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Abstract
In this paper, we establish some fixed point results for α-λ-contractions in the class of
quasi b-metric spaces. To illustrate the obtained results, we provide some examples
and an application on a solution of an integral equation. We also study the stability of
Ulam-Hyers and well-posedness of a fixed point problem. Our obtained results give
an answer to an open problem of Kutbi and Sintunavarat (Abstr. Appl. Anal.
2014:268230, 2014).
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1 Introduction and preliminaries
By replacing the triangular inequality by a rectangular one, Czerwik [] introduced a gen-
eralized metric space, named a b-metric space. Since then, several (common) fixed point
papers have been obtained. For example, see [–]. Also, by lifting the symmetric condi-
tion, a quasi metric space generalizes the concept of a metric space. For some known fixed
point results on these spaces, we refer to [–]. This paper deals with a combination of a
b-metric and a quasi metric.

First, the definition of a quasi b-metric space is given as follows:

Definition . Let X be a nonempty and s ≥ . Let q : X ×X → [,∞) be a function which
satisfies:

(q) q(x, y) =  if and only if x = y,
(q) q(x, y) ≤ s[q(x, z) + q(z, y)].

Then q is called a quasi b-metric and the pair (X, q) is called a quasi b-metric space. The
number s is called the coefficient of (X, q).

Remark . Any quasi metric space or any b-metric is a quasi b-metric space, but the
converse is not true in general.

We state some examples of quasi b-metrics.
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Example . Let X = {, , }. Define the function q : X × X → [,∞) by

q(n, m) =

⎧
⎪⎪⎨

⎪⎪⎩


n if n > m,

 if n = m,

 if n < m,

for all n, m ∈ X, with (n, m) �= (, ) and q(, ) = 
 . Then (X, q) is a quasi b-metric space

with coefficient s = . It is neither a b-metric space since q(, ) = 
 �= q(, ) = 

 , nor a
quasi metric space since q(, ) = 

 > 
 = q(, ) + q(, ).

Example . Let X = R. Take the real numbers p >  and a, b >  such that a �= b. Define
the function q : X × X → [,∞) by

q(x, y) =
(
max

{
a(x – y), b(y – x)

})p ∀x, y ∈ X.

Then (X, q) is a quasi b-metric space with coefficient s = p–. It is neither a b-metric
space since q(, ) = ap �= q(, ) = bp, nor a quasi metric space since q(, –) = (a)p > ap =
q(, ) + q(, –).

Example . Let X = R. Take the real numbers p >  and a > . Define the function q :
X × X → [,∞) by

q(x, y) =

⎧
⎨

⎩

(x – y)p if x ≥ y;

(y – x + a)p if x < y.

Then (X, q) is a quasi b-metric space with coefficient s = p–. It is neither a b-metric space
since q(, ) =  �= q(, ) = (+a)p, nor a quasi metric space since q(, –) = p >  = q(, )+
q(, –).

Some topological aspects of a quasi b-metric space are as follows.

Definition . Let (X, q) be a quasi b-metric space, {xn} be a sequence in X and x ∈ X.
The sequence {xn} converges to x if and only if

lim
n→∞ q(xn, x) = lim

n→∞ q(x, xn) = . ()

Remark . In a quasi b-metric space, the limit for a convergent sequence is unique. If
xn → u, we have (in general) limn→∞ q(xn, y) �= q(u, y) for all y ∈ X. We only mention that


s

q(u, y) ≤ lim sup
n→∞

q(xn, y) ≤ sq(u, y).

Definition . Let (X, q) be a quasi b-metric space. A sequence {xn} in X is said left-
Cauchy if and only if for every ε >  there exists a positive integer N = N(ε) such that
q(xn, xk) < ε for all n ≥ k > N .
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Definition . Let (X, q) be a quasi b-metric space. A sequence {xn} in X is said right-
Cauchy if and only if for every ε >  there exists a positive integer N = Nε such that
q(xn, xk) < ε for all k ≥ n > N .

Definition . Let (X, q) be a quasi b-metric space. A sequence {xn} in X is said Cauchy if
and only if for every ε >  there exists a positive integer N = Nε such that q(xn, xk) < ε for
all k, n > N .

Remark . A sequence {xn} in a quasi b-metric space is Cauchy if and only if it is left-
Cauchy and right-Cauchy.

Definition . Let (X, q) be a quasi b-metric space. We say that:
() (X, q) is left-complete if and only if each left-Cauchy sequence in X is convergent.
() (X, q) is right-complete if and only if each right-Cauchy sequence in X is convergent.
() (X, q) is complete if and only if each Cauchy sequence in X is convergent.

Lemma . Let (X, q) be a quasi b-metric space and T : X → X be a given mapping. Sup-
pose that T is continuous at u ∈ X. Then, for all sequence {xn} in X such that xn → u, we
have Txn → Tu, that is,

lim
n→∞ q(Txn, Tu) = lim

n→∞ q(Tu, Txn) = .

In , Samet et al. [] introduced the notion of α-admissible maps.

