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Abstract

In this paper, we propose an iterative algorithm and, by using the proposed
algorithm, prove some strong convergence theorems for finding a common element
of the set of solutions of a finite family of split equilibrium problems and the set of
common fixed points of a countable family of nonexpansive mappings in Hilbert
spaces. An example is given to illustrate the main result of this paper. As an
application, we construct an algorithm to solve an optimization problem.
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1 Introduction

Throughout this paper, let R denote the set of all real numbers, N denote the set of all
positive integer numbers, H be a real Hilbert space and C be a nonempty closed convex
subset of H. A mapping S: C — C is said to nonexpansive if

5% = Syll < llx =yl

for all x,y € C. The set of fixed points of S is denoted by Fix(S). It is known that the set
Fix(S) is closed and convex.

Let F: C x C — R be a bifunction. The equilibrium problem for F is to find z € C such
that

F(z,y)>0 (L1)
for all y € C. The set of all solutions of the problem (1.1) is denoted by EP(F), i.e.,
EP(F) = {z € C:F(z,y) > 0,Vy € C}.

From the problem (1.1), we can consider some related problems, that is, variational in-

equality problems, complementarity problems, fixed point problems, game theory and
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other problems. Also, many problems in physics, optimization, and economics can be re-
duced to finding a solution of the problem (1.1) (see [1-4]).

In 1997, Combettes and Hirstoaga [5] introduced an iterative scheme of finding a solu-
tion of the problem (1.1) under the assumption that EP(F) is nonempty. Later on, many
iterative algorithms were considered to find a common element of the set of Fix(S) NEP(F)
(see [6-11]).

Recently, some new problems called split variational inequality problems were consid-
ered by some authors. Especially, Censor et al. [12] initially studied this class of split vari-
ational inequality problems.

Let H; and H; be two real Hilbert spaces. Given the operators f : H; — H; and g : Hy —
H,, bounded linear operator A : H; — H,, and nonempty closed convex subsets C C H;
and Q C H», the split variational inequality problem is formulated as follows:

Find a point x* € C such that

[F(:7)5-7) =0
for all x € C and such that
y =Ax"€Q solves (g(y*),y-y*)=0
forally € Q.
After investigating the algorithm of Censor et al., Moudafi [13] introduced a new itera-

tive scheme to solve the following split monotone variational inclusion:
Find x* € H; such that

0 ef(x*) +B; (x*)
and such that
Yy =Ax*€H, solves 0¢€g(y*)+B:(y"),
where B : H; — 2!1i is a set-valued mappings for i = 1,2.

In 2013, Kazmi and Rizvi [14] considered a new class of split equilibrium problems. Let
F:CxC—RandF,:Q x Q— R be two bifunctions and A : H; — H, be a bounded
linear operator. The split equilibrium problem is as follows:

Find x* € C such that

Fi(x*,x) >0 (1.2)
for all x € C and such that
y =Ax"€Q solves F,(y*,y) >0 1.3)

for all y € Q. The set of all solutions of the problems (1.2) and (1.3) is denoted by €, i.e.,

Q = {z € C:z € EP(F) such that Az € EP(F,)}.
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For more details as regards the split equilibrium problems, refer to [15, 16], in which the
author gave an iterative algorithm to find a common element of the sets of solutions of the
split equilibrium problem and hierarchical fixed point problem.

In this paper, inspired by the results in [14] and [16], we propose an iterative algorithm
to find a common element of the set of solutions for a family of split equilibrium problems
and the set of common fixed points of a countable family of nonexpansive mappings. In
particular, we use some new methods to prove the main result of this paper. As an appli-
cation, we propose an iterative algorithm to solve a split variational inequality problem.

2 Preliminaries
Let H be a Hilbert space and C be a nonempty closed subset of H. For each point x € H,
there exists a unique nearest point of C, denoted by Pcx, such that

llx = Pex|| < llx =yl

for all y € C. Such a P¢ is called the metric projection from H onto C. It is well known that
Pc is a firmly nonexpansive mapping from H onto C, i.e.,

IPcx = Peyll* < (Pex = Pcy,x — )
for all x,y € H. Further, for any x € H and z € C, z = Pcx if and only if
x—2z,z—y)>0

forally e C.
A mapping B: C — H is called a-inverse strongly monotone if there exists « > 0 such
that

(x —y,Bx — By) > || Bx — By||*

for all x,y € H. For each A € (0,2«], I — AB is a nonexpansive mapping of C into H (see
(171).

