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Abstract
We first present the concepts of proximal contraction and proximal nonexpansive
mappings on star-shaped sets in probabilistic Banach (Menger) spaces. We derive
some results about the best proximity points for these mappings in probabilistic
Banach (Menger) spaces. Next, we bring some examples that defend our main results.
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1 Introduction and preliminaries
The equation Tx = x for a mapping T : A → B may have no solution whenever A ∩ B = ∅,
where A, B are two nonempty subsets in a metric space (X, d). Under this condition, it is
beneficial to determine a point a ∈ A such that d(a, Ta) is minimal. If d(a, Ta) is the
global minimum value of dist(A, B), i.e., d(a, Ta) = dist(A, B) = min{d(a, b) : a ∈ A, b ∈ B},
then a is called best proximity point of T .

In , Fan [] proved one of the most classical theorems in best approximation theory.
He showed that if (V ,ρ) is a topological vector space with seminorm p, W ⊆ V , and T :
W → V is a mapping, then under certain conditions, there exists an element w ∈ W such
that

ρ(w – Tw) = d(Tw, W ).

Thereafter, this theorem has been generalized for continuous multivalued mappings by
Reich [, ] and Sehgal and Singh [].

Eldred et al. [] showed that every relatively nonexpansive mapping has a proximal point
under certain conditions. For further existence results of a best proximity point for several
types of contractions, we refer to [–].

In , a probabilistic metric (PM) space was introduced by Menger []. Schweizer
and Sklar [, ] were two pioneers in the study of PM spaces.

PM spaces are very useful in probabilistic functional analysis, quantum particle physics,
ε∞ theory, nonlinear analysis, and applications; see [–].

Indeed, the study of fixed point results in PM spaces is one of the most active research
areas in fixed point theory. Sehgal and Bharucha-Reid [] were two pioneers in this study.
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For further existence results of a fixed point and common fixed point in PM spaces, we
refer, for example, to [–]. In , Su and Zhang [], proved some best proximity
point theorems in PM spaces.

Let �+ be the set of all distribution functions F (i.e., a nondecreasing and left-continuous
function F : R→ [, ] such that inft∈R F(t) =  and supt∈R F(t) = ) such that F() = . Let
X be a nonempty set, ε = χ(,∞) ∈ �+, and F : X × X → �+ (F(p, q) = Fp,q) be a mapping
such that

(PM) Fp,q = ε iff p = q,
(PM) Fp,q = Fq,p, and
(PM) if Fp,q(t) =  and Fq,r(s) = , then Fp,r(t + s) = 

for all p, q, r ∈ X and t, s ≥ . Then (X, F) is called a probabilistic metric space.
For well-known definitions (such as t-norm, t-norm of H-type, probabilistic Menger

space, complete probabilistic Menger space, probabilistic normed (PN) space, etc.) and
known results, we refer to [, ].

First, we state some notation, definitions, and known results; afterward, we introduce
concepts of proximal contraction, proximal nonexpansive, P-property, weak P-property,
and semisharp proximinal pair in PM spaces. Throughout this paper, the minimum t-norm
will be denoted by �m(a, b) = min{a, b}.

Lemma . ([]) Let (xn) be a sequence in a probabilistic Menger space (X, F ,�) such that
� is a t-norm of H-type. If

Fxn ,xn+ (kt) ≥ Fxn–,xn (t) (n ≥ , t > )

for some k ∈ (, ), then (xn) is a Cauchy sequence.

Definition . Suppose that A is a nonempty subset of a probabilistic Menger space
(X, F ,�). Then the probabilistic diameter of A is the mapping DA defined on [,∞] by
DA(∞) =  and DA(x) = limt→x– ϕA(t), where ϕA(t) = inf{Fa,b(t) : a, b ∈ A}.

A nonempty set A in a probabilistic Menger space is bounded if limx→∞ DA(x) = . It is
easy to see that Fa,b(t) ≥ DA(t) for all a, b ∈ A and t ≥ .

Definition . Let (X, F ,�) be a probabilistic Menger space, A ⊆ X, and T : A → A be a
mapping. The mapping T is said to be an isometry if

FTx,Ty(t) = Fx,y(t) ∀x, y ∈ X,∀t ≥ .

Definition . Let (X, F ,�) be a probabilistic Menger space, and A, B ⊆ X. A mapping
T : A → B is said to be continuous at x ∈ A if for every sequence (xn) in A that converges
to x, the sequence (Txn) in B converges to Tx.