Definition . [] For a nonempty set X, let T : X → X and α : X × X → [,∞) be given
mappings. T is said α-admissible if for all x, y ∈ X, we have

α(x, y) ≥  	⇒ α(Tx, Ty) ≥ . ()

Using and generalizing the above concept, many authors established some (common)
fixed point results. We may cite [–].

Very recently, Kutbi and Sintunavarat [] introduced a new class of contractive mappings
known as α-λ-contractions.

Definition . Let (X, d) be a metric space and f : X → X be a given mapping. We say
that f is an α-λ-contractive mapping if there exist two functions α : X × X → [,∞) and
λ : X → [, ) for which λ(f (x)) ≤ λ(x) for all x ∈ X, such that

α(x, y)d
(
f (x), f (y)

) ≤ λ(x)d(x, y), ()

for all x, y ∈ X.

Starting from a question of Ulam [] in , the stability problem of functional equa-
tions concerns the stability of group homomorphisms. In , Hyers [] presented a
partial answer for a question of Ulam in the case of Banach spaces. The above type of
stability is known as Ulam-Hyers stability. Since then, many researchers extended and
generalized the notion of the Ulam-Hyers stability for fixed point problems. For example,
see [–].
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Now, we introduce the concept of an α-λ-contractive mapping in the setting of quasi
b-metric spaces.

Definition . Let (X, q) be a quasi b-metric space and T : X → X be a given mapping.
We say that T is an α-λ-contraction if there exist α : X × X → [,∞) and λ : X → [, 

s )
satisfying λ(Tx) ≤ λ(x) for all x ∈ X, such that

α(x, y)q(Tx, Ty) ≤ λ(x)q(x, y), ()

for all x, y ∈ X.

The following examples illustrate Definition ..

Example . Going back to Example . where X = {, , } is endowed with the quasi
b-metric q : X × X → [,∞) defined by

q(n, m) =

⎧
⎪⎪⎨

⎪⎪⎩


n if n > m,

 if n = m,

 if n < m,

for all n, m ∈ X with (n, m) �= (, ) and q(, ) = 
 .

Define T : X → X and α : X × X → [,∞) by

T = , T = , T =  and

α(n, m) =

⎧
⎨

⎩

 if (n, m) ∈ X × X – {(, ), (, ), (, )},
 otherwise.

Since q(T, T) = q(, ) =  > 
 = q(, ), T is not a Banach contraction on X. Now, we

show that T is an α-λ-contraction, where λ : X → [, 
 ) is defined by

λ() = λ() =



and λ() =



.

To this aim, we distinguish the following cases:
Case : If n = , m = , then we have

α(, )q(T, T) = q(T, T) = q(, ) =



≤ 


× 


= λ()q(, ).

Case : If n = , m = , then we get

α(, )q(T, T) = q(T, T) = q(, ) =



≤ 


×  = λ()q(, ).

Case : If n = , m = , then we get

α(, )q(T, T) = q(T, T) = q(, ) =



=



×  = λ()q(, ).
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Moreover, () is verified for all n = m and for all n, m ∈ X such that α(n, m) = . Since
λ(T) = λ() = λ(), λ(T) = λ(), and λ(T) = λ() = λ(), the mapping T is an α-λ-
contraction.

Example . Let X = {, }∪ [,∞). Consider the mapping q : X × X → [,∞) defined by

q(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

 if x > y,

 if x = y,

 if x < y,

for all x, y ∈ X with (x, y) �= (, ) and q(, ) = . We mention that (X, q) is a quasi b-metric
space with s = . Note that q is not a quasi metric since q(, ) =  >  = q(, ) + q(, ).

Define T : X → X and α : X × X → [,∞) by

Tx =

⎧
⎨

⎩

 + 
x if x ≥ ,

 if x ∈ {, },
and α(x, y) =

⎧
⎨

⎩

 if x > y ≥ ,

 otherwise.

We have

q(T, T) = q
(

,



)

=  >  = q(, ),

that is, T is not a Banach contraction on X. Now, we show that T is an α-λ-contraction
where λ : X → [, 

 ) is defined by λ(x) = 
 for all x ∈ X. To this aim, we distinguish the

following cases:
Case : If x, y ∈ X such that α(x, y) = , then we have x > y ≥ . It follows that

α(x, y)q(Tx, Ty) = q(Tx, Ty) = q
(

 +

x

,  +

y

)

=  =



×  = λ(x)q(x, y).

Case : If (x, y) ∈ X such that α(x, y) = , then () is verified.
Thus, () is satisfied and since λ(Tx) = λ(x) for all x ∈ X, so the mapping T is an α-λ-

contraction.

In this paper, we are interested in Ulam-Hyers stability and the well-posedness of the
fixed point problem concerning α-λ-contraction mappings in the setting of quasi b-metric
spaces. Our results are proper extensions and generalizations of results of Kutbi and Sin-
tunavarat [] on quasi b-metric spaces. Some examples and an application are also con-
sidered.