Consider the following variational inequality for an inverse strongly monotone map-
ping B:

Find u € C such that

(v—u,Bu) >0

for all v € C. The set of solutions of the variational inequality is denoted VI(C, B). It is well
known that

ueVI(C,B) <= u=Pc(u-A\Bu)

for any A > 0. By this property, we can use a simple method to show that # € VI(C, B).
In fact, let {x,} be a sequence in C with x,, — u. If x,, — Pc(I — AB)x,, — 0, then, by the
demiclosedness principle, it follows that u = Pc(I — AB), i.e., u € VI(C, B). In Section 3, we
use this method to show the conclusions of our main results in this paper.



Wang et al. Fixed Point Theory and Applications (2016) 2016:4 Page 4 of 22

Let S: C — C be a mapping. It is well known that S is nonexpansive if and only if the
complement / — S is %—inverse strongly monotone (see [18]). Assume that Fix(S) # #. Then
we have

1Sx — x|1® < 2(x — Sxx,x — &) (2.1)
for all x € C and % € Fix(S), which is obtained directly from
llx =&l > 1Sx - S&]1% = 1S - &)1% = [ Sx —x + (x - )|
= [1Sx — x[|? + [l — &[|* + 2(Sx — x,x — &).

Let F be a bifunction of C x C into R satisfying the following conditions:
(Al) F(x,x)=0forallx e C;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0 for all x,y € C;

(A3) foreachx,y,z e C,limyo F(tz + (1 - t)x,y) < F(x,9);

(A4) foreachx € C, y— F(x,7) is convex and lower semi-continuous.

Lemma 2.1 [19] Let C be a nonempty closed convex subset of a Hilbert space H and F :
C x C — R be a bifunction which satisfies the conditions (Al)-(A4). For any x € H and
r >0, define a mapping T, : H — C by

r

Tf(x):{zeC:F(z,y)+1(y—z,z—x)EO,VyGC}. (2.2)

Then TF is well defined and the following hold:
(1) TF is single-valued;
(2) TF is firmly nonexpansive, i.e., for any x,y € H,

| e~ Tfy|* < (TFx - Tfyx )

(3) Fix(TF) = EP(F);
(4) EP(F) is closed and convex.

Lemma 2.2 [20] Let F: C x C — R be a bifunction satisfying the conditions (A1)-A(4).
Let TF and TF be defined as in Lemma 2.1 with r,s > 0. Then, for any x,y € H, one has

|77 =Ty = e -yl +

S
1- i 275

Remark 2.1 In [20], some other conditions are required besides the conditions (A1)-(A4).
In fact, the conditions (A1)-(A4) are enough for Lemma 2.2. For the proof, refer to [9, 20].

Lemma 2.3 [9] Let F: C x C — R be a functions satisfying the conditions (Al)-(A4) and
TE, TF be defined as in Lemma 2.1 with s,t > 0. Then the following holds:

| TFx - TEx|” < ST_t(Tsx— Ty, Tox — )

forallx e H.
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Lemma 2.4 [21] Let {a,} be a sequence in [0,1] such that Y .., a, = 1. Then we have the
following:

2 [o¢]
2
<> aulal
n=1

)
E ApXy
n=1

for any bounded sequence {x,} in a Hilbert space H.

Lemma 2.5 (Demiclosedness principle) Let T be a nonexpansive mapping on a closed
convex subset C of a real Hilbert space H. Then I — T is demiclosed at any point y € H, that
is, ifx, ~xand x, — Tx, -y € H, then x — Tx = y.