Remark . If T is an isometry mapping on subset A of a probabilistic Menger space
(X, F ,�), then T is a continuous mapping because

FTxn ,Tx(t) = Fxn ,x(t) →  ∀t > .

Also, it is easy to see that T is an injective mapping.
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An immediate consequence of the definition of a PN space ([], Section .) is the
following lemma.

Lemma . ([]) Let (X,ν,�) be a PN space, and Fν be the function from X × X into �+

defined by

Fν(p, q) = νp–q.

Then (X, Fν ,�) is a probabilistic Menger space.

We call this probabilistic metric Fν on X the probabilistic metric induced by the proba-
bilistic norm ν .

Definition . A PN space (X,ν,�) is said to be a probabilistic Banach space if (X, Fν ,�)
is a complete probabilistic Menger space.

Remark . Let A, B, C be a nonempty subsets of a PN space (X,ν,�) such that � is
continuous t-norm and x ∈ A. If two mappings T : A → B and S : A → C are continuous
at x, then T + S is continuous at x because

ν(T+S)(x)–(T+S)(xn)(t) ≥ �

(
νT(x)–T(xn)

(
t


)
,νS(x)–S(xn)

(
t


))
→  ∀t > .

Definition . Let A be a nonempty subset of a PM space (X, F). A mapping T : A → X
is called a contraction (nonexpansive) if FTx,Ty(t) ≥ Fx,y( t

α
) (FTx,Ty(t) ≥ Fx,y(t)) for some  <

α <  and for all x, y ∈ A and t > .

Definition . Suppose that A and B are nonempty subsets of a PM space (X, F). Then
the probabilistic distance of A, B is the mapping FA,B defined on [,∞] by

FA,B(t) = sup
x∈A,y∈B

Fx,y(t) ∀t ≥ .

Also, if A and B are nonempty subsets of a PN space (X,ν,�), then Fν
A,B(t) = νA–B(t) =

supx∈A,y∈B νx–y(t), where Fν is the probabilistic metric induced by the probabilistic norm ν .

Definition . Let (X, F) be a PM space. For subsets A and B of X, define:

A =
{

x ∈ A : ∃y ∈ B s.t. ∀t ≥ , Fx,y(t) = FA,B(t)
}

,

B =
{

y ∈ B : ∃x ∈ A s.t. ∀t ≥ , Fx,y(t) = FA,B(t)
}

.

Clearly, if A (or B) is a nonempty subset, then A and B are nonempty subsets.

Definition . Let (X, F) be a PM space, and (A, B) be a pair of nonempty subsets of X.
A mapping T : A → B is called the proximal contraction (proximal nonexpansive) if there
exists a real number  < α <  such that

Fu,Tx(t) = FA,B(t) = Fv,Ty(t) �⇒ Fu,v(t) ≥ Fx,y

(
t
α

)
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(
Fu,Tx(t) = FA,B(t) = Fv,Ty(t) �⇒ Fu,v(t) ≥ Fx,y(t)

)

for all u, v, x, y ∈ A and t > .

Example . Let X = [, ], and T : X → X be the mapping defined by Tx = 
 x. If Fx,y(t) =

t
t+|x–y| , then it is easy to check that FX,X(t) = . If Fu,Tx(t) =  = Fv,Ty(t), then for α = 

 , we
have Fu,v(t) = Fx,y( t

α
), where u, v, x, y ∈ X. Therefore, T is a proximal contraction.

Definition . Let X be a vector space, and A be a nonempty subset of X. Then the subset
A is called a p-star-shaped set if there exists a point p ∈ A such that αp + ( – α)x ∈ A for
all x ∈ A, α ∈ [, ], and p is called the center of A.

Clearly, each convex set C is a p-star-shaped set for each p ∈ C. Let (X,ν,�m) be a PN
space, A be a p-star-shaped set, B be a q-star-shaped set, and νp–q = νA–B. If x ∈ A, then
there exists a point y ∈ B such that νx–y(t) = νA–B(t) for all t > . So we have

νA–B(t) ≥ ν(αp+(–α)x)–(αq+(–α)y)(t)

≥ �m
(
να(p–q)(αt),ν(–α)(x–y)

(
( – α)t

))
= �m

(
νp–q(t),νx–y(t)

)
= �m

(
νA–B(t),νA–B(t)

)
= νA–B(t)

for all t > . Therefore, ν(αp+(–α)x)–(αq+(–α)y)(t) = νA–B(t), which means that A is a p-star-
shaped set and, similarly, that B is a q-star-shaped set.