2 Auxiliary results
We have the following useful lemmas.

Lemma . Let X = R and p >  be a real number. Consider the function q : X ×X → [,∞)
by

q(x, y) =
(
max

{
a(x – y), b(y – x)

})p ∀x, y ∈ X, ()
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where a and b are positive reals such that a �= b. Then there exist two positive constants c
and d such that

c|x – y|p ≤ q(x, y) ≤ d|x – y|p, ()

for all x, y ∈ X.

Proof Without loss of generality, we suppose that a < b. To this aim, we distinguish the
following cases:

Case : If x, y ∈ X such that x > y, then we have

q(x, y) = ap(x – y)p = ap|x – y|p ≤ bp|x – y|p,

that is,

ap|x – y|p ≤ q(x, y) ≤ bp|x – y|p.

Case : If x, y ∈ X such that x ≤ y, then we get

q(x, y) = bp(y – x)p = bp|x – y|p ≥ ap|x – y|p,

that is,

ap|x – y|p ≤ q(x, y) ≤ bp|x – y|p.

Consequently, we obtain (), with c = ap and d = bp. �

Lemma . Let X = R be endowed with quasi b-metric q given by (). Take T : X → X. We
have

T is continuous on (X, q) ⇐⇒ T is continuous on
(
X, | · |),

where | · | is the standard metric on X.

Proof Assume that T is continuous on (X, | · |). Consider {xn} in X such that xn → x in
(X, q). Then

lim
n→∞ q(xn, x) = lim

n→∞ q(x, xn) = .

By (), we get xn → x in (X, | · |). We deduce Txn → Tx in (X, | · |). Again, by ()

lim
n→∞ q(Txn, Tx) = lim

n→∞ q(Tx, Txn) = ,

that is, T is continuous on (X, q).
Similarly, if T is continuous on (X, q), then by (), T is continuous on (X, | · |). �
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3 Fixed point theorems
In this section, we shall state and prove our main results.

Theorem . Let (X, q) be a complete quasi b-metric space and T : X → X be an α-λ-
contraction. Suppose that

(i) T is an α-admissible mapping;
(ii) there exists x ∈ X such that α(x, Tx) ≥  and α(Tx, x) ≥ ;

(iii) T is continuous on (X, q).
Then T has a fixed point.

Proof By assumption (ii), there exists a point x ∈ X such that α(x, Tx) ≥  and
α(Tx, x) ≥ . Take xn = Tnx for all n ≥ . From (i), we have by induction

α(xn, xn+) ≥  and α(xn+, xn) ≥  for all n = , , . . . . ()

Applying () with x = x and y = x and using (), we get

q(x, x) = q(Tx, Tx) ≤ α(x, x)q(Tx, Tx) ≤ λ(x)q(x, x).

We apply again () with x = x and y = x and using () together with the propriety of λ,
we get

q(x, x) = q(Tx, Tx) ≤ α(x, x)q(Tx, Tx)

≤ λ(x)q(x, Tx)

= λ(fx)q(x, x) ≤ λ(x)q(x, x)

≤ [
λ(x)

]q(x, x).

A similar argument leads to

q(xn, xn+) ≤ [
λ(x)

]nq(x, x). ()

The same procedure allows us to write

q(xn+, xn) ≤ [
λ(x)

]nq(x, x). ()

Since λ(x) and λ(x) are in [, ),

lim
n→∞ q(xn+, xn) = lim

n→∞ q(xn, xn+) = . ()

We shall prove that {xn} is a Cauchy sequence in (X, q).
First, we claim that {xn} is a right-Cauchy sequence in the quasi b-metric space (X, q).

Using (q) and (), we have for all n, k ∈N

q(xn, xn+k) ≤ sq(xn, xn+) + sq(xn+, xn+) + · · · + sk–q(xn+k–, xn+k)

≤ (
s
[
λ(x)

]n + s[λ(x)
]n+ + · · · + sk–[λ(x)

]n+k–)[q(x, x)
]
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≤
n+k–∑

i=n

si[λ(x)
]i[q(x, x)

]

≤
∞∑

i=n

si[λ(x)
]i[q(x, x)

]
. ()

Since sλ(x) < ,

q(xn, xn+k) →  as n → ∞, for all k. ()

It follows that {xn} is a right-Cauchy sequence in the quasi b-metric space (X, q). Similarly,
using (), we see that {xn} is a left-Cauchy sequence in the quasi b-metric space (X, q). We
deduce that {xn} is a Cauchy sequence in the quasi b-metric space (X, q).

Since (X, q) is complete, the sequence {xn} converges to some u ∈ X, that is,

lim
n→∞ q(xn, u) = lim

n→∞ q(u, xn) = .

The continuity of T yields

lim
n→∞ q(Txn, Tu) = lim

n→∞ q(xn+, Tu) = . ()

By uniqueness of the limit, we get Tu = u. Therefore, u is a fixed point of T . �

Using the same techniques we obtain the following result.

Theorem . Let (X, q) be a complete b-metric space and T : X → X be an α-λ-
contraction. Suppose that

(i) T is an α-admissible mapping;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) T is continuous on (X, q).
Then T has a fixed point.

