

and hence Sy = x™.
Thus, in all cases, we have Sy = x*, and hence Sy = fy = x* is a unique coincidence point
of (f,S)in Y.
Since S(Y) C g(Y), we choose a point z in Y such that g(z) = x*. Note that
Ab(Tz, Tz,..., Tz,x*) < (n=1)sAp(Sx21, Sx2ss « . . » Sk, TZ)
+ SAb(Ska, Ska, ceey Ska,x*)

< Y (M(ka’ Z)) + SAb (Ska; Ska; ooy Skay x*);
where

M(ka, Z) = maX{Ab(fokrfok; e ’fxzkigz)!Ab(fok,fok) v 1fx2k; Ska),

Ab(gz1gzr e 8z, TZ),Ab(szk, Ska) ceey szk’gz);

Ap(faser froks - o fon: T2) }
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= maX{Ab (x*; x*» oo 1x*’fx2k)rAb(fx2krfx2k1 oo ;foky Ska)y

Ab(x*,x*, U Tz),Ab(Ska,Ska,...,ngk,x*),

Ap(fxans fooks - ok T2) ).

We again consider the following cases:
(i) If M(oox, 2) = Ap(x*, x*, ..., &%, fxox), then we have

Ap(x*,x%,. x5, Tz) < yAp(x™x™, .., &%, foo) + sAp(Sxok, Sxases - . .» Sk, &%),
which by taking the limit as kK — oo implies A, (x*,x*,...,x%, Tz) < yAp(x™*,x*,..., 2%, x*) +
sAp(x*,x%,...,x*%,x*), and hence Tz = x*.

(ii) If M(x9k,2) = Ap(fraks fXoks - - - fXok> Sx2k), then we have

Ap(x*,x%, ..., 5", Tz)

=< yAb(fok,fokr v 1fx2k’ Ska) + SAb (Ska, Ska’ ey Ska; x*);
which by taking the limit as kK — oo implies that

Ap(x*, 2%, ..., 5", Tz)

< yA (", xt, w8+ sAy (AT, L, xt, K,

which further implies that 7z = x*.
(iii) If M (x4, 2) = Ap(x™, x*,...,x%, Tz), then we have

Ap(x*, 2%, ..., 5", Tz)

< vAp(x*,x%, 5", Tz) + sAp(Sxok, Stk - . » St 5%),
which by taking the limit as k — oo gives
Ap(x*, 2%, 0%, Tz) < yAp(x™,x%,.., &%, Tz) + sAp (5™, %7, ... ,x*,x*),

and hence Tz = x*.
(iv) When M(xok, z) = Ap(Sxok, Sxoks - - . , Sxox, %), we have

Ap(x*, 2%, ..., 5", Tz)

< VAu(Sx2i0r S¥oter . . » SHses 8*) + SAp(S2kr SKfs .. » SHfer x”).
Taking the limit as k — 0o, we obtain that

Ap(x*, 2%, ..., 5%, Tz)

< yAb(x*,x*, X5 xY) + sAb(x*,x*, . ..,x*,x*),

and so 1z = x*.
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(v) If M(oox, 2) = Ap(fxok, fXaks - - - X2k, Tz), then we have

Ap(x*,x*,..., 5%, Tz)

< yAb(fok;fokr e 1fx2k’ TZ) + SAb (Ska; Ska; cee ’Ska; x*);
which by taking the limit as k — oo gives

Ap(x*,x*,..., 5%, Tz)
< yAb(x*,x*, cen X, Tz) + sAb(x*,x*, ... ,x*,x*),

and hence Tz = x™.
Thus, in all cases, we have Tz = gz = x*, a unique coincidence point of (g, 7') in Y.

Suppose that (f, S) is weakly compatible. Then Sfy = fSy implies that Sx* = fx*. Note that
Ap(Sx*,Sx*,..., Sx*,x*) =Ap (Sx*, Sx*,..., Sx*, Tz) <« (M(x*, z)),

where

M(x*,z) = max{A, (fx*, fx*, ..., fx*, g2), Ap (f* ¥, ..., f*, Sx¥),
Ap(gz,82,...,82 T2), Ap(Sx*, Sx*,..., Sx*, g2),
Ay f", . ", Tz) )
= max|Ay(Sx*, Sx*,..., Sx*,x%), Ap(fe*, fx*, ... fx", Sx*),
Ap (%%, 0%, x%), Ap(Sa*, Sa*, ..., Sx¥, %),
Ap(Sx*,Sx*,..., Sa*, x%) ).
Thus, Ap(Sx*, Sx*,..., Sx*,x*) < aA(Sx*,Sx*, ..., Sx*,x*) implies that x* = Sx* = fx".

