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Abstract

We compare the rate of convergence for some iteration methods for contractions. We
conclude that the coefficients involved in these methods have an important role to
play in determining the speed of the convergence. By using Matlab software, we
provide numerical examples to illustrate the results. Also, we compare mathematical
and computer-calculating insights in the examples to explain the reason of the
existence of the old difference between the points of view.
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1 Introduction

Iteration schemes for numerical reckoning fixed points of various classes of nonlinear op-
erators are available in the literature. The class of contractive mappings via iteration meth-
ods is extensively studied in this regard. In 1952, Plunkett published a paper on the rate of
convergence for relaxation methods [1]. In 1953, Bowden presented a talk in a symposium
on digital computing machines entitled ‘Faster than thought’ [2]. Later, this basic idea has
been used in engineering, statistics, numerical analysis, approximation theory, and physics
for many years (see, for example, [3—9] and [10]). In 1991, Argyros published a paper about
iterations converging faster than Newton’s method to the solutions of nonlinear equations
in Banach spaces [11, 12]. In 1997, Lucet presented a method faster than the fast Legen-
dre transform [13]. In 2004, Berinde used the notion of rate of convergence for iterations
method and showed that the Picard iteration converges faster than the Mann iteration
for a class of quasi-contractive operators [14]. Later, he provided some results in this area
[15, 16]. In 2006, Babu and Vara Prasad showed that the Mann iteration converges faster
than the Ishikawa iteration for the class of Zamfirescu operators [17]. In 2007, Popescu
showed that the Picard iteration converges faster than the Mann iteration for the class of
quasi-contractive operators [18]. Recently, there have been published some papers about
introducing some new iterations and comparing of the rates of convergence for some it-
eration methods (see, for example, [19-22] and [23]).

In this paper, we compare the rates of convergence of some iteration methods for con-
tractions and show that the involved coefficients in such methods have an important role
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to play in determining the rate of convergence. During the preparation of this work, we
found that the efficiency of coefficients had been considered in [24] and [25]. But we ob-
tained our results independently, before reading these works, and one can see it by com-

paring our results and those ones.

2 Preliminaries

As we know, the Picard iteration has been extensively used in many works from different
points of view. Let (X, d) be a metric space, xyp € X, and T: X — X a selfmap. The Picard
iteration is defined by

KXntl = Txn

forall > 0. Let {ay} >0, {Bu}n=0, and {y,}n>0 be sequences in [0,1]. Then the Mann iter-

ation method is defined by

Kel = Ay + (1 — 0, T, (2.1)

for all #n > 0 (for more information, see [26]). Also, the Ishikawa iteration method is de-
fined by

Xptl = (1 - an)xn + 0y Tyn;

Yn = (]- - ,Bn)xn + ,BnTxn

(2.2)

for all #» > 0 (for more information, see [27]). The Noor iteration method is defined
by
Xn+l = (1 - an)xn +a, Tyn:

Yn = (1 - ﬁn)xn + ﬁn Tznr (23)

Zn = (L= Yu)xn + Yu Ty

for all n > 0 (for more information, see [28]). In 2007, Agarwal et al. defined their new

iteration methods by

Xptl = (1 - an)Txn + oy Tynx

Yn = (]- - ,Bn)xn + ,BnTxn

(2.4)

for all # > 0 (for more information, see [29]). In 2014, Abbas et al. defined their new
iteration methods by
Xp+l = (1 - an)Tyn + anTzn:

Yn = (1 - ﬁn)Txn + lgnsz (25)

Zn = (L= Yu)xn + Yu Ty
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for all # > 0 (for more information, see [30]). In 2014, Thakur et al. defined their new
iteration methods by

e = (1 — o) Ty + Ty,
Yn = (1= Bu)zn + BuTzp, (2.6)

z,=(1- Vn)xn + Yulxy,

for all # > 0 (for more information, see [23]). Also, the Picard S-iteration was defined
by

KXn+l = Tynr
V= 1= B0) Ty + B 12y, (2.7)

Zn = (1= yu)xn + yn Ty
for all # > 0 (for more information, see [20] and [22]).

3 Self-comparing of iteration methods
Now, we are ready to provide our main results for contractive maps. In this respect, we
assume that (X, || -||) isanormed space, xg € X, T: X — X isaselfmap and {&} >0, {Bu}n=0
and {y,},>0 are sequences in (0, 1).

The Mann iteration is given by x,,,; = (1 — )%, + &, T, for all n > 0.

Note that we can rewrite it as x,,,1 = a,%, + (1 — o) Tx,, for all m > 0.

We call these cases the first and second forms of the Mann iteration method.

In the next result we show that choosing a type of sequence {«,,} ;>0 in the Mann iteration
has a notable role to play in the rate of convergence of the sequence {x;},>0.

Let {u,}u>0 and {v,},>0 be two fixed point iteration procedures that converge to the

same fixed point p and ||u, — p|| < a, and ||v, — p|| < b, for all n > 0. If the sequences
llan—al

{@n}n=0 and {b,}=o converge to a and b, respectively, and lim,, o 727

=0, then we say
that {u,},>0 converges faster than {v,},>0 to p (see [14] and [23]).

Proposition 3.1 Let C be a nonempty, closed, and convex subset of a Banach space X,
x1 € C,T: C— C a contraction with constant k € (0,1) and p a fixed point of T. Consider
the first case for Mann iteration. If the coefficients of Tx, are greater than the coefficients
of x, that is, 1 — o, < o, for all n > 0 or equivalently {o,},>0 is a sequence in (%,1), then
the Mann iteration converges faster than the Mann iteration which the coefficients of x,, are
greater than the coefficients of Tx,,.

Proof Let {x,} be the sequence in the Mann iteration which the coefficients of Tx, are
greater than the coefficients of x,, that is,

K1 = (L= ), + 0, Ty (3.1
for all #. In this case, we have

%1 = pll = || (1 = et)n + 0 Ttw = p|| < (1= )l = pll + ull Ty = pll

< (1-a,(1=K)lx. - pl
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for all ». Since «, € (%,1), 1-o,1-k<1- %(1 —k).Puta,=>1- %(1 —k))"||%1 — pl| for
all n. Now, let {x,} be the sequence in the Mann iteration of which the coefficients of x,
are greater than the coefficients of Tx,,. In this case, we have

41 =PIl = | entn + (1= ) Ty = p| < ullvn —pll + (1= )| T = p|

= (]- - (1 =o,)(1- k)) %, - pll

for all n. Since 1 =, <o, forall »> 0, we get 1 — (1 — o,,)(1 — k) <1 forall mw> 0. Put b, =

@ _lim (1-3 Q-0 sl

|lx1 — p|l for all #n. Note that lim i T = 0. This completes the proof.