Lemma 2.6 [22] Assume that {a,} is a sequence of nonnegative numbers such that
Apsl = (1 - Vn)an + 871

foreach n > 0, where {y,} is a sequence in (0,1) and {5,} is a sequence in R such that
1) Z:i1 Vn = O0;
(2) limsup,,_, o 8,/vn <0 or Y 2 18,] < c0.

Then lim,_, o a, = 0.

Lemma 2.7 [23, 24] Let U and V be nonexpansive mappings. For o € (0,1), define S =
ol + (1-0)V. Suppose that Fix(U) NFix(V) # @. Then Fix(U) N Fix(V) = Fix(S).

From [24] we can see that Lemma 2.7 holds whenever U and V are self or non-self

mappings.

Lemma 2.8 [24] Let C be a nonempty closed convex subset of a Hilbert space H and T :
C — H be a nonexpansive mapping with Fix(T) # (0. Let Pc be the metric projection from
H onto C. Then Fix(PcT) = Fix(T) = Fix(TP¢).

Remark 2.2 Let Sy, S, : C — H be two nonexpansive mappings with Fix(S;) NFix(S;) # 9.
Let o € (0,1) and define the mapping S: C — H by S=0S; + (1 - 0)S;. By Lemmas 2.7
and 2.8, it is easy to see that Fix(P¢S) = Fix(PcS1) NFix(PcS,).

From Remark 2.2, we get the following result.

Lemma 2.9 Let {B;}Y, be a finite family of inverse strongly monotone mappings from C
to H with the constants {8}, and assume that (X, VI(C,B;) #@. Let B= YN, a;B; with
{a}N, € (0,1) and SN, a; = 1. Then B: C — H is a B-inverse strongly monotone mapping
with B = min{B,, ..., Bx} and VI(C,B) = "X, VI(C, By).
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Proof 1t is easy to show that B is a S-inverse strongly monotone mapping. In fact, for all

x,y € C, by Lemma 2.4, we have

2

N
Z a;(Bix — By)

i=1

BliBx - By|* = B

N
<B)_wilBx-Byl’

i=1

N
<> il Bix - By
i=1

N

< Z%’(x -y, Bix — By)
i1

= (x—y,Bx — By),

which implies that B is a S-inverse strongly monotone mapping.
Next, we prove that VI(C, B) = ﬂf\il VI(C, B;). Obviously, we have

N
ﬂ VI(C,B;) C VI(C, B).
i=1

Now, for any w € VI(C, B), we show that w € ﬂﬁl VI(C, B;). Take a constant A € (0,28].
Then I — AB is nonexpansive. Note that I — AB = Zf\il o;(I — AB;) and each I — AB; is non-

expansive. From Remark 2.2, it follows that

N
Fix(Pc(I - AB)) = [ Fix(Pc(I - 1By)).
i=1

Thus we have
weVI(C,B) <= w=Pc(I-ABw=Pc(I-AB)w <= weVIC,B)
foreachi=1,...,N. Therefore, w € ﬂﬁl VI(C, B;). This completes the proof. g

3 Main result

Now, we give the main results of this paper.

Theorem 3.1 Let Hy, H, be two real Hilbert spaces and C C H, Q C Hy be nonempty
closed convex subsets. Let A; : Hy — Hy be a bounded linear operator for each i =1,...,N
with N1 € N and B; : C — H, be a B;-inverse strongly monotone operator for each i =
1,...,Np with N, € N. Assume that F : C x C — R satisfies (Al)-(A4), F;: Q x Q > R
(i=1,...,N) satisfies (A1)-(A4). Let {S,,} be a countable family of nonexpansive mappings
Sfrom C into C. Assume that © =T N QN VI, where T = (2, Fix(S,), Q={z € C:
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z € EP(F) and A;z € EP(F)),i=1,...,N1} and V1 = ﬂf\g VI(C,B)). Let {p1,...,¥n,} C (0,1)
with Zﬁzl y; = 1. Take v,x, € C arbitrarily and define an iterative scheme in the following

manner:

Ui =TE (I -y A I~ T;)A)%,  i=1,...,Ny,
I = Pl = (38 viB) (5 L0 1), (3.1)