Considering s =  in Theorem . (resp. Theorem .), we have

Corollary . Let (X, q) be a complete quasi metric space and T : X → X be an α-λ-
contraction.

Suppose that:
(i) T is α-admissible;

(ii) there exists x ∈ X such that α(x, Tx) ≥  and α(Tx, x) ≥ ;
(iii) T is continuous on (X, q).

Then there exists u ∈ X such that u = Tu.

Corollary . (Theorem , []) Let (X, d) be a complete metric space and T : X → X be
an α-λ-contraction satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) T is continuous on (X, d).
Then there exists u ∈ X such that u = Tu.
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We may replace the continuity hypothesis of T in Theorem . (resp. Theorem .) by
one of the following hypotheses:

(H) If {xn} is a sequence in X such that α(xn, xn+) ≥  and α(xn+, xn) ≥  for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ ,
for all k.

(R) If {xn} is a sequence in X such that α(xn, xn+) ≥  for all n and xn → x ∈ X as n → ∞,
then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ , for all k.

Theorem . Let (X, q) be a complete quasi b-metric space and T : X → X be an α-λ-
contraction. Suppose that:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥  and α(Tx, x) ≥ ;

(iii) (H) holds.
Then there exists u ∈ X such that u = Tu.

Proof Following the proof of Theorem ., the sequence {xn} is Cauchy and converges
to some u ∈ X in (X, q). Remember that () holds, so from condition (iii), there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), u) ≥ , for all k. We shall show that u = Tu.

We have, for all k ≥ ,

q(u, Tu) ≤ sq(u, xn(k)+) + sq(xn(k)+, Tu). ()

Taking x = xn(k) and y = u in (), we obtain

q(xn(k)+, Tu) = q(Txn(k), Tu) ≤ α(xn(k), u)q(Txn(k), Tu)

≤ λ(xn(k))q(xn(k), u) ≤ λ(x)q(xn(k), u) <

s

q(xn(k), u).

Then we get for all k ≥ 

q(u, Tu) ≤ sq(u, xn(k)+) + q(xn(k), u). ()

Letting k → ∞ in (), we have

q(u, Tu) ≤ .

This yields Tu = u. This completes the proof. �

We also state the following result. Its proof is very immediate.

Theorem . Let (X, q) be a complete b-metric space and T : X → X be an α-λ-
contraction. Suppose that:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) (R) holds.
Then there exists u ∈ X such that u = Tu.
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Considering s =  in Theorem . (resp. Theorem .), we have

Corollary . Let (X, q) be a complete quasi metric space and T : X → X be an α-λ-
contraction.

Suppose that:
(i) T is α-admissible;

(ii) there exists x ∈ X such that α(x, Tx) ≥  and α(Tx, x) ≥ ;
(iii) (H) holds.

Then there exists u ∈ X such that u = Tu.

Corollary . (Theorem , []) Let (X, d) be a complete metric space and T : X → X be
an α-λ-contraction satisfying the following conditions:

(i) T is α-admissible;
(ii) there exists x ∈ X such that α(x, Tx) ≥ ;

(iii) (H) holds.
Then there exists u ∈ X such that u = Tu.

We provide the following examples.

Example . Let X = [,∞). Consider q(x, y) = (max{(x – y), (y – x)}) for all x, y ∈ X. We
mention that (X, q) is a complete quasi b-metric space with s = . Define T : X → X and
α : X × X → [,∞) by

Tx =

⎧
⎨

⎩

ln( + x
 ) if x ∈ [, ],

(x – ) + ln 
 if x > ,

and α(x, y) =

⎧
⎨

⎩

 if x, y ∈ [, ],

 otherwise.

Now, we show that T is an α-λ-contraction where λ : X → [, 
 ) is defined by λ(x) = 

 for
all x ∈ X. To this aim, we distinguish the following cases:

Case : x, y ∈ X such that x ≥ y and α(x, y) = . We have

α(x, y)q(Tx, Ty) = q(Tx, Ty) =
(

ln

(

 +
x


)

– ln

(

 +
y


))

≤ 


(x – y) =



q(x, y) = λ(x)q(x, y).

Case : x, y ∈ X such that x < y and α(x, y) = . Similarly, we get

α(x, y)q(Tx, Ty) ≤ λ(x)q(x, y).

Hence, () is verified and, since λ(Tx) = λ(x) for all x ∈ X, the mapping T is an α-λ-
contraction.

Note that T is α-admissible. Since T is continuous on (X, | · |) where | · | is the stan-
dard metric on X, by Lemma ., T is continuous on (X, q). We mention that α(, T) =
α(T, ) =  and so condition (ii) of Theorem . is verified. Hence, all hypotheses of The-
orem . hold. Note that u =  and v =  – ln( 

 ) are the two fixed points of T .
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Example . Let X = [, ]. Consider q(x, y) = (max{x – y, (y – x)}) for all x, y ∈ X. We
mention that (X, q) is a quasi b-metric space with s = . Define T : X → X and α : X ×X →
[,∞) by

Tx =

⎧
⎨

⎩

x


√

 if  ≤ x < ,

 if x = ,
and α(x, y) =

⎧
⎨

⎩

 if x, y ∈ [, ),

 otherwise.