Note that we can use 1 — «,, < o, for n large enough, instead of the condition 1 — &, < oy,
for all # > 0. One can use similar conditions instead of the conditions which we will use
in our results.

As we know, we can consider four cases for writing the Ishikawa iteration method. In
the next result, we indicate each case by different enumeration. Similar to the last result,
we want to compare the Ishikawa iteration method with itself in the four possible cases.
Again, we show that the coefficient sequences {&,},>0 and {8,},>0 have effective roles to
play in the rate of convergence of the sequence {x,},>¢ in the Ishikawa iteration method.

Proposition 3.2 Let C be a nonempty, closed, and convex subset of a Banach space X,
x1 € C, T: C— Cacontraction with constant k € (0,1), and p a fixed point of T. Consider
the following cases of the Ishikawa iteration method:

X1 = (1 — )X, + 0ty Ty, (3.2)
Yn = (1 - ,Bn)xn + Bu1x,,

X1 = Qi + (L= 0t) Ty, (3.3)
Yn = Buxn + (1 - ﬁn)Txnx

X1 = Qi + (L= 0t) Ty, (3.4)
Yn = (1 - ,Bn)xn + BuTxy, '

and
K1 = (L — )%y + 0, Ty, (3.5)

Yn = IBlen + (l - ﬁn)Txn

foralln>0.Ifl1-wa, <a,and1- B, < B, forall n > 0, then the case (3.2) converges faster
than the others. In fact, the Ishikawa iteration method is faster whenever the coefficients of
Ty, and Tx, simultaneously are greater than the related coefficients of x,, for all n > 0.

Proof Let {x,},>0 be the sequence in the case (3.2). Then we have

ly. —pll = ”(1 — B)%n + BuTxy —P”
<@ =B)lxn —pll + Bul T2 - pll
= ((1 —Bu) + ,Bnk) %, - pll
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and

i1 =2l = ||~ @) + 0n Ty |
= (@ =an)llxn —pll + anll Ty, - pli
< @ =an)llxn —pll + kaylly. = pl
< (1—ay +ka,[(1= B,) + BaK]) % - p
< (1= ap + ayk — ayBuk + auBuk®) 4 — |
< (-1 =K - ekl = K)) %, - pll
for all # > 0. Since «,, B, € (%,1), 1-o,1-k) —a,B,k(1-k)<1- %(1 —k)— %k(l — k) for

allm>0.Puta,=(1- %(1 -k)- ik(l —k))"|lx1 — p|| for all m > 0. If {x,,},,>0 is the sequence
in the case (3.3), then we get

Iy =PIl = || Bun + 1 = B) Txn — p|
< Bullxn = pll + (L = Bu) || T — pll
= (1 -1-8,)0- k))”xn -pl

and

[%ne1 = Il = || twn + (1= ) Ty = p |
< ayllxn = pll + A - )| Ty - pll
< ulln = pll + k(A = )y - pll
<(on+k(Q-a,)(1-1-B)A-k)))lx: - pl
= (ot + (1= )k = k(1 = ) (1 = B)(1 = K)) [l = p|
=(1-0-a)A-k) -0 -a,)1- Bk -K))lx, - pl

for all n > 0. Since «,,, 8, € (%,1), 1-1-a,)1-k)-1-a,)1-8,)1-k)<1foralln > 0.
Put b, = ||x; — p|| for all n > 0. Since

1 1 1
L= S(=K) = pk(k=1) <1+ Zk(1-K),

1- 1 (1=k) - 2 k(1K) || — . .
4-z0-4) Hil—(P”()) 721 _ ) and so the iteration (3.2) converges faster

than the case (3.3). Now, let {x,},>0 be the sequence in the case (3.4). Then

we get lim §* = lim

Iy =2l = || Bxn + A — Ba) T - p|
< Bullan = pll + @ = B T —
< (Bu+ k(= B)) s —
=(1-@-B)A-K)lx,—pl
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and

%01 = pll = || (1 = @)y + 0 Ty — p
< (- a)llxn —pll + @l Ty - pll
< (1ot +katu[(1 = A= B) (A~ K))]) 6 — Pl
= (1 - oy + kay, — 0, (1= Bk - k) |1, - pl|
= (1-a,(1 = k) — a, (1 = B)k(1 = K)) ||x, = pl

for all n > 0. Since «,,, B, € (%,1) foralln>0,-(1-k) < —a,(1-k) < —%(1 — k) and %lk(l -
k) < —a,(1 = B)k(1 - k) < 0 for all n. Hence,

1
1-o,0-k)—a,1-8)k1-k)<1- E(l - k)
forallm > 0.Putc,=(1- %(1 —k))*||l%1 — p|| for all # > 0. Thus, we obtain

ay . (=301 -k) = 3k(1-K)"[|lx - pll
lim — = lim T -
Cn 1= 5@ =k)"llx = pll

and so the iteration (3.2) converges faster than the case (3.4). Now, let {x,},>0 be the se-

quence in the case (3.5). Then we have

lyn =Pl = | @~ B)xw + BuTxn —p|
<@ =B)lxn —pll + Bull Txw — pll
< (1-B.A=K))lIx, - pll

and

%41 = Il = ||t + (1= 0t) Ty |
< ayllxn —pll + A - )| Ty - pll
< ayllxn = pll + k(A = )y - pll
< (o + k(1= )[1 = B, (1= K)]) 1% - pl
(n + k(1 = ) = (1= @) Buk(1 = K) Il — pI
(1= (=) + k(1 = @) = (1= @) Buk(1 = K)) [l —
(1- A -a)1-k) - 0 - ) Bk(1 = k) x, - pll

IA

IA

IA

forall n > 0. Since a,, B, € (3,1) for all n, (1 - k%) < e, (1 - k*) < =3 (1 - k%), and -2 k(1 -
k) <—(1-a,)B,k(1 —k) <0 and so

1-o,(1-k)—(1-a,)Bk(l-k)<1- %(1 - k)
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foralln>0.Putd, =(1- %(1 —k))"|lx, — p|| for all # > 0. Then we have

_ay . (1=31-k) = 1k - k)" |lx1 - pll
lim — = lim T =
dy A= 3@=K)" % - pl
and so the iteration (3.2) converges faster than the case (3.5). |

By using a similar condition, one can show that the iteration (3.5) is faster than the
case (3.3).