Similarly, if (g, T') is weakly compatible, then Tgz = g7z implies that Tx* = gx*. By (2.1)

we have
Ap(xt,x*,.. a5, Tx*) = Ab(Sx*,Sx*,...,Sx*, Tx*) < oz(M(x*,x*)),

where

M(x*,x%) = max{A, (fc*, fx", ..., ", gx"), Ap (f* o, .. f5", Sx¥),
Ap(gn®,gx*, ... gx", Tx"), Ap(Sx™, Sx*, ..., Sx*, gx*),
Ap(f* "y ", Tn*) )

= max{ Ay (", 8%, ..., &%, Ta*), Ay (6" i .., fir*, Sa%),
Ap(Tx*, Tx*, ..., Ta*, Te™), Ap (2%, 2%, .., %, TaY),

Ap(x*a*,.. 0%, Tn) |

Thus, we have A,(x*,x*,...,x*, Tx*) < aAp(x*,x%,...,x% Tx*), which implies that x* =

Tx* = gx*, and hence x* is a common fixed pointof f, T, S, and gin Y.
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To prove the uniqueness, let i € Y be such that fu = gu = Su = Tu = u. Note that
Ap(a*,a*,. ., x% u) = Ap(Sx™, Sx%, ..., Sx*, Tu) < a(M(x*,u)),
where

M(x*, u) = max{A, (", f*,.... fx*, gu), Ap(fx", fx* ..., fx*, Sa¥),
Ap(gu,gu,...,gu, Tu), Ap(Sx*, Sx*,..., Sx*, gu),
A (e o, . ¥, Tu) )
= max{A, (8%, 2%, ..., &% 1), Ay (6", 5%, ..., 2", 2"), Ay .., 1, 10),

Ap(a*x®s o xu), Ap (s, .. u, %) )
Hence, x* = u. O

Corollary 2.2 Letf, g, T, and S be self-mappings of a dislocated Ay-quasi-metric space X
with coefficient s > 1. Assume that S(X) C g(X), T(X) C f(X), and one of S(X), g(X), T(X),
or f(X) is a complete subspace of X. Suppose that there exists o € [0, %) such that for any
x,y € X, we have

Ap(Sx,Sx,..., 5%, Ty) < a(M(x,9)), (2.2)
where

M(x,y) = maX{Ab(fx,fx,...,fx,gy),Ab(fx,f s J%, Sx), Ap(gy, gy, .., 2y, TY),
Ap(Sx,Sx, ..., Sx,2y), Ap(fx, fx, ..., fx, Ty)}.
Then (f,S) and (g, T) have a unique point of coincidence in X. Furthermore, if (f,S) and

(g, T) are weakly compatible, then there exists a unique common fixed point of f, T, S, and
ginX.

Example 2.3 Let X and A;, be as in Example 1.3. Define the mappings f, ¢, S,and T : X —
X by

2. .
X, x<2, S(x) = (1:;) ifu # -1,
2, x>2 0, x=-1

Clearly, (f,S) and (g, T') are pairwise weakly compatible on X with S(X) C g(X), T(X) <

f(X), and S(X) a complete subspace of X. We now show that for all x,y € X, condition (2.2)
is satisfied. For this, we consider the following cases:

(i) If x #1 and y = 1, then
2x |2 2x
+(m-D2( =)-1
X 1+x

2
Ap(Sx,8x,...,8%,Ty) = | ——
b( )’) ‘]

1
< —6Ab(fx,fx, confx, TY) < aM(x,y).
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(i) If x #1 and y #1, then

2 2

Ap(Sx,Sx,...,8x, Ty)

2x y
+ (Vl—l))Z(m) - g

1
gAb(fx,fx, coofx, Ty) < aM(x,y).

X
l+x

IA

(iii) If x = -1 and y = 1, then

Ap(Sx,Sx,...,5%,Ty) = (n—1)|0 — 1|2

A

1
< %Ab(fx,fx,...,fx, Ty) < aM(x,y).

(iv) If x = -1 and y #1, then

2

Ap(Sx,5%,..., 5%, Ty) = (n —1)’0 - %

IA

1
%Ab(fx,fx, cefx, TY) < aM(x,y).

Thus, all the conditions of Corollary 2.2 are satisfied. Moreover, x = 1 is a common fixed
pointof f, T, S, and g.
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