We have

q
(

T, T



)

= q
(




,



√



)

=
(




–



√



)

>



= q
(

,



)

,

that is, T is not a Banach contraction on X. Now, we show that T is an α-λ-contraction
where λ : X → [, 

 ) is defined by

λ(x) =

⎧
⎨

⎩

(x+)

 if  ≤ x < ,

 if x = .

First of all, we show that λ(Tx) ≤ λ(x) for all x ∈ X. For x = , we have λ(T) = λ(). Also,
for x ∈ [, ), we have

λ(Tx) = λ

(
x


√



)

=



(
x


√


+ 

)

≤ 


(x + ) = λ(x).

Again, we show that () is verified. To this aim, we distinguish the following cases:
Case : If x, y ∈ [, ) such that x ≤ y, then we have

α(x, y)q(Tx, Ty) = q(Tx, Ty) =


(
y – x) =




(y – x)(x + y) =



(x + y)q(x, y)

≤ 


(x + )q(x, y) = λ(x)q(x, y).

Case : If x, y ∈ [, ) such that x > y, then we obtain

α(x, y)q(Tx, Ty) ≤ λ(x)q(x, y).

Case : If (x, y) /∈ [, ), then we have α(x, y) = , and so () is verified.
Thus, () is satisfied and the mapping T is an α-λ-contraction.
Note that T is α-admissible. By Lemma ., T is not continuous on (X, q), then Theo-

rem . is not applicable. Also, it is easy to see that α( 
 , T 

 ) = α(T 
 , 

 ) = , and so condi-
tion (ii) of Theorem . is verified. Now, we show that condition (H) holds. Let {xn} be a
sequence in X such that α(xn, xn+) ≥  and α(xn+, xn+) ≥  for all n and xn → u in (X, q).
Then {xn} ⊂ [, 

 ] and xn → u in (X, | · |). Thus, u ∈ [, 
 ] and so α(xn, u) = α(u, xn) =  for

all n.
Therefore, all hypotheses of Theorem . are satisfied. Here, {, } is the set of fixed

points of T .

To prove uniqueness of the fixed point given in Theorem . (resp. Theorem ., Theo-
rem ., Theorem .), we need to take one of the following additional hypotheses:
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(U) For all x, y ∈ F(T), we have α(x, y) ≥ , where F(T) denotes the set of fixed points of T .
(V) For all x, y ∈ F(T), there exists z ∈ X such that min{α(x, z),α(z, y)} ≥ .

Theorem . Adding condition (U) to the hypotheses of Theorem . (resp. Theorem .,
Theorem ., Theorem .), we see that u is the unique fixed point of T .

Proof We argue by contradiction, that is, there exist u, v ∈ X such that u = Tu and v = Tv
with u �= v. By () and the fact that α(u, v) ≥ , we get

 < q(u, v) ≤ α(u, v)q(u, v) = α(u, v)q(Tu, Tv) ≤ λ(u)q(u, v) < q(u, v),

which is a contradiction. Hence, u = v. �

Theorem . Adding condition (V) to the hypotheses of Theorem . (resp. Theorem .,
Theorem ., Theorem .), we see that u is the unique fixed point of T .

Proof Suppose that there exist u, v, two fixed points of T . By condition (V), there exists
z ∈ X such that min{α(u, z),α(z, v)} ≥ . Since T is α-admissible, it follows that

min
{
α
(
u, Tnz

)
,α

(
Tnz, v

)} ≥ , ∀n = , , . . . . ()

We have

q
(
u, Tn+z

) ≤ α
(
u, Tnz

)
q
(
u, Tn+z

)
= α

(
u, Tnz

)
q
(
Tu, T

(
Tnz

))

≤ λ(u)q
(
u, Tnz

)
, ∀n = , , . . . . ()

By induction, we obtain

q
(
u, Tnz

) ≤ [
λ(u)

]nq(u, z), ∀n = , , . . . . ()

A similar reasoning shows that

q
(
Tnz, v

) ≤ [
λ(z)

]nq(z, v), ∀n = , , . . . . ()

On the other side, we have

q(u, v) ≤ sq
(
u, Tnz

)
+ sq

(
Tnz, v

)
, ∀n = , , . . . , ()

which yields

q(u, v) ≤ s
[
λ(u)

]nq(u, z) + s
[
λ(z)

]nq(z, v), ∀n = , , . . . . ()

Passing to the limit as n → ∞, we obtain

q(u, v) ≤ , ()

and so u = v. �
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The following examples illustrate Theorem ..

Example . Let X = {, , , }. Consider the function q : X × X → [,∞) defined by

q(n, m) =

⎧
⎪⎪⎨

⎪⎪⎩

 if n > m,

 if n = m,

 if n < m,

for all n, m ∈ X with (n, m) �= (, ) and q(, ) = . We mention that (X, q) is a complete
quasi b-metric space with s = .