Now consider eight cases for writing the Noor iteration method. By using a condition,
we show that the coefficient sequences {@,},>0, {Bn}n>0, and {y,},>0 have effective roles
to play in the rate of convergence of the sequence {x,},>¢ in the Noor iteration method.
We enumerate the cases of the Noor iteration method during the proof of our next re-

sult.

Theorem 3.1 Let C be a nonempty, closed, and convex subset of a Banach space X, x, € C,
T: C— C a contraction with constant k € (0,1) and p a fixed point of T. Consider the case
(2.3) of the Noor iteration method

KXne1 = (L= o), + 0ty Ty,
Yn = (1- ,Bn)xn + Bnlzy,
Zp = (L= Yp)x, + Vn1xy

foralln>0.If1-a, <oy 1-B,< By, andl -y, <y, forall n > 0, then the iteration (2.3)
is faster than the other possible cases.

Proof First, we compare the case (2.3) with the following Noor iteration case:

Up1 = (1 - Oln)bt,, + 0y TVm
Vn = (1 - ,Bn)un + ,Bn Tw,, (36)
Wn = Ynlhy + (1 - Vn)Tun

for all # > 0. Note that

Izn = pll = |(L = ¥)%n + v T — |
<@ =yllxy —pll + kyullx, — pll

= (1= =K)yu)llx. - pll
and

Iy = pll = |1 = Bu)xn + BuTzn — p|
< (L= B)%n = pll + kBulizs - pll
< (1= Ba) +kBu((1= A= K)ya)) 2 — P
<[1-Bu(1 = k) = Buyuk(1 = K)] 1%, - pll
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for all # > 0. Also, we have

e = 2l = | (1 = @), + 0, Ty - p

< (@ =ap)llxn —pll + kaully, = pll
(1= o)y = pll + ket [1 = B, (1= k) = Buyuk(1 = K) ]|l - pl
(1 =ty + katy (1= Bu(1 = k) = Buyuk(1 = k)))ll%, — pll
(1= oty + katy = k(1 = k) Butty = ctuBuyuk® (1 = k) %, - pl|
(1= @ =Koty = k(1L = K)Buctn = uBuyuk® (L = ) 1 = |

AN IAIA

IA

forall n > 0. Since ay, By, v € (3,1) forall m, —(1-k?) < —at, (1 - k%) < =3 (1-k?), -k(1- k) <
-, Brk(1-k) < —ik(l — k), and

k(1 = k) <, Buyuk* (1= k) < —%kz(l -k)

for all n. This implies that
) 1 1 1,
1-(1-Koy, — k(L= k)Buoty — atnBuynk 1L —k) <1 - 5(1 - k) - Zk(l —k) - §k (1-k)

forall n. Puta, = (1 - %(1 - k) - %kz(l —k))"||x1 — p|| for all n > 0. Now for the sequences
{u,} =0 with 17 = %; and {v,,},>0 in (3.6), we have
Wy = pll = | Vathn + (1= ) T, = p||
< Vullun —pll + k(1 = yu)llun - pll
= (1 - (1 - Vn)(l - k))””n —P”

and

1vi=pll = | (1= Buttw + BuTww - p |
< (1= Bt = pll + kBullwy — pll
< (1= B) +kBu(1- A - y)A - K)) lun — pl|
< (1= Bu+kBu = Bu(l = y)k(1 = k)) |4, — |
< (1= B = k) = Bu(1 = yu)k(1 = K)) |4 — p|

for all » > 0. Hence,

w1 = pll = | = )t + 0 Tv — p|
< (=)l - pll + kaylv, - pl|
< (= an)lln - pll + ket (1= Bl = k) = Bu(l = yu)k(1 = k)) [l - |
< (=) + katy — 0ty Buk(1 = k) — aBu(1 = y) K>(1 = k)) | — p
< (1= au(1 = k) = auBuk(1 = k) = aBu(1 = yu)K*(1 = K)) |y — p|
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for all ». Since ay,, B, v € (%, 1) for all n, —k(1-k) < —a,, B,.k(1 - k) < —ik(l —k)and %kz(l -
k) < —a,B,(1 — y,)k*(1 — k) < 0 for all n. Hence,

1 1
1—0,(1 = k) — ot Bkl — k) — a1 — y)k®>A —k) <1 — 5(1 —k) - Ek(l k)
for all n. Put b, = (1 - %(1 —k) - %k(l —k))"|luy — p|| for all » > 0. Then we have

a, (1= 31—k - Jk(1-k) - k(1 - k)" |1 - p| 0
n>0< by, 1-1a-k) - 2k@-K)"lu - pll

Thus, {x,},>0 converges faster than the sequence {u,},>0. Now, we compare the case (2.3)
with the following Noor iteration case:

Ups1 = (1 - C(,,)M,, t oy, TVm
Vi = Bl + (1- ﬂn)TWn: (3.7)
Wy = (1= V) + vnTuy

for all n > 0. Note that

W = pll = |(1 = ya)tn + vu Titn - p||
<(1- J/n)”un -pll+ k)’n”un -pl

= (1= (1= 0yl — p

and

Vi = pll = || Buten + (1= ) Twy, — p||
< Bullttn = pll + k(1 = Bo) |y - |
< (Bu+ k(L= Ba) = Buyuk(1 = k) [l - |
< (1= (=K1 = Ba) = Buyuk (1 = K)) |4, — pl|

for all » > 0. Hence,

letwir = pll = | (1= @)ty + @ Tv - p||
< (1= ap)llten = pll + ket wy - pll
< (- an)llun - pll + katn (1= A= )1 = Ba) = Buyuk(1 = k) [l - |
< (1= ) + kay = k(1 = Ky (1 = By) = auBuyuk® (1 = k) [l — p|
< (1= (1= Kay - a1 - Bk = k) = auBuyuk® (1 = k) | u, - pl|

for all # > 0. Since &y, B, ¥u € (£,1) for all n, —%k(l - k) < —a,(1 - Bu)k(1 — k) <0, and
—k*(1 = k) < —0tuBu(L - yu)k*(1 - k) < —5k*(1 - k) and so