Xpil = OpV + Z:’:I (‘Xi—l - ai)Siym

foreach i=1,...,Ny and n € N, where {r,} C (r,00) with r >0, {A,} C (0,28) with 8 =
min{By, ..., Bn,} and y C (0,1/L%], L = max{Ly,...,Ly,} and L; is the spectral radius of the
operator ATA; and A} is the adjoint of A; for each i € {1,...,N1}, and {a,} C (0,1) is a
strictly decreasing sequence. Let oy = 1 and assume that the control sequences {oy,}, {\y},
{rn} satisfy the following conditions:

1) lim, o0, =0and Y, ay = 00;

(2) Yoooi 1t —ral <00 and Y02 (st — Aul < 00;

(3) 1liMyys o0 Ay = A > 0.
Then the sequence {x,} defined by (3.1) converges strongly to a point z = Pgv.

Proof We first show that, for each i=1,...,Nj and n e N, A} (I - Tfj )A; is a ﬁ—inverse

strongly monotone mapping. In fact, since T,Fn" is (firmly) nonexpansive and I — Tfj is %—

inverse strongly monotone, we have

47 (1= TH) A - A1 (1 T A |
= (A3 (I - T]) (A — A), Af (I - TL)(Ax — Ayy))
= (I - T, )(Aix — Ay), A} (I - T ) (Ax — Ary))
<LH(I-TS) (A - A), (I - TE) (Aix — Ay))
=13 (1~ 1) (A~ A |
<2L}Ax - Ay, (I-T!)(Ax - A))

=20 (x —y,Af (I - T)) A — AT (I - TI)Aw)

for all x,y € H;, which implies that A*(I — Tfni )A;is a ﬁ—inverse strongly monotone map-
ping. Note that y € (0, Liz]. Thus I - yAX(I - T,F,f)Ai is nonexpansive for eachi=1,...,N;
and n e N. l

Now, we complete the proof by the next steps.

Step 1. {x,} is bounded.

Letp e ®. Thenp = Tfnip and (/ - yA7(I - Tf,f)A,')p = p. Thus we have

lt 1l = | T4 (1= A (1= TE) Ao~ T2 (1 v 43 (1= TE)A)p|
< (= (1~ TEVA Y~ (1A (1= TE)A)p |

< lan —pl. (3.2)
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LetB = Zi\g y;B;. Then B is a B-inverse strongly monotone mapping. Since {A,} C (0,28),

I - ), B is nonexpansive. Thus from (3.2), we have

Ny
1

lyn = pll = ||Pc - )‘nB)ﬁ E Ujn—Pc(l = A,B)p
1

1 &
S (1 - )‘nB)_ ui,n - (1 - )"nB)
M 21: P
=

1
D tin =P
N i-1

1%
< U, —
< 5 2 =1

< lxn —plIl. (3.3)

Thus from (3.3), it follows that

n

au(v=p)+ Y (i1 = :)(Siyu - Sip)

i=1

(19241 —P” =

n

<alv-pl+ ) (i1 —a)lya—pl
i=1
n

<aullv=pll+ Y (i1 — )% - pll

i=1
= ayllv-pl + 1 - o)llx, - pll
< max{[lv-pll, %, - pll}
for all #» € N, which implies that {x,} is bounded and so are {u;,} (i =1,...,N;) and {y,,}.

Step 2. 1im,,, o [|%41 — %, || = 0 and lim,,, ¢ ||24; 41 — U || =0 for each i =1,...,Nj.

Since the mappings I — yA*(I - T,Fni )JA are nonexpansive, by Lemmas 2.2 and 2.3, we

have
”Mi,n+1 - ui,n”
= |77, U=y A (I = T3 ) A = T (1= y A7 (1 = T0) A

= (1= y A7 (1= T ) A xwn = (1= v AT (I = T) A

n+l

+ 1r =1l I T,‘Z LI-vAL(- TE VA — (I =y AT (I =T A% |

Frsl Tn+l Tn+1
< i =l + | (1= v AT (I = T3 )Ai)n = (I = y A7 (I = T3 A

|rn+1 - rn|
+ 8
Tn+1

e =5+ [ AL (T8 A = ThAm,) | + 225,
n+
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1
2