Definition . Let (X, F) be a PM space. A pair (A, B) of nonempty subsets of X is said
to have the P-property (weak P-property) if A = ∅ and

Fu,x(t) = FA,B(t) = Fv,y(t) �⇒ Fu,v(t) = Fx,y(t)
(
Fu,x(t) = FA,B(t) = Fv,y(t) �⇒ Fu,v(t) ≥ Fx,y(t)

)

for all u, v ∈ A, x, y ∈ B, and t > .

Example . Let X = R
 and define

F(x,y),(u,v)(t) =
t

t +
√

(x – u) + (y – v)
.

Clearly, (X, F ,�m) is a complete probabilistic Menger space. Let

A =
{(

,

n

)
: n ∈N

}
∪ {

(, )
}

,

B =
{(

,

n

)
: n ∈ N

}
∪ {

(, )
}

.
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Then it is easy to check that A = A, B = B, and FA,B(t) = t
t+ . If

F(,x),(,y)(t) = FA,B(t) =
t

t + 
= F(,u),(,v)(t),

then x = y and u = v, so that

F(,x),(,u)(t) =
t

t + |x – u| =
t

t + |y – v| = F(,y),(,v)(t).

Therefore, the pair (A, B) has the P-property.

Example . Let X = R
 and define

F(x,y),(u,v)(t) =
t

t +
√

(x – u) + (y – v)
.

Let A = {(, )} and B = {(x, y) ∈ X : y =  +
√

 – x}. Clearly, A = {(, )} and B =
{(–, ), (, )}. If

F(,),(x,y)(t) = FA,B(t) =
t

t +
√


= F(,),(u,v)(t),

then

 = F(,),(,)(t) ≥ F(x,y),(u,v)(t),

where (x, y), (u, v) ∈ B. Therefore, the pair (A, B) has the weak P-property.

Definition . Let (X, F) be a PM space. A pair (A, B) of nonempty subsets of X is called
a semisharp proximinal pair if there exists at most one (x, y) ∈ A × B such that Fx,y (t) =
FA,B(t) = Fx,y(t) for all (x, y) ∈ A × B.

It is easy to check that if a pair (A, B) has the P-property, then the pair (A, B) is a semi-
sharp proximinal pair. Clearly, a semisharp proximinal pair (A, B) does not necessarily have
the P-property.

Example . Suppose that X = R, A = {–, }, B = {–, }, and Fx,y(t) = t
t+|x–y| . It is easy

to verify that FA,B(t) = t
t+ , A = A, B = B, and (A, B) is a semisharp proximinal pair but

does not have the P-property.

Remark . It is easy to check that the P-property is stronger than the weak P-property.
If a pair (A, B) has the weak P-property and T : A → B is a nonexpansive mapping, then
for all u, v, x, y ∈ A, we have

Fu,Tx(t) = FA,B(t) = Fv,Ty(t) �⇒ Fu,v(t) ≥ FTx,Ty(t) ≥ Fx,y(t).

That is, T is a proximal nonexpansive mapping. Similarly, if a pair (A, B) has the weak
P-property and T : A → B is a contraction mapping, then T is a proximal contraction
mapping. Also, a pair (A, B) has the P-property if and only if both pairs (A, B) and (B, A)
have the weak P-property.
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Definition . Let X and Y be vector spaces. A mapping T : X → Y is affine if

T

( n∑
i=

λixi

)
=

n∑
i=

λiT(xi)

for all n ∈N, x, . . . , xn ∈ X, and λ, . . . ,λn ∈ R such that
∑n

i= λi = .

In Section , we show some results on the best proximity points in probabilistic Banach
(Menger) spaces. For example, if (A, B) is a semisharp proximinal pair of a probabilistic
Banach space (X,ν,�m) such that A is a p-star-shaped set, A is a nonempty compact set,
B is a q-star-shaped set and νp–q(t) = νA–B(t) for all t > , then every proximal nonexpansive
mapping T : A → B with T(A) ⊆ B has a best proximity point. We also prove that if A
is a nonempty, compact, and convex subset of a probabilistic Banach space (X,ν,�m) and
T : A → A is a nonexpansive mapping, then T has a fixed point. Finally, we give some
examples which defend our main results.