1- (1=K, — o, (1= Bk = k) — By k1 —k) <1 - %(1 —k) - %k2(1 - k)
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for all n. Putc, = (1— %(1 —k) - ékz(l —k))"|luy — p|| for all #n > 0. Then we have

i @ 0= 30 =K - 3k -K) - gk2A-0)" |l - pll
n ¢ (1- 21— k) = $K2(1 = K))" [l - p

Thus, {x,},>0 converges faster than the sequence {u,},>0. Now, we compare the case (2.3)
with the following Noor iteration case:

Upe1 = (L= a)uy + 0, Ty,
Vi = Btk + (1= ) Twy, (3.8)
Wy = Yulkn + (1= yu) Ty,

for all #» > 0. Note that
Wy = pll = |yt + @ = y) T - p||

< Vulltn = pll + k(1 = y) I, = pl
= (1 -(1- Vn)(l - k))”un -pl

and
e = pll = (1= Buttw + BuTws — p|
<@ =B)llun —pll +kBullw, - pli
= (1 - ,Bn + k,Bn(l - (1 - )’n)(l - k)))””n —P||
= (1 = B+ kBn = Bu(1 = yu)k(1 _k))”’/ln -l
< (1- B4 =k = Bu(l = y)k(1 = k)|, — p|
and so

b1 = pll = || (1 = etn)tt + 0t T = |
< (- a@)lluy - pll +kay|wy, - pl|
(1= a2t = pll + ket (1= Bu(1 = k) = Bu(1 = yu)k(1 = k) l| 4, — pl|
< (- 0y + kay — k(1 = k) = Bu(1 = y)K* (1 = )l — p|
< (1= (1= Kty — ot Buk(1 = k) = uBu(l = )k (1= K)) [l - |

IA

for all n. Since ay, B, Yn € (%,1) for all n, —k(1 - k) < —a,B,k(1 — k) < —%k(l — k), and
—1Kk*(1 - k) < —otu (1 = y)K*(1 - k) < O for all 7. This implies that

1= (1= Ky — nPrk(l = k) = apBu(l — y)k2(1— k) <1 - %(1 —k) - ik(l —k)

for all n. Putd, = (1 - %(1 -k) - ik(l — k)" lux — p|| for all n > 0. Then we get

p (=30 -R) - SR = ARl -pl

n—00 d, 1-31-k) - 1k = k)" [l - pll
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and so the sequence {x,},>¢ converges faster than the sequence {u,},>0. By using similar
proofs, one can show that the case (2.3) is faster than the following cases of the Noor
iteration method:

U1 = Qpthy + (L — ) Ty,
Vi = (1= Bty + B Twy, (3.9)
Wp = (L= V)tby + VuTtty,

U1 =ty + (L — ) TV,

Vn = (1 - ,Bn)un + B Twy, (310)
Wy = Yoty + (L= V) Tk,

U1 = Qpthy + (L= ) TV,

Vi = Bty + (1= Bu) Twy, (3.11)
Wy = (1 - Vn)un + VuTuy,

and
Ups1 = Oplly + (1 - an)TVn;
Vi = Bt + (1= Bu) Ty, (3.12)
Wn = Ynlhy + (1 - Vn)Tun

for all # > 0. This completes the proof. d

By using similar conditions, one can show that the case (3.7) converges faster than (3.8),
(3.9) converges faster than (3.11), (3.11) converges faster than (3.10) and (3.10) converges
faster than (3.12).

As we know, the Agarwal iteration method could be written in the following four cases:

Xn+l = (1 - an)Txn + anTyn; (3 13)
Yn = (1 - ,Bn)xn + ﬂn Txn: ’
Xn+l = anTxn + (1 - an)Tynr (3 14)
Yn = Bun + (1 - B Txy, ’
KXntl = anTxn + (1 - Oln)Tym (3 15)
Yn = (1 - ,Bn)xn + ﬂn Txy, ’
and
KXntl = (1 - an)Txn + anTynr (3 16)

Y = Bukn + (1= B)Tx,

for all n > 0. One can easily show that the case (3.13) converges faster than the other ones
for contractive maps. We record it as the next lemma.

Lemma 3.1 Let C be a nonempty, closed, and convex subset of a Banach space X, x; € C,
T: C — C a contraction with constant k € (0,1) and p a fixed point of T. If1 — o, < &, and
1— By < Buforall n> 0, then the case (3.13) converges faster than (3.14), (3.15), and (3.16).



Fathollahi et al. Fixed Point Theory and Applications (2015) 2015:234 Page 12 of 24

Also by using a similar condition, one can show that the case (3.16) converges faster
than (3.14). Similar to Theorem 3.1, we can prove that for contractive maps one case
in the Abbas iteration method converges faster than the other possible cases whenever
the elements of the sequences {&,},>0, {Bn}n=0, and {y,},=0 are in (%,1) for sufficiently
large n. Also, one can show that for contractive maps the case (2.6) of the Thakur-Thakur-
Postolache iteration method converges faster than the other possible cases whenever el-
ements of the sequences {&,},>0, {Bn}n=>0, and {yu}n>0 are in (%,1) for sufficiently large #.
We record these results as follows.

Lemma 3.2 Let C be a nonempty, closed, and convex subset of a Banach space X, u; € C,
T: C — C a contraction with constant k € (0,1), and p a fixed point of T. Consider the
following case in the Abbas iteration method.:

U1 = TV, + (1 - 0r,) Twy,
Vo= (1= Bu)Tu, + BuTw,, (3.17)
Wp == Yy + yuTuy,

foralln If1-a, <oy, 1- B, < By, and 1 -y, <y, for sufficiently large n, then the case (3.17)
converges faster than the other possible cases.