Define T : X → X and α : X × X → [,∞) by

T = , T = , T = T =  and α(n, m) =

⎧
⎨

⎩

 if n, m ∈ {, },
 otherwise.

We have

q(T, T) = q(, ) =  >  = q(, ),

that is, T is not a Banach contraction on X. Now, we show that T is an α-λ-contraction
where λ : X → [, 

 ) is defined by λ(n) = 
 for all n ∈ X. To this aim, we distinguish the

following cases:
Case : If n, m ∈ X such that α(n, m) = , then n, m ∈ {, }. So

α(n, m)q(Tn, Tm) = q(, ) =  ≤ λ(n)q(n, m).

Case : If n, m ∈ X such that α(n, m) = , then () is satisfied.
Thus, () holds and since λ(Tn) = λ(n) for all n ∈ X, so the mapping T is an α-λ-

contraction.
Note that T is α-admissible. In fact, let n, m ∈ X such that α(n, m) ≥ , then n, m ∈ {, },

and so α(Tn, Tm) = α(, ) = . Moreover, T is continuous on (X, q). In fact if {xn} is a
sequence in X such that xn → u in (X, q), it easy to see that there exists N ∈ N such that
xn = u for all n ≥ N and so Txn = Tu for all n ≥ N . It follows that limn→∞ q(Txn, Tu) = ,
that is, T is continuous on (X, q). Also, since α(, T) = α(, ) = , and α(T, ) = α(, ) =
, condition (ii) of Theorem . is verified. Therefore, all hypotheses of Theorem . are
satisfied. Here,  is the unique fixed point of T .

Example . Going back again to Example . where X = [, ] is endowed with the quasi
b-metric q(x, y) = (max{x – y, (y – x)}) for all x, y ∈ X. Define T : X → X and α : X × X →
[,∞) by

Tx =

⎧
⎨

⎩

x


√

 if  ≤ x < ,

 if x = ,

and α(x, y) =

⎧
⎨

⎩

 if x, y ∈ [, 
 ],

 otherwise.
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We know that T is an α-λ-contraction where λ : X → [, 
 ) is defined by

λ(x) =

⎧
⎨

⎩

(x+)

 if  ≤ x < ,

 if x = .

Therefore, all hypotheses of Theorem . are satisfied. Here,  is the unique fixed point
of T .

4 Fixed point results in quasi b-metric spaces endowed with a graph
Recently, Jachymski [] introduced the concept of a G-contraction in the setting of metric
spaces endowed with a graph. Using this notion, he proved some fixed point results. In
this paragraph, we introduce a new class of contractive mappings in the setting of quasi
b-metric spaces endowed with a graph. First, we recall some notations and definitions.

Let (X, q) be a quasi b-metric space and � = {(x, x) : x ∈ X} denote the diagonal of the
cartesian product X × X. Following [], a directed graph G such that the set V (G) of
its vertices coincides with X and the set E(G) of its edges contains all loops, i.e., � ⊂
E(G). Also, we assume that G has no parallel edges and we can identify G with the pair
(V (G), E(G)). Moreover, we may treat G as a weighted graph by assigning to each edge the
distance between its vertices.

Definition . [] Let X be a nonempty set endowed with a graph G. We say that T :
X → X weakly preserves edges of G if for all x, y ∈ X

(x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G).

Definition . Let (X, q) be a quasi b-metric space endowed with a graph G. We say that:
() (X, q) is G-complete if {xn} is a Cauchy sequence in X such that

(xn, xn+), (xn+, xn) ∈ E(G) for all n, then {xn} converges in (X, q).
() T : X → X is G-continuous if for each sequence {xn} such that

(xn, xn+), (xn+, xn) ∈ E(G) for all n and xn → x, then Txn → Tx in (X, q).

Remark . Let (X, q) be a quasi b-metric space endowed with a graph G.
() If (X, q) is a complete, then it is G-complete.
() If T : X → X is continuous on (X, q), then it is G-continuous.

We introduce the notion of a G-λ-contractive mapping in the class of quasi b-metric
spaces endowed with a graph G.

Definition . Let (X, q) be a quasi b-metric space endowed with a graph G. A mapping
T : X → X is said to be a G-λ-contraction if there exists a function λ : X → [, 

s ) for which
λ(Tx) ≤ λ(x) for all x ∈ X such that

q(Tx, Ty) ≤ λ(x)q(x, y), ()

for all x, y ∈ X satisfying (x, y) ∈ E(G).

We obtain the following results.
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Theorem . Let (X, q) be a quasi b-metric space endowed with a graph G and T : X → X
be a G-λ-contraction. Suppose that:

(i) T weakly preserves edges of G;
(ii) there exists x ∈ X such that (x, Tx), (Tx, x) ∈ E(G);

(iii) T is G-continuous on (X, q);
(iv) (X, q) is G-complete.

Then T has a fixed point.

Proof Define the function α : X × X → [,∞) by

α(x, y) =

⎧
⎨

⎩

 if x, y ∈ E(G),

 otherwise.