2 Proximity point for proximal contraction and proximal nonexpansive
mappings

We first give the following lemma and then we state the main results of this paper. We
recall that if A (or B) is a nonempty subset, then A and B are nonempty subsets.

Lemma . Let (X, F ,�) be a complete probabilistic Menger space such that � is a t-norm
of H-type, and A, B ⊆ X be such that A is a nonempty closed set. If T : A → B is a proximal
contraction mapping such that T(A) ⊆ B, then there exists a unique x ∈ A such that
Fx,Tx(t) = FA,B(t) for all t > .

Proof Since A is nonempty and T(A) ⊆ B, there exist x, x ∈ A such that Fx,Tx (t) =
FA,B(t). Since Tx ∈ B, there exists x ∈ A such that Fx,Tx (t) = FA,B(t). Continuing this
process, we obtain a sequence (xn) ⊆ A such that Fxn+,Txn (t) = FA,B(t) for all n ∈ N and
t > . Since for all n ∈N,

Fxn ,Txn– (t) = FA,B(t) = Fxn+,Txn (t) (t > )

and T is a proximal contraction, we have

Fxn+,xn (t) ≥ Fxn ,xn–

(
t
α

)
( < α < , t > ).

Therefore, by Lemma ., (xn) is a Cauchy sequence and so converges to some x ∈ A.
Again by the assumption T(A) ⊆ B, Tx ∈ B. Then there exists an element u ∈ A such
that Fu,Tx(t) = FA,B(t) for all t > . Since for all n ∈N,

Fu,Tx(t) = FA,B(t) = Fxn+,Txn (t) (t > ),

by the hypothesis we have

Fu,xn+ (t) ≥ Fx,xn

(
t
α

)
≥ Fx,xn (t) (t > ).
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Letting n → ∞ shows that xn → u and thus x = u, so Fx,Tx(t) = FA,B(t). If there exists an-
other element y such that Fy,Ty(t) = FA,B(t), then by the hypothesis we have Fx,y(t) ≥ Fx,y( t

α
),

which means that x = y. �

Proposition . Let (X, F ,�) be a probabilistic Menger space, and A, B ⊆ X be such that
A is a nonempty set. Suppose that T : A → B is a proximal contraction mapping such that
T(A) ⊆ B and g : A → A is an isometry mapping such that A ⊆ g(A). Denote G = g(A)
and

G =
{

z ∈ G : ∃y ∈ B s.t. ∀t ≥ , Fz,y(t) = FG,B(t)
}

.

Then Tg– is a proximal contraction, and G = A.

Proof Since G ⊆ A, FG,B(t) ≤ FA,B(t) for all t > . Assume that x ∈ A ⊆ g(A). Then x =
g(x′) for some x′ ∈ A, and so there exists y ∈ B such that FA,B(t) = Fg(x′),y(t) ≤ FG,B(t) for all
t > . Thus, FA,B(t) = FG,B(t) for all t > . Now we show that Tg– is a proximal contraction.
To this end, suppose that u, v, x, y ∈ G are such that

Fu,Tg–x(t) = FG,B(t) = FA,B(t) = Fv,Tg–y(t) (t > ).

By the hypothesis we have

Fu,v(t) ≥ Fg–x,g–y

(
t
α

)
= Fgg–x,gg–y

(
t
α

)
= Fx,y

(
t
α

)
(t > )

for some α ∈ (, ). Therefore, Tg– is a proximal contraction. If x ∈ G, then x ∈ G ⊆ A,
and there exists y ∈ B such that Fx,y(t) = FG,B(t) = FA,B(t) for all t > , so that x ∈ A. If
x ∈ A ⊆ A, then there exists y ∈ B such that Fx,y(t) = FA,B(t) = FG,B(t) for all t > . On the
other hand, by the hypothesis x ∈ G, and therefore G = A. �

Corollary . Let the hypotheses of Lemma . be satisfied. Suppose that T : A → B is a
proximal contraction mapping such that T(A) ⊆ B and g : A → A is an isometry mapping
such that A ⊆ g(A). Then there exists a unique x ∈ A such that Fgx,Tx(t) = FA,B(t).