Also by using similar conditions in the Abbas iteration method, one can show that the

cases
Upr = 0 TV, + (1 — o) Twy,
Vi = BuTuy, + (1- ﬂn)Twm (318)
Wy = (1= V)uy + vn Tuy,

and

Upyl = Oy Tvn + (1 - an)Twm
Vn = (1 - ﬂn)Tun + ,Bn Twy, (319)
Wn = Ynlhy + (1 - yn)Tun

converge faster than the case

U1 =y TV, + (1= 01,) Twy,
Vi = BuTuiy + (1= By) Twy, (3.20)
Wi = Yt + (1= V) Tty

Also the case

Upe1 = (1= ay)Tv, + a, Twy,
Vn = (1 - ,Bn)Turz + ,Bn Twy, (321)
Wp == Yy + yuTuy,

converges faster than the cases

Upe1 = (1 —y)Tv, + o, Twy,
Vi = BTty + (1= B) Twy, (3.22)
wy = (1= y)u, + Y Tu,
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and
Upe1 = (1 —y) TV, + o, Twy,
Vo= (1= Bu)Tu, + BuTw,, (3.23)
Wy = Yty + (1= ) Tk,

and

Ups1 = (1 - an)TVn + ay TW,,,
V= BTy + (1- ,Bn)TWm (3.24)
Wi = Yt + (1= V) Tty

Lemma 3.3 Let C be a nonempty, closed, and convex subset of a Banach space X, u; € C,
T: C — C a contraction with constant k € (0,1) and p a fixed point of T. If 1 — a,, < tyy,
1- By < Bu, and 1 -y, <y, for sufficiently large n, then the case (2.6) in the Thakur-Thakur-

Postolache iteration method converges faster than the other possible cases.
Also by using similar conditions, one can show that the cases

Upl = (1 - an)Tun + oy TVn;
Vi = BuWy + (1 - ﬂn)Twm (325)
Wy = L= Yty + YuTuy,

and
Upi1 = (1 - Ol,,)TMn +ay TVn:
Vp = (1 - ,Bn)wn + ,Bn Twm (326)
Wn = Ynlhy + (1 - Vn)Tun

converge faster than the case

Upi1 = (1 - Ol,,)TMn +ay TVn:
Vi = BuWn + (1- ,Bn)TWn; (3.27)
Wy = Vnlhn + (1 - Vn)Tun'

Also the case
U1 = 0 Ty + (1 — )T,
Vi = (1= Bu)wy + BuTwy, (3.28)
wy = (1= y)u, + ynTu,

converges faster than the cases

U1 = Ty, + (1 — )T,
Vi = Buwy + (1= Bn) Twy, (3.29)
wy = (1= y)u, + Y Tu,
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and
U1 = Tty + (1 — ) TV,
Vi = (1= Bu)wy + By Twy, (3.30)
Wy = Yuldn + (1= y) Tuty,

and

Upi1l =0y TM,, + (1 - an)TVn:
Vi = By + (L= B) Twy, (3.31)
Wy = Ynlhy + (1 - Vn)Tun'

Finally, we have a similar situation for the Picard S-iteration which we record here.

Lemma 3.4 Let C be a nonempty, closed, and convex subset of a Banach space X, x; € C,
T: C — C a contraction with constant k € (0,1) and p a fixed point of T. If 1 — o, < &,
and 1 - B, < B, for sufficiently large n, then the case (2.7) in the Picard S-iteration method
converges faster than the other possible cases.

4 Comparing different iterations methods

In this section, we compare the rate of convergence of some different iteration methods
for contractive maps. Our goal is to show that the rate of convergence relates to the coef-
ficients.

Theorem 4.1 Let C be a nonempty, closed, and convex subset of a Banach space X, u; € C,
T: C— C a contraction with constant k € (0,1) and p a fixed point of T. Consider the case
(2.5) in the Abbas iteration method

Upe1 = (1= ay)Tv, + o, Twy,
Vo= (1= B)Tu, + By Tw,,
Wy = (L= i)t + YTty

the case (3.17) in the Abbas iteration method

Upi1l =0y Tvn + (]- - C(,,)TW,,,
Ve = (1= B) T, + BuTwy,
Wy = (1= V) + Vn Ty,

and the case (2.6) in the Thakur-Thakur-Postolache iteration method

Upyl = (1 - an)Tun + oy TVn;
V= (1= B)Wy + B TWy,
Wy = (L= Yty + yuTuy,

foralln>0.If1-a, <ay, 1- B, < By, and 1 -y, <y, for sufficiently large n, then the case

(3.17) in the Abbas iteration method converges faster than the case (2.6) in the Thakur-
Thakur-Postolache iteration method. Also, the case (2.6) in the Thakur-Thakur-Postolache
iteration method is faster than the case (2.5) in the Abbas iteration method.
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Proof Let {u,},>0 be the sequence in the case (3.17). Then we have

Iwu = pll = | (1= Vi)t + v T = p|
< (1= y)lluy = pll + kyyll, - pl|
= (1= (1= K)yu)lun - pll,

v = pll = || = Bi) Tty + Bu Ty = p |
< k(L= B)llwn = pll + kBullw, —pl|
<k[(1=Ba) + Bu(1= A= k)ya) ]l - pl
< k[1= Buyud = &) ]l - plI,

and

241 =PIl = [t Tvm + (1 = 0n) Tw = |
< aukllvy = pll + kanllw, - pll
< o, k* (1= Buyu(l = )t — pll + k(1 = ) (1 = (1 = Ky ) 120 — |
< k[kay — auBuynk(1 = k) + (1 - ) (1= (1= k)yn) |l — pl
= k[katy = vk = k) +1 =t — (1 = @) yu(1 = k)]l = p|
= k[1 - ax(1 = k) = (1 = @)yl = k) = @uBuyuk (1 = K]l = pl|
for all n. Since ay,, By, Vi € (%, 1) for sufficiently large #, we have

-(1-k)<-a,0-k)< —%(1 - k),

—%(1 —k) < —a,y,(1 - k) <0, and —k(1 — k) < —a,, B, Ynk(1 = k) < —%k(l — k) for sufficiently

large n. Hence,
1 1
1-ay(l=k) =1 - )yu( = k) — anfuyuk(L = k) <1 = S0~ k) = 2k - k)

for sufficiently large n. Put a,, = K"(1 — %(1 - k) - ék(l — k))"|luy — p|| for all n. Now, let
{4} >0 be the sequence in the case (2.6). Then we have

lws = pll = | (1 = V)t + v Tet - p |
<@ =v)llun = pll + kyuln, - pl
= (1- A= k)ya)lun —pl,
Iva = pll = [(1= Bu)Wu + BuTw, — p|
< (1= B llun = pll + kBullw, - p
< A= B) (1= A= K)yn) + kBu((1 = (1= K)y)) 2 —
<[1-B.(1-R][1 -yl =&)]llm, - pl,
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and

ltnir =Pl = | (1= @) Tty + 0 T = |
< A -anklu, - pll + kayllv, = pi
< k(U= o)ty = pll + ketu[1 = B, (1= K)][1 = yu(1 = &) ][l — p
< k[1 =0, + (1= Bu(1 = k) (1 = yu(1 = K)) |l — p
< k[1-ay+ (0w = 1= K)Buctn) (A= ¥i) + k) |14 — pl
< k[1 =0t + au(1 = Y) + ¥k — Buota(1 = y,)(1 k)
= 0 Buyuk (L= K)] |l — pl|