< e —2all + | A7 ['“j—l'w Aty — TE A, TH A, —AixV,)q
n+

Tn+l Tn+l

741 = Tl
+—— 8

1
[7141 = Tl 2 |rue1 = Tl
= ||xn+1 _xn” ty ||f1:k || I:fanﬂ + f&ﬁl
=< ||xn+1 _xn” + Nin+l> (34')
where

F; F; F,
Ops1 = sup‘(T,V:ﬂAix,, — Ty Ay, T, Ay — Aixn)|,
neN

n+l Tn+l

S = S0pl TE (1~ A5 (1= T3, VA — (1= yAT( T )4)
neN
and

1
Pns1 = 1l 2 P =1l
Ninsl1 =Y ”A;k || [%O’nﬂ + %&Hl-

Note that

- }\n+lB) Zuz nel — (=X B) Zum

(1 - )\n+lB Z Uinsl — (1 )"n+lB) Z Ujp + ()" - )"n+1)BWr1

<|U- )“Vl+1B) Zuznﬂ - )Ln+lB) Zuzn

+ [An = Apsa ||| Bwy |

N
1
<—Z||um+1 tinll + Pn = Dnaa || Bwall, (35)

i=1

where w,, = Nil Zl " Uiy Let My = sup,,.y |[Bw,||. By (3.1), (3.4), and (3.5), we have

||yn+1 —Jn ” =

1 1
PC(I - )\n+lB)]\_[1 lzzl Uinsl — PC(I - )\nB)A_[l ; Uin

1o 1o
1—)\,” B_ in _I_knB_ in
(I = A )ngu,ﬂ ( )ngu,

R
< — > Nt = il + A = A [[|Bw |
Niig

N1

1
< 1 xn||+—2nm+l+|x Donsa [ M. (3.6)
i=1
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Since {a,} is strictly decreasing, by using (3.6), we have

15241 = Xl
n-1
= (an - an—l)V + Z(ai—l - ai)(Sz’yn - Siyn—l) + (O(n—l - an)Snyn
i=1

n-1
< (a1 = )Vl + (@it = @)y = Syt | + (@t = ) 1Syl
i=1

n-1

< (1 — o) VI + > (i = ) 1 = Yt [l + (@t = ) Sl

i=1

= (a1 — o)Vl + (1 - an—l)”yn = Y1l + (0tp1 — an)HSnyn”

N

1
S (1 - an—l)”xn - xn—l” + A_[ Z Nin + |)"n—1 - )\n|M1 + (an—l - C(y,)Mg,
Lo

where M; = sup{||S,y.|l + |[v|l : n € N}. By (i) and (ii) and Lemma 2.6, we conclude
that

lim ||x,41 =%, = 0. 3.7)
n—oQ

Further, by (3.4) and (3.6), we have
lim ||J’n+1 _yn” =0, lim ”ui,rH-l - ui,n" =0, i€ {1’ .. "NI}' (38)
n—0o0 n—00

Step 3. lim,,_, o ||S;x,, — x,|| = O for each i € N.
First, we show thatlim,,_, o ||24;,, —%, || = 0 foreach i € {1,...,N}. Since each A% (I - Tf,f)Al-

is #—inverse strongly monotone, by (3.1), we have
i

i =PI = [ T, (1 =y A (1 = T51) Aien = T, (1 = v AT (1 - T A
< |-y A; (1= T Awn = (1= v A7 (- T} A
= @ =)~y (A7 (1= T A = A7 (1= T7) Aw) [
= |lon = pI* = 2y (%0 — p, A (I = T)1) Aixn — AF(I - T/F)Aip)
+ 2| AL (1 - TE) A, - A (1- TE) Ap||?