Proof By Proposition ., Tg– : G = g(A) → B is proximal contraction, and Tg–(G) =
Tg–(A) ⊆ T(A) ⊆ B. Now by Lemma . there exists a unique x′ ∈ A such that
Fx′ ,Tg–x′ (t) = FA,B(t). Since A ⊆ g(A), there exists x ∈ A such that x′ = g(x), so that
Fg(x),Tx(t) = FA,B(t). Note that g is an injective mapping, therefore, by Lemma ., x is
unique, and hence the result follows. �

Theorem . Let (X,ν,�m) be a probabilistic Banach space, A, B ⊆ X be such that A is a
convex set, A be a nonempty compact set, and B be a bounded convex set. Suppose that T :
A → B is a continuous affine and proximal nonexpansive mapping such that T(A) ⊆ B

and g : A → A is an isometry mapping such that A ⊆ g(A). Then there exists an element
x ∈ A such that νgx–Tx(t) = νA–B(t) for all t > .

Proof Fix z ∈ A and i ∈ (, ). We define the mapping Ti : A → B by

Tix = ( – i)Tz + iTx.
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We show that Ti is a proximal contraction. Let u, v, x, y ∈ A be such that

νu–Tix(t) = νA–B(t) = νv–Tiy(t) (t > ).

Since T is an affine mapping, we have

νu–T((–i)z+ix)(t) = νA–B(t) = νv–T((–i)z+iy)(t) (t > ).

So by the hypothesis we have

νu–v(t) ≥ ν(–i)z+ix–(–i)z–iy(t)

= νi(x–y)(t) = νx–y

(
t
i

)
(t > ).

Hence, Ti is a proximal contraction. Let x ∈ A, so that Tx ∈ B and Tz ∈ B. Therefore,
there exist u, v ∈ A such that

νu–Tx(t) = νA–B(t) = νv–Tz(t) (t > ).

Put y = iu + ( – i)v ∈ A. Then

νy–Tix(t) = νiu+(–i)v–(–i)Tz–iTx(t)

= νi(u–Tx)+(–i)(v–Tz)(t)

≥ �m
(
νi(u–Tx)(it),ν(–i)(v–Tz)

(
( – i)t

))
= �m

(
νu–Tx(t),νv–Tz(t)

)
= �m

(
νA–B(t),νA–B(t)

)
= νA–B(t) (t > ),

and thus Ti(A) ⊆ B. By Corollary . there exists a unique xi ∈ A such that νgxi–Tixi (t) =
νA–B(t) for all t > . Fix j ∈ (, ). Then

νgxi–Txi (t) ≥ �m
(
νgxi–Tixi (jt),νTixi–Txi

(
( – j)t

))
= �m

(
νA–B(jt),ν(–i)(Tz–Txi)

(
( – j)t

))

= �m

(
νA–B(jt),νTz–Txi

(
( – j)t

 – i

))

≥ �m

(
νA–B(jt), DB

(
( – j)t

 – i

))
(t > ).

Now letting i → , we obtain

lim
i→

νgxi–Txi (t) ≥ �m
(
νA–B(jt), 

)
= νA–B(jt)

(∀j ∈ (, ), t > 
)
.

Then letting j → , we have

lim
i→

νgxi–Txi (t) = νA–B(t) (t > ).
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So we can create a sequence (xn) in A such that

νgxn–Txn (t) → νA–B(t) (t > ).

Since A is compact, the sequence (xn) has a subsequence (xnk ) such that xnk → x ∈ A. By
Remark ., g is continuous mapping, and so g – T is a continuous mapping by Remark ..
Indeed, since �m is a continuous t-norm, p → νP is continuous ([], Chapter ), and we
get

νgx–Tx(t) = lim
k→∞

νgxnk –Txnk
(t) = νA–B(t),

as required. �

Theorem . Let (X, F ,�) be a complete probabilistic Menger space such that � is a
t-norm of H-type, and (A, B) be a pair of subsets of X with the weak P-property such that
A is a nonempty closed set. If T : A → B is a contraction mapping such that T(A) ⊆ B,
then there exists a unique x in A such that Fx,Tx(t) = FA,B(t) for all t > .

Proof It is a direct consequence of Remark . and Lemma .. �

Clearly, the pair (A, A) has the P-property, so we have the following result.

Corollary . Let (X, F ,�) be a complete probabilistic Menger space such that � is a
t-norm of H-type. Then every contraction self-mapping from each nonempty closed sub-
set of X has a unique fixed point.

Theorem . Let (X,ν,�m) be a probabilistic Banach space, and (A, B) be a semisharp
proximinal pair of X such that A is a p-star-shaped set, A be a nonempty compact set,
B be a q-star-shaped set, and let νp–q(t) = νA–B(t) for all t > . If T : A → B is a proximal
nonexpansive mapping such that T(A) ⊆ B, then there exists an element x ∈ A such that
νx–Tx(t) = νA–B(t) for all t > .