= k[l = V(1 = k) = o Bu(l = v) (1 = k) — B yuk (1 — k)] lun - pll

for all . Since «,,, By, Y € (%, 1) for sufficiently large #n, we have

1 (1 - k)r

—(1-k) < —a,y,(1-k) < 1

—%(1 —k) < -0, B8,(1-y,)1-k) <0,and —k(1 - k) < -0, B,y k(1 = k) < —ék(l — k) for suffi-
ciently large n. Hence,

LU= R) By = 1)1 K) =y k(LK) <1~ (1K) - éku k)

for sufficiently large n. Put b, = k"(1 - i(l -k)— ék(l —k))"|luy — p|| for all n. Then

a,  K'(1—3(L-k) = gk(L-K)"llm - pll

m — = 1 1 = 0.
w2 b, k(L= (1= K) = k(L= )l - pl

Thus, the case (3.17) in the Abbas iteration method converges faster than the case (2.6) in
the Thakur-Thakur-Postolache iteration method.
Now for the case (2.5), we have
wn = pll = 11 = yutin + vuTuin - p|
= A= y)llun = pll + kynllun - pl

(1- A=Ky lu. - pl,
1V =pll = | (1= ) Titn + B T — |

< k@ =Bu)llun—pll + kBallwa —pll

<k[(L=B) + Bu(L = (L= K)y) |l —

< k[1-BuyuQ = 1) ]l - pll,

and

lletni1 — pll = “(1 —a,) TV, + a,Tw, _p”

<1 -aykl|v, -pl + ko, ||lwy, -pl
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< (L= a)k* (1= Buyu@ = )|ty = pll + kot (1 = (L = K)y) 14 = |
= k[(l = o)k — (1= ) Buyuk(1 = k) + 0ty — 0ty (1 = k)] lun - pll
= k[l ~ 1 =a,)A=k) =yl = k) = (1= 0ot) Buyuk(1 - k)] lu, - pll
for all n. Since oy, B, Yu € (%,1) for sufficiently large n, —%(1 -k)<-1-a,)1-k) <0,

—(1-k) < —a,y,(1-k) < —i(l —k),and —%k(l —k) < —=(1- o) Buynk(1—k) < O for sufficiently
large n. Hence,

1= (1= an)(L = k) = otuyu(l = k) = (1 = otn) Buyuk (1 = k) <1 = i(l —k)

for sufficiently large n. Put ¢, = k" (1 - i(l — k))"|lx1 — p|| for all n. Then we have

o Bo K= 50 -K) - 5k - K)ol _
=00 ¢, k(1= A= k)"lluy - pll

and so the case (2.6) in the Thakur-Thakur-Postolache iteration method is faster than the
case (2.5) in the Abbas iteration method. |

By using a similar proof, we can compare the Thakur-Thakur-Postolache and the
Agarwal iteration methods as follows.

Theorem 4.2 Let C be a nonempty, closed, and convex subset of a Banach space X, x; € C,
T: C — C a contraction with constant k € (0,1) and p a fixed point of T. If 1 — o, < @0y,
1-B, < By, and 1 -y, < y, for sufficiently large n, then the case (2.6) in the Thakur-Thakur-
Postolache iteration method converges faster than the case (2.4) in the Agarwal iteration
method and the case (2.4) in the Agarwal iteration method is faster than the cases (3.29)
and (3.30) in the Thakur-Thakur-Postolache iteration method.

Also by using similar proofs, we can compare some another iteration methods. We
record those as follows.

Theorem 4.3 Let C be a nonempty, closed, and convex subset of a Banach space X, x; € C,
T: C— C a contraction with constant k € (0,1), and p a fixed point of T. If 1 — o, < tyy,
1- By < By, and 1 -y, <y, for sufficiently large n, then the case (2.3) in the Abbas iteration
method converges faster than the case (2.2) in the Ishikawa iteration method and the case
(2.2) in the Ishikawa iteration method is faster than the cases (3.11) and (3.12) in the Abbas
iteration method.

It is notable that there are some cases which the coefficients have no effective roles to
play in the rate of convergence. By using similar proofs, one can check the next result.
One can obtain some similar cases. This shows us that researchers should stress more the
probability of the efficiency of coefficients in the rate of convergence for iteration methods.

Theorem 4.4 Let C be a nonempty, closed, and convex subset of a Banach space X, x; € C,
T: C— C a contraction with constant k € (0,1), p a fixed point of T, and o, B, vu € (0,1)
foralln > 0. Then the case (2.4) in the Agarwal iteration method is faster than the case (2.1)
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in the Mann iteration method, the case (2.5) in the Abbas iteration method is faster than the
case (2.1) in the Mann iteration method, the case (2.6) in the Thakur-Thakur-Postolache
iteration method is faster than the case (2.1) in the Mann iteration method, the case (2.4) in
the Agarwal iteration method is faster than the case (2.2) in the Ishikawa iteration method,
the case (2.5) in the Abbas iteration method is faster than the case (2.2) in the Ishikawa
iteration method and the case (2.6) in the Thakur-Thakur-Postolache iteration method is
faster than the case (2.2) in the Ishikawa iteration method.

5 Examples and figures
In this section, we provide some examples to illustrate our results.

Examplel Let X =R, C =[1,60], x9 = 20, «,, = 0.7, and B,, = 0.85 for all # > 0. Define the
map T: C — Cbytheformula T'(x) = (3x+ 18)% forallx € C.Itis easy to see that T'is a con-
traction. In Tables 1-3, we first compare two cases of the Mann iteration method and also
four cases of the Ishikawa and Agarwal iteration methods separately. From a mathematical
point of view, one can see that the Mann iteration (3.1) is more than 2.82 times faster than
the Mann iteration (2.1), the Ishikawa iteration (3.2) is more than 1.07 times faster than
the Ishikawa iteration (3.4), the Ishikawa iteration (3.2) is more than 11.33 times faster
than the Ishikawa iteration (3.3), the Ishikawa iteration (3.2) is more than 11 times faster