< sy = I = 75 A7 (1= Tf) Awn, — A7 (1= T A
i
+ Y2 |AN(I - TE) A, - AL (1 - TE) Ap ||
1
s =pl (7 - g3 ) AT T A, - 47 - TE) A
1

1 )
~ 1=y (v - 1 IR - T A 39)

i
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From Lemma 2.4 and (3.9), it follows that

2

w1 = plI> = |ota(v=p) + Y (i1 = ) (S - p)

i=1

n
<aullv=pl®+ ) (@1 - a)ISyu - pl*
i=1

<aullv-pl® + Y (i —a)llyn - pl*
i=1

= aullv-plI* + A = o) lyn - pII?
Ny 1
<olv=pl’ + (L -an) Yl = pI?
=1 1

2
< allv-pl

N
1 1 : 2
1—a,) Y —| %, -l (——)A%‘I—TFLAM}
+( a);:l:Nl[”x oI+ (v = )40 =T A

:Oln”V_l'JHZ+(1_Oln)”xn_p”2
Mo 1 )
Han 3o (- )14 T

< anllv=pI + % - I
Mo 1
. 2
e ﬁly<y - ﬁ) |42 (1= T5) A, |

Since y < L% :max{Liz,..., L%},we have
1 N1

1 1 i E 12
@-aer (557 )l - 1A

N
<o) Y (-7 ) M6 A
i-1 Ni* L

2 2 2
< aullv=pI© + 1%, = plI* = 1601 — Pl

<aullv-pl?+ %, = %[l (160 = pIl + %1 = pII).-
Since o, — 0, by (3.7), we have
lim || A7 (7 - T3 A || = 0 (3.10)
for each i € {1,...,N;}, which implies that

lim || (I - T)7)Ax,| =0 (3.11)

n—00
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for each i € {1,...,N;}. Since qu is firmly nonexpansive and / — y A7 (I - T,F;)Ai is nonex-
pansive, by (3.1), we have

Nt =PI = | TE (x0 + y AL (TE = 1) Awx,) - TE )|
< (thi — pr2n + YAT (T, ~1)Aixy — p)
1
= St =PI + s+ 45 (TF: = 1) A, =
— ttin = p = [0+ yAF (TF = D) Aix - p]|*}
1 :
= Sl =pI? + | (1= y A7 (1 = Tr) A = (I - v AT (I - ) A)p|’
— ”ui’n — Xy — ]/AT(TZ’ —I)Aixn ||2}
1
< 5 Ut = I+ o = I = sy =00 = y A7 (T} ~ 1) Ai, 1}
1
= o i =1 + s =PI = [Nt =0, + v | 47 (TS}~ 1) Ai, I*

= 2y(uip - x,,,A;‘(T,Fn" -DAx,)|}
which implies that
2tin =PI < 1160 =PI = Notin = 2all® + 2 et = | A7 (T35 = T) At . (312)
Now, from (3.1) and (3.12), it follows that
%51 = pII* < aullv=pl* + A=)y, - plI®

<a,llv-pl®+@1- an)Z -t = I

1
<alv-pl*+@ —an)Z g Ulen =211 = Nl = 2,1
i=1 L

+ 27/ ”uin - xn” ”A*(TFI _I)Aixn H)

<aullv=pl*+ lx, - pl* - (1 - an)Z it =]

+2y Z it =047 (T} = 1) A,

and so

N1

1
(-~ ||um—xn||2 (1- a,q)Zﬁlnui,n—xnnz

i=1

2
< anllv-pll” + %, _xn+1”(”xn =Pl + %1 —P||)

N
1
# 2y 35 (sl + W) |47 (75 = DA ).
i=1
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Since o, — 0, both {u;,} and {x,} are bounded, by (3.7) and (3.10), we have
lim |3, — 2]l = 0 (3.13)
n— o0

foreachie{l,...,Ni}.
Next, we show that lim,_ ||y, — u,|l = 0, where u, = NLI fol u;,. Note that p =
Pc(I - A,B)p. By (3.1), we have
[%0:1 =PI < anllv=pl* + 1 = an)llyn - pII?
< v =pI* + (1~ ) | tty — p ~ hn(Brty — Bp) |
= alv-pl?
+ (1= ) (|t = pII* = 22014, — p, But, — Bp) + 3. || Bu, - BplI*)
<aullv-pl?
+ (1= ) (lun = pII* = 24, 81| Bu, — Bpl|* + A, || Bu, — Bp|?)
< aullv-pl®
+ (1= ) (Il — pII> = 20,81 B — Bp||* + A3,|| Bu, — Bp||®)
= ayllv=pl* + A - @) lx, - plI?