Proof For each integer i ≥ , define Ti : A → B by

Ti(x) =
(

 –

i

)
Tx +


i

q (x ∈ A).

Then by the hypothesis we have Ti(A) ⊆ B. Next, we show that for each i, Ti is a proximal
contraction with α =  – 

i < . To do this, suppose that x, y, u, v, s, r ∈ A and t >  are such
that

νu–Tix(t) = νv–Tiy(t) = νA–B (t) = νA–B(t) = νs–Tx(t) = νr–Ty(t).

Now we define

u′ =
(

 –

i

)
s +


i

p ∈ A, v′ =
(

 –

i

)
r +


i

p ∈ A,
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so we have

νA–B(t) ≥ νu′–Tix(t) = ν(– 
i )s+ 

i p–(– 
i )Tx– 

i q(t)

= ν(– 
i )(s–Tx)+ 

i (p–q)(t)

≥ �m

(
ν(– 

i )(s–Tx)

(
t
(

 –

i

))
,ν 

i (p–q)

(
t
(


i

)))

= �m
(
νs–Tx(t),νp–q(t)

)
= �m

(
νA–B(t),νA–B(t)

)
= νA–B(t).

Hence, νu′–Tix(t) = νA–B(t). Since νu–Tix(t) = νA–B(t) and (A, B) is a semisharp proximinal
pair, we have u′ = u. By the same method we also have v′ = v. Since T is a proximal nonex-
pansive mapping, we have

νu–v(t) = νu′–v′ (t) = ν(– 
i )(s–r)(t)

= νs–r

(
t

 – 
i

)
≥ νx–y

(
t

 – 
i

)
.

Therefore, Ti is a proximal contraction with α =  – 
i < . By Lemma ., for each i ≥ ,

there exists a unique ui ∈ A such that νui–Tiui (t) = νA–B (t) = νA–B(t). Since A is compact
and (ui) ⊆ A, without loss of generality, we can assume that ui is a convergent sequence
and ui → x ∈ A.

For each i ≥ , since T(ui) ∈ T(A) ⊆ B, there exists vi ∈ A such that νvi–Tui (t) = νA–B(t).
So we have

νA–B(t) ≥ ν(– 
i )vi+ 

i p–Tiui
(t)

= ν(– 
i )vi+ 

i p–(– 
i )Tui– 

i q(t)

≥ �m

(
ν(– 

i )(vi–Tui)

(
t
(

 –

i

))
,ν 

i (p–q)

(
t
(


i

)))

= �m
(
νvi–Tui (t),νp–q(t)

)
= �m

(
νA–B(t),νA–B(t)

)
= νA–B(t).

Thus, νA–B(t) = ν(– 
i )vi+ 

i p–Tiui
(t). Since (A, B) is a semisharp proximinal pair and νA–B(t) =

νui–Tiui (t), we have ui = ( – 
i )vi + 

i p, and so

νui–vi (t) = ν 
i (vi–p)(t) = νvi–p(it).

Since A is compact and (vi) ⊆ A, without loss of generality, we can assume that vi is a
convergent sequence and vi → z ∈ A. For every j ≤ i, we have

νui–vi (t) = νvi–p(it) ≥ νvi–p(jt) ≥ �m

(
νvi–z

(
j


t
)

,νz–p

(
j


t
))

.
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Letting i → ∞, we have

lim
i→∞νui–vi (t) ≥ νz–p

(
j


t
)

(∀j ≥ ).

Now letting j → ∞, we have

lim
i→∞νui–vi (t) ≥ lim

j→∞νz–p

(
j


t
)

= .

Therefore, νui–vi (t) → , so that z = limi→∞ vi = limi→∞ ui = x. Since Tx ∈ B, there must
exist u ∈ A such that νA–B(t) = νu–Tx(t). Since we know that νA–B(t) = νvi–Tui (t) and T is a
proximal nonexpansive mapping, it follows that νvi–u(t) ≥ νui–x(t) → . This implies that
u = limi→∞ vi = x and then νA–B(t) = νx–Tx(t), as required. �

Theorem . Let (X,ν,�m) be a probabilistic Banach space, (A, B) be a semisharp prox-
iminal pair of X with the weak P-property such that A is a p-star-shaped set, A be a
nonempty compact set, B be a q-star-shaped set, and let νp–q(t) = νA–B(t) for all t > . If
T : A → B is a nonexpansive mapping such that T(A) ⊆ B, then T has a best proximity
point in A.