Table 1 Cases of Mann iteration

Step Mann (2.1) Mann (3.1)
1 152817976045  8.9908610772
2 11.8962912491  5.186577882
3 94591508761  3.8138707904
4 76992520365  3.305644632
5 64247631019  3.1152016077
6 54994648986  3.0434826465
7 48262347919  3.0164213456
8 43355308466  3.0062028434

9 3.977352589 3.0023431856
10 3.7156123245  3.0008851876
1 35241766763  3.000334402
12 3.3840675849  3.0001263293
13 3.2814716521  3.0000477244
14 3.2063163994  3.0000180292
15 3.1512468009  3.000006811
16 3.11088634 3.0000025731
17 3.0813015724  3.000000972
18 30596130334  3.0000003672
19 3.0437118532  3.0000001387
20 3.0320530065  3.0000000524
21 3.0235042722  3.0000000198
22 30172357852 3.0000000075
23 3.0126392095  3.0000000028
24 3.0092685565
25 3.0067968355
26 3.004984289
63 3.0000000517
64 3.0000000379
65 3.0000000278
66 3.0000000204

CPU time 0.0010 0.0007
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Table 2 Cases of Ishikawa iteration

Step Ishikawa (3.2)  Ishikawa (3.3)  Ishikawa (3.5) Ishikawa (3.4)
1 6.022745179 17.599516463 6.397259957 17.53342562
2 3.55504988 15.542488073 3.725044385 15426710149
3 3.102829451 13.778956254 3.157958555 13.626959863
4 3.019085154 12.266356345 3.034584416 12.089125019
5 3.003543432 10.968408676 3.007580568 10.774826445
6 3.000657931 9.854176549 3.001661995 9.651358665
7 3.000122164 8.89726621 3.000364402 8.690843013
8 3.000022683 8.07514758 3.000079898 7.86950815
9 3.000004212 7368577613 3.000017518 7.167078769

10 3.000000782 6.76111087 3.000003841 6.566256169

11 3.000000145 6.23868412 3.000000842 6.052276815

12 3.000000027 5.789263769 3.000000185 5612537089

13 3.000000005 5402546543 3.00000004 5.23627424

14 3.000000001 5.069705312 3.000000009 491429501

15 4.783173147 3.000000002 4.638744748

16 4.536459758 4402910896

17 4323995342 4.201055645

18 4.14099766 4.028273397

19 3.983358785 3.880369278

20 3.847548529 3.753755571

21 3730532022 3.645363373

22 3629699305 3.55256722

23 3542805134 3473120743

24 3467917475 3405101727

25 3403373393 3.346865184

26 3347741258 3.297003256

27 3299788327 3.254310946

28 3.258452935 3217756821

29 3222820611 3.18645797

30 3.192103569 3.159658578

31 3.165623078 3.136711605

32 3.142794307 3.117063114

33 3.123113286 3.100238856

34 3.1061457 3.0858328

35 3.09151723 3.07349731

CPUtime  0.00086 0.0035 0.0016 0.0085

Table 3 Cases of Agarwal iteration
Step Agarwal (3.13)  Agarwal (3.14) Agarwal (3.16) Agarwal (3.15)

1 3.663643981 4.231276342 4038158759 4.165185499

2 3.034148064 3.125898552 3.08652991 3.112771857

3 3.001785887 3.013368608 3.007415671 3.011314821

4 3.000093479 3.001425297 3.000637055 3.001139398

5 3.000004893 3.000152024 3.000054738 3.000114779

6 3.000000256 3.000016216 3.000004703 3.000011563

7 3.000000013 3.00000173 3.000000404 3.000001165

8 3.000000001 3.000000184 3.000000035 3.000000117

9 3 3.00000002 3.000000003 3.000000012

10 3.000000002 3 3.000000001
11 3 3

CPUtime  0.00095 0.0034 0.0011 0.0011
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Figure 1 CPU time.

than the Ishikawa iteration (3.5), the Ishikawa iteration (3.4) is more than 8.75 times faster
than the Ishikawa iteration (3.5), the Agarwal iteration (3.13) is 1.22 times faster than the
Agarwal iteration (3.14), the Agarwal iteration (3.13) is 1.11 times faster than the Agarwal
iteration (3.15), the Agarwal iteration (3.13) is 1.22 times faster than the Agarwal itera-
tion (3.16) and so on. We first add our CPU time in Tables 1-3 for each iteration method.
Also, we provide Figure 1 by using at least 30 times calculating of CPU times for our faster
cases in the methods. From a computer-calculation point of view, we get a different an-
swer. As one can see in the CPU time table, we found that the Agarwal iteration (3.13) and
the Mann iteration (3.1) are faster than the Ishikawa iteration (3.2). This note emphasizes
the difference of the mathematical results and computer-calculation results which have
appeared many times in the literature.

The next example illustrates Lemma 3.2.

Example 2 Let X =R, C =[0,2000], x9 = 1000, «,, = 0.85, 8,, = 0.65, and y,, = 0.75 for all
n > 0. Define the map T: C — C by the formula T'(x) = V2 for all x € C. Table 4 shows
us that the Abbas iteration (3.17) converges faster than the other cases, the Abbas iteration
(3.18) is 1.1 times faster than the Abbas iteration (3.20), the Abbas iteration (3.19) is 1.05
times faster than the Abbas iteration (3.20), the Abbas iteration (3.21) is 1.04 times faster
than the Abbas iteration (3.22) and 1.3 times faster than the Abbas iteration (3.23) and the
Abbas iteration (3.24). One can get similar results about difference of the mathematical

and computer-calculating points of views for this example.
The next example illustrates Theorem 3.1.

Example 3 Let X =R, C =[1,60], xo =40, @, = 0.9, B, = 0.6, and y,, = 0.8 for all n > 0.
Define the map 7: C — C by T'(x) = Vx2 = 8x + 40 for all x € C (see [23]). Table 5 shows
the Abbas iteration (3.17) converges 1.09 times faster than the Thakur-Thakur-Postolache
iteration (2.6) and the Thakur-Thakur-Postolache iteration (2.6) is 1.16 times faster than
the Abbas iteration (2.5) from the mathematical point of view. Again, we get different
results from the computer-calculating point of view by checking Table 5 and Figures 2
and 3.