It is easy to see that all conditions of Theorem . are satisfied and so T has a fixed point.
�

Corollary . Let (X, q) be a complete quasi b-metric space endowed with a graph G and
T : X → X be a G-λ-contraction. Suppose that:

(i) T weakly preserves edges of G;
(ii) there exists x ∈ X such that (x, Tx), (Tx, x) ∈ E(G);

(iii) T is G-continuous on (X, q).
Then T has a fixed point.

Corollary . Let (X, q) be a complete quasi b-metric space endowed with a graph G and
T : X → X be a G-λ-contraction. Suppose that:

(i) T weakly preserves edges of G;
(ii) there exists x ∈ X such that (x, Tx), (Tx, x) ∈ E(G);

(iii) T is continuous on (X, q).
Then T has a fixed point.

Theorem . Let (X, q) be a quasi b-metric space endowed with a graph G and T : X → X
be a G-λ-contraction. Suppose that:

(i) T weakly preserves edges of G;
(ii) there exists x ∈ X such that (x, Tx), (Tx, x) ∈ E(G);

(iii) if {xn} is a sequence in X such that (xn, xn+), (xn+, xn) ∈ E(G) for all n, then there
exists {xn(k)} a subsequence of {xn} such that (xn(k), u) ∈ E(G) for all k;

(iv) (X, q) is G-complete.
Then T has a fixed point.

Corollary . Let (X, q) be a complete quasi b-metric space endowed with a graph G and
T : X → X be a G-λ-contraction. Suppose that:

(i) T weakly preserves edges of G;
(ii) there exists x ∈ X such that (x, Tx), (Tx, x) ∈ E(G);

(iii) if {xn} is a sequence in X such that (xn, xn+), (xn+, xn) ∈ E(G) for all n, then there
exists {xn(k)} a subsequence of {xn} such that (xn(k), u) ∈ E(G) for all k.

Then T has a fixed point.
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5 Application
In this section, we apply Theorem . to the existence of a solution of an integral equation.

Let X = C([a, b],R) be the set of real continuous functions defined on [a, b]. Consider
the quasi b-metric q∞ : X × X → [,∞) given as follows:

q∞(x, y) = sup
t∈[a,b]

(
max

{
x(t) – y(t), 

(
y(t) – x(t)

)}), ∀x, y ∈ X.

We mention that (X, q) is a complete quasi b-metric space with s = . Also, suppose that
X is endowed with a graph G. Consider the integral equation as follows:

x(t) = f (t) +
∫ b

a
K

(
t, s, x(s)

)
ds, ()

where f : [a, b] → R and K : [a, b] × [a, b] × R → R are given continuous functions. Let
T : X → X be a mapping defined by

Tx(t) = f (t) +
∫ b

a
K

(
t, s, x(s)

)
ds. ()

It is clear that x is a solution of () if and only if x is a fixed point of T .
We have the following result.

Theorem . Suppose that there exists r ∈ [, √
 ) such that for all t, s ∈ [a, b] we have

 ≤ K
(
t, s, x(s)

)
– K

(
t, s, y(s)

) ≤ r
b – a

∣
∣x(s) – y(s)

∣
∣, ()

for all x, y ∈ X satisfying (x, y) ∈ E(G).
Also, suppose that:

(i) T weakly preserves edges of G;
(ii) there exists x ∈ X such that (x, Tx), (Tx, x) ∈ E(G);

(iii) if {xn} is a sequence in X such that (xn, xn+), (xn+, xn) ∈ E(G) for all n, then there
exists {xn(k)} a subsequence of {xn} such that (xn(k), u) ∈ E(G) for all k.

Then the integral equation () has a solution in C([a, b],R).

Proof Let Tx(t) = f (t) +
∫ b

a K(t, s, x(s)) ds. We shall show that it is a G-λ-contraction where
λ(x) = r for all x ∈ X.

Let (x, y) ∈ E(G), then we get

 ≤ Tx(t) – Ty(t) =
∫ b

a

[
K

(
t, s, x(s)

)
– K

(
t, s, y(s)

)]
ds ≤ r

b – a

∫ b

a

∣
∣x(s) – y(s)

∣
∣ds

≤ r
b – a

(∫ b

a
ds

) 

(∫ b

a

(
x(s) – y(s)

) ds
) 

 ≤ r
∥
∥(x – y)∥∥



∞,

where ‖(x – y)‖∞ = supt∈[a,b](x(t) – y(t)). It follows that

q∞(Tx, Ty) = sup
t∈[a,b]

(
Tx(t) – Ty(t)

) ≤ r∥∥(x – y)∥∥∞ ≤ rq∞(x, y).