Proof It is a direct consequence of Remark . and Theorem .. �

Proposition . Let (X, F ,�) be a probabilistic Menger space, and A, B ⊆ X be such that
A is a nonempty set. Suppose that T : A → B is a proximal nonexpansive mapping such
that T(A) ⊆ B and g : A → A is an isometry mapping such that A ⊆ g(A). Denote
G = g(A) and

G =
{

z ∈ G : ∃y ∈ B s.t. ∀t ≥ , Fz,y(t) = FG,B(t)
}

.

Then Tg– is a proximal nonexpansive, and G = A.

Proof The result follows by using a similar argument as in the proof of Proposition ..
�

The following theorem is an immediate consequence of Theorem . and Proposi-
tion ..

Theorem . Let (X,ν,�m) be a probabilistic Banach space, (A, B) be a semisharp prox-
iminal pair of X such that A is a p-star-shaped set, A be a nonempty compact set, B be a
q-star-shaped set, and let νp–q(t) = νA–B(t) for all t > . If T : A → B is a proximal nonex-
pansive mapping such that T(A) ⊆ B and g : A → A is an isometry mapping such that
A ⊆ g(A), then there exists an element x ∈ A such that νgx–Tx(t) = νA–B(t) for all t > .

Corollary . Let (X,ν,�m) be a probabilistic Banach space, and let (A, B) be a pair of
convex subsets of X with the P-property such that A is a nonempty compact set. If T : A →
B is a nonexpansive mapping such that T(A) ⊆ B and g : A → A is an isometry mapping
such that A ⊆ g(A), then there exists an element x ∈ A such that νgx–Tx(t) = νA–B(t) for
all t > .
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In Corollary ., if g(x) = x, then we have the following corollary.

Corollary . With the hypotheses of the previous corollary, if T : A → B is a nonexpan-
sive mapping such that T(A) ⊆ B, then T has a best proximity point.

In Corollary ., if A = B, then we have the following corollary.

Corollary . If A is a nonempty, compact, and convex subset of a probabilistic Banach
space (X,ν,�m) and T : A → A is a nonexpansive mapping, then T has a fixed point.

In the following, we give some examples that defend our main results.

Example . Let X = R
, A = {(, y) : y ∈ R} and B = {(, y) : y ∈ R}. Suppose that

T : A → B is defined by T(, y) = (, y
 ), g : A → A is defined by g(, y) = (, –y), and

F(x,x′),(y,y′)(t) = t
t+|x–y|+|x′–y′| . It is easy to see that (X, F ,�m) is a complete probabilistic

Menger space, FA,B(t) = t
t+ , A = A, B = B, T(A) ⊆ B, and

Fg(,x),g(,y)(t) = F(,–x),(,–y)(t) =
t

t + |x – y| = F(,x),(,y)(t).

If (, u), (, x), (, v), (, y) ∈ A are such that

t
t +  + |u – x

 | = F(,u),T(,x)(t) = FA,B(t) = F(,v),T(,y)(t) =
t

t +  + |v – y
 | ,

then u = x
 and v = y

 , so that

F(,u),(,v)(t) = F(, x
 ),(, y

 )(t) =
t

t + 
 |x – y| = F(,x),(,y)

(
t



)
.

Therefore, all the hypothesis of Corollary . are satisfied, and we also have

F(,),T(,)(t) = F(,),(,)(t) =
t

t + 
= FA,B(t).

Example . Let X = R, A = [, ] and B = [, ]. For every x ∈ X, define νx(t) = t
t+|x| .

It is easy to see that (X,ν,�m) is a probabilistic Banach space, νA–B(t) = t
t+ , A = {},

and B = {}. For every x ∈ A, define T : A → B by Tx =  – x and let g be the iden-
tity mapping. Clearly, T is a continuous affine and proximal nonexpansive mapping, and
T(A) = {T()} = {} = B. Therefore, all the hypotheses of Theorem . are satisfied, and
also we have

ν–T(t) = ν–(t) =
t

t + 
= νA–B(t).

The following example shows that the weak P-property of the pair (A, B) cannot be re-
moved from Theorem ..