The next example shows that choosing the coefficients is very important in the rate of

convergence of an iteration method.
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Step Abbas (3.17) Abbas (3.18) Abbas (3.19) Abbas (3.20) Abbas (3.21) Abbas (3.22) Abbas (3.23) Abbas (3.24)

1
2
3
4
5
6
7
8

9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

20.933947
3.501533
1650123
1.218545
1.080705
1.030883
1.011982
1.004673
1.001827
1.000715
1.00028
1.000109
1.000043
1.000017
1.000007
1.000003
1.000001

23.074444
3915728
1.789347
1.278689
1.109014
1.044439
1.018426
1.007695
1.003223
1.001351
1.000567
1.000238
1.0001
1.000042
1.000018
1.000007
1.000003
1.000001
1.000001
1

1
1
1

29.706456  30.294581

4912771
207514
1392374
1.161005
1.069469
1.030642
1.013649
1.006106
1.002737
1.001228
1.000551
1.000247
1.000111
1.00005
1.000022
1.00001
1.000005
1.000002
1.000001
1

1
1
1

5052334
2.127569
1417334
1.174049
1.076461
1.034379
1.015622
1.007132
1.003264
1.001495
1.000685
1.000314
1.000144
1.000066
1.00003
1.000014
1.000006
1.000003
1.000001
1.000001
1

1
1
1
1

42622758
6.872931
2605814
1.596596

1.254442

1.115609

1.054109

1.025684

1.012273

1.005884

1.002825

1.001357

1.000653

1.000314

1.000151

1.000073

1.000035

1.000017

1.000008

1.000004

1.000002

1.000001

1

1

1

1

1

1

1

43.000492
6.975246
2.644699
1.615195
1.264388
1.121158
1.057231
1.02743
1.013239
1.006411
1.00311
1.00151
1.000733
1.000356
1.000173
1.000084
1.000041
1.00002
1.00001
1.000005
1.000002
1.000001

.000001

1
1
1
1
1
1
1

74.725586

14.057893
4.919453
2.581994
1.750749
1.389425
1212285
1.119022
1.067815
1.038999
1.022548
1.013078
1.007599
1.00442
1.002572
1.001498
1.000872
1.000508
1.000296
1.000172
1.0001
1.000058
1.000034
1.00002
1.000012
1.000007
1.000004
1.000002
1.000001
1.000001
1

1
1
1
1
1
1

74.829373

14.097781
4.938021
2.592232
1.757015
1.39348
1.214975
1.120821
1.069015
1.039794
1.02307
1.013417
1.007818
1.00456
1.002661
1.001554
1.000907
1.00053
1.00031
1.000181
1.000106
1.000062
1.000036
1.000021
1.000012
1.000007
1.000004
1.000002
1.000001
1.000001
1

Table 5 Comparison between Thakur iteration and Abbas iteration

Step

Abbas (3.17)

— O OV 0O NO U A~ WN —

12
13
14

Thakur (2.6) Abbas (2.5)
31.77453587 33.18158852
2381196041  26.52340588
16.33019829 20.11920431
9.89958703  14.1634562
5.97706669 9.11456867
5.07407177 5.96019967
5.00409402 5.0925653
5.00022019 5.00645474
5.00001182 5.00043527
5.00000063 5.00002928
5.00000003 5.00000197
5 5.00000013
5 5.00000001
5
CPU time 0.0012 0.0012

31.22317681

22.75386567

14.88031305
84317634
5.36305686
5.01260299
5.00037245
5.00001094
5.00000032
5.00000001
5

0.0009
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Figure 2 Convergence behavior of the iteration methods of Thakur equation (2.6), Abbas equation
(2.5), and Abbas equation (3.17).
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Figure 3 CPU time.

Example 4 Let X =R, C = [0,30], and xp = 20. Define the map 7: R — R by T'(x) =
5 +1for all x € C. Consider the following coefficients separately in the Thakur-Thakur-
Postolache iteration (2.6):

(a) an:ﬁn:)/nzl—m;

(b) Oln=,3n=1/n=1—ﬁ,

(€ ap=PBu=yu=1- 11
(n+1)2

(d) ap=PBn=yn=1- 1;
(n+1)5
for all # > 0. Table 6 shows that the Thakur-Thakur-Postolache iteration (2.6) with coeffi-
cients (a) is 1.25 times faster than the Thakur-Thakur-Postolache iteration (2.6) with coef-
ficients (b), the Thakur-Thakur-Postolache iteration (2.6) with coefficients (a) is 1.6 times
faster than the Thakur-Thakur-Postolache iteration (2.6) with coefficients (c) and the
Thakur-Thakur-Postolache iteration (2.6) with coefficients (a) is 2.16 times faster than the

Thakur-Thakur-Postolache iteration (2.6) with coefficients (d). This note satisfies other

’

iteration methods of course from the mathematical point of view. Here, we find a little
different computer-calculating result for the CPU time table of this example, which one

can check in Figure 4.
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Table 6 Cases of Thakur iteration

Page 23 of 24

Step (a) (b) (<] (d)
1 4.2609841803  9.03125 10.2844561595  10.8540663001
2 22826469537  4.2135416667 54804739263 6.2632682688
3 20353310377  2.6009419759 3.3595601275 40142167756
4 2.004416382 21466298421 25007642765 29360724936
5 2.0005520478  2.0330086855 2.1756764587 24287794141
6 2.000069006 2.0069770545 2.0591364356 2.1939030837
7 2.0000086257  2.0014018838 2.0192087915 2.0866824323
8 2.0000010782  2.0002701847 2.0060472121 2.0383477219
9 2.0000001348  2.0000502881 2.0018515929 2.0168034488
10 2.0000000168  2.0000090866 2.0005529869 2.0072985299
M 2.0000000021 2.0000016005 2.0001614712 2.0031443476
12 2.0000000003  2.0000002757 2.0000461907 2.0013443922
13 2.0000000466 2.0000129668 2.0005707329
14 2.0000000077 2.0000035774 2.0002406784
15 2.0000000013 2.0000009712 2.0001008564
16 2.0000002597 2.0000420126
17 2.0000000685 2.0000174019
18 2.0000000178 2.0000071693
19 2.0000000046 2.0000029385
20 2.0000000012 2.0000011985
21 2.0000004865
22 2.0000001966
23 2.0000000791
24 2.0000000317
25 2.0000000127
26 2.000000005
CPUtime  0.0013 0.0014 0.0015 0.0017
¥ 10
2 T T T T T
—#—(a)
15+ (b}
{c)
{d)
'] L —
05+ B
I R S M—é@&
0 s Al K i |
0 5 10 15 20 25 a0
Figure 4 CPU time.
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