Hence, all conditions of Theorem . are satisfied and hence T has a fixed point in X. �
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6 Ulam-Hyers stability
Let (X, q) be a quasi b-metric space and T : X → X be a given mapping. Let us consider
the fixed point equation

x = Tx ()

and the inequality (for ε > )

q(Ty, y) < ε. ()

We say that the fixed point problem () is Ulam-Hyers stable in the framework of a quasi
b-metric space if there exists c > , such that for each ε >  and an ε-solution v∗ ∈ X, that
is, v∗ satisfies the inequality (), there exists a solution u∗ ∈ X of the fixed point equation
() such that

q
(
u∗, v∗) < cε. ()

Theorem . Let (X, q) be a complete quasi b-metric space with coefficient s. Suppose that
all the hypotheses of Theorem . (resp. Theorem .) hold and α(w, z) ≥  for all ε-solutions
w, z, then the fixed point equation () is Ulam-Hyers stable.

Proof By Theorem . (resp. Theorem .), we have a unique u ∈ X such that u = Tu, that
is, u ∈ X is a solution of the fixed point equation (). Let ε >  and v ∈ X be an ε-solution,
that is,

q(Tv, v) ≤ ε.

Since q(u, Tu) = q(u, u) =  ≤ ε, u and v are ε-solutions. By hypothesis, we get α(u, v) ≥ 
and so

q(u, v) = q(Tu, v) ≤ s
[
q(Tu, Tv) + q(Tv, v)

] ≤ sα(u, v)q(Tu, Tv) + sε

≤ sλ(u)q(u, v) + sε.

We deduce

q(u, v) ≤ s
 – sλ(u)

ε = cε,

where c = s
–sλ(u) > . Consequently, the fixed point problem of T is Ulam-Hyers stable.

�

7 Well fixed point problem
Many mathematicians are interested in the concept of well-posedness of a fixed point
problem. For instance, see [, –]. As in [], we start to characterize the concept of the
well-posedness in the context of quasi b-metric spaces as follows.

Definition . Let (X, q) be a quasi b-metric space and T : T → X be a given mapping.
The fixed point problem () is said to be well posed if:
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() T has a unique fixed point u∗ ∈ X ;
() for any sequence {xn} ⊆ X with limn→∞ q(xn, Txn) = limn→∞ q(Txn, xn) = , then we

have limn→∞ q(xn, u∗) = limn→∞ q(u∗, xn) = .

In the following results, we need new conditions to ensure the well-posedness via α-
admissibility:

(S) if {xn} is a sequence in X such that limn→∞ q(xn, Txn) = limn→∞ q(Txn, xn) = , then
α(xn, u∗) ≥  and α(u∗, xn) ≥  for all n where u∗ is a fixed point of T ;

(S) if {xn} is a sequence in X such that limn→∞ q(Txn, xn) = , then α(u∗, xn) ≥  for all n
where u∗ is a fixed point of T .

Theorem . Let (X, q) be a complete quasi b-metric space with coefficient s and T : X →
X be a given mapping. Suppose that all the hypotheses of Theorem . (resp. Theorem .)
hold.

Also, suppose that:
(i) (S) holds;

(ii) if {xn} is a sequence in X such that limn→∞ q(xn, Txn) = limn→∞ q(Txn, xn) = , then
there exists N ∈N such that λ(xn) ≤ λ(xN ), for all n ≥ N .

Then the fixed point equation () is well posed.

Proof By Theorem . (resp. Theorem .), we have a unique u ∈ X such that u = Tu, that
is, u is a solution of the fixed point equation (). Let {xn} be a sequence in X such that
limn→∞ q(xn, Txn) = limn→∞ q(Txn, xn) = . From condition (S), we have α(xn, u) ≥  and
α(u, xn) ≥ , for all n. Using (q) and the fact that α(xn, u) ≥  in (), one writes

q(xn, u) ≤ sq(xn, Txn) + sq(Txn, u) = sq(xn, Txn) + sq(Txn, Tu)

≤ sq(xn, Txn) + sα(xn, u)q(Txn, Tu) ≤ sq(xn, Txn) + sλ(xn)q(xn, u).

By condition (ii) of Theorem ., we get

q(xn, u) ≤ sq(xn, Txn) + sλ(xN )q(xn, u), ∀n ≥ N ,

that is,

q(xn, u) ≤ s
 – sλ(xN )

q(xn, Txn), ∀n ≥ N .

Letting n → ∞, we obtain

lim
n→∞ q(xn, u) = . ()

Again, using α(u, xn) ≥ 

q(u, xn) ≤ sq(u, Txn) + sq(Txn, xn) = sq(Tu, Txn) + sq(Txn, xn)

≤ sα(u, xn)q(Tu, Txn) + sq(Txn, xn) ≤ sλ(u)q(u, xn) + sq(Txn, xn).
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We deduce

q(u, xn) ≤ s
 – sλ(u)

q(Txn, xn).

Letting n → ∞, we obtain

lim
n→∞ q(u, xn) = . ()

By () and (), the fixed point problem () is well posed. �

Theorem . Let (X, q) be a complete b-metric space with coefficient s and T : X → X be
a given mapping. Suppose that all the hypotheses of Theorem . (resp. Theorem .) hold.
If (S) holds, then the fixed point equation () is well posed.

Proof The proof is similar to that of Theorem .. �
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