Example . Let X = R, A = {–, }, B = {–, }, and Fp,q(t) = t
t+|p–q| . Clearly, (X, F ,�m)

is a complete probabilistic Menger space. Then A = A, B = B, and FA,B(t) = t
t+ . Let T :



Shayanpour et al. Fixed Point Theory and Applications  (2016) 2016:13 Page 13 of 15

A → B be a mapping given by T(–) =  and T() = –. It is easy to see that for α = 
 , T is

a contraction mapping with T(A) ⊆ B. The mapping T does not have any best proximity
point because Fx,Tx(t) = t

t+ < t
t+ = FA,B(t) for all x ∈ A. It should be noted that the pair

(A, B) does not have the weak P-property.

Example . Let X = R, A = [, ], and B = [, ]. For every x ∈ X, define νx(t) = t
t+|x| . It

is easy to see that (X,ν,�m) is a probabilistic Banach space, A is -star-shaped set, B is
-star-shaped set,

νA–B(t) = sup
x∈A,y∈B

νx–y(t) =
t

t + 
, A = {}, B = {},

and

ν–(t) =
t

t + | – | =
t

t + 
= νA–B(t).

Also, (A, B) is a semisharp proximinal pair. Now for each x ∈ A, define T : A → B by Tx =
 – x. If u, v, x, y ∈ A, then

t
t + |u –  + x| = νu–Tx(t) = νA–B(t) = νv–Ty(t) =

t
t + |v –  + y| ,

so that u = x =  and v = y = . Thus,

νu–v(t) =  = νx–y(t).

So T is a proximal nonexpansive, and T(A) = B. Therefore, all the hypotheses of Theo-
rem . are satisfied, and we also have

ν–T(t) = ν–(t) =
t

t + 
= νA–B(t).

Example . Let X = R
, A = {(x, ) :  ≤ x ≤ }, B = {(x, y) : x + y = , – ≤ x ≤ }, B =

{(x, ) :  ≤ x ≤ }, B = B ∪ B, and ν(x,x′)(t) = t
t+|x|+|x′| . It is easy to see that (X,ν,�m) is

a probabilistic Banach space, νA–B(t) = t
t+ , B is not convex but is a (, )-star-shaped set,

and A is (, )-star-shaped set. Clearly, A = A and B = B. So

ν(,)–(,)(t) =
t

t + || + || =
t

t + 
= νA–B(t),

and (A, B) is a semisharp proximinal pair. Suppose that T : A → B is defined by

T(x, ) =

{
(, ), x = ,
(sin x, ), x = ,

and (u, ), (v, ), (x, ), (y, ) ∈ A are such that

ν(u,)–T(x,)(t) = νA–B(t) =
t

t + 
= ν(v,)–T(y,)(t).
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If x = y = , then u = v = , and therefore

ν(u,)–(v,)(t) = ν(,)–(,)(t) =  = ν(x,)–(y,)(t).

If x, y = , then u = sin x, v = sin y, and therefore

ν(u,)–(v,)(t) = ν(sin x,)–(sin y,)(t) =
t

t + | sin x – sin y|
≥ t

t + |x – y|
= ν(x,)–(y,)(t).

If x =  and y = , then u =  and v = sin y, and therefore

ν(u,)–(v,)(t) = ν(,)–(sin y,)(t) =
t

t + | sin y| ≥ t
t + |y| ≥ ν(,)–(y,)(t).

If x =  and y = , then u = sin x and v = , and therefore

ν(u,)–(v,)(t) = ν(sin x,)–(,)(t) =
t

t + | sin x| ≥ t
t + |x| ≥ ν(x,)–(,)(t).

Hence, T is proximal nonexpansive, and T(A) ⊆ B = B, so all the hypotheses of Theo-
rem . are satisfied, and we also have

ν(,)–T(,)(t) = ν(,)–(,)(t) =
t

t + 
= νA–B(t).

Example . Let X = R, A = [, ], B = [ 
 , ], and νx(t) = t

t+|x| . Clearly, (X,ν,�m) is a
probabilistic Banach space, νA–B(t) = t

t+ 


, the pair (A, B) has the P-property, A = {}, and

B = { 
 }. If Tx = – 

 x + , then T(A) = {T()} = { 
 } = B. Let x, y ∈ A. Then we have

νTx–Ty(t) = ν– 
 (x–y)(t) = νx–y(t) ≥ νx–y(t).

Therefore, all the hypotheses of Corollary . are satisfied, and hence T has a best prox-
imity point, and we also have

ν–T(t) = ν– 


(t) =
t

t + 


= νA–B(t).
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