+ (1= a)hu(An — 28) | Bu,, — Bp||?

and so

(1 - a)An(2B = An)||Bu, — Bpl|*

< a1V =PI + 1% = Sne | (1% — Pl + W01 = pl)-
Since o, — 0 and 0 < lim,,—, oo X, = A <2, by (3.7), we have
nlingo |Bu, — Bp|| = 0. (3.14)
Since P¢ is firmly nonexpansive and (I — 1,,B) is nonexpansive, by (3.1), we have

19, = pII? = | Pc (it — AnBity) — Pc(p — 1Bp) ||*

S( n = P> Un — AButy — (p_)Lan»
1

(19 = I + | (I = 2Bty = (I = 7uB)p | > = |y = ths + 1on(Bus, — Bp) )

(I3 = 21 + 1ty = P11 = |9 = 4y + 3n(But, — Bp)|*)

IA
N = N = N

(Ilyn = pI* + lltn = PN = Nlyn — tn|* = 221|Bu,, — Bp|*

|
N\
>

n(Yn — Un, Bty _BP>)
1
< §(||J/n =pI? + ltn = pI? = lyn — wnll* = 33,1| Bu,, - Bp|?

+ 221y — ||| Bu, — Bp|))
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and so

lyn = pII* < llty = pI* = 11y — tnll* = A2 ]| Bus,, — Bp||*
+ 2hnll¥ — 1 ||| Bt — Bpl|

< tn =PI = 1y — tnll* + 2% lly — 1| Busy — Bpl|. (3.15)
From (3.1) and (3.15), we have

%1 = pII* < aullv=plI* + (1 = &)1y — pII*
<aullv-pl?
+ (1= 0t) (1160 = 21> = 1190 = tnll® + 2211y — 14, ||| Bt — Bp))
<apllv=pI?+ 12, - plI* = A = @) |[yn — ]

+2(1 = )M llyn — uull| Bu, — Bpll.
Therefore, we have

T =—a)llyn - Mn”Z = 01n||V—P||2 + [lxn _xn+1||(”xn+1 =pll+ %, —19||)

+2(1 = a)n(llynll + ll4all) | B, = Bpl|.

Since lim,_, » &, = 0 and both {y,} and {u,} are bounded, by (3.7) and (3.14), we have
lim ”yn - un” =0. (3.16)
n—oQ

Further, from (3.7), (3.13), (3.16), and

141 = Yull < Nne1 = x|l + 1% = 2l + |28, =yl

N
=< Xn+l —Xnll + — X — Uinll + [|Un — Yull>
< %1 — %l ;Nln all + l12tn =yl
it follows that
lim %1 — yull = 0. (3.17)
Now, from (3.1), it follows that
D @i = ) (Sn = Yn) = Fni1 = Y — (v = ). (3.18)

i=1
Since {a,,} is strictly decreasing, for each i € N, by (2.1) and (3.18), we have

(i1 — @) ISy = yall* < Z(ai—l —a)lISyn = yull*

i=1

n
<2 Z(ai—l — ) (Si¥n = YnsD = Yn)

i=1
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=2(X41 = Y Yn — P) — 20V = Y, P — V)

< 2|%us1 = Yulllyn = I + 2001V = Yl lyn =PIl
Since lim,_, » &, = 0 and {y,} is bounded, by (3.17), one has
lim |[[S;y, — yull =0 (3.19)
n— o0
for all i € N. Further, since

1S — xull < 11Sixn — Siyull + 1S:¥n = Yull + 1yn — %l
=< 2”)’;«1 — Xl + ”Siyn _yn”

=< 2”)’71 _xn+1” + 2”xn+1 _xn” + ”Szyn _yn”,

by (3.7), (3.17), and (3.19), we obtain
lim ||Six, —x,|| =0 (3.20)
n—0oQ

forallie N.
Step 4. limsup,,_, . (v—2z,%,—2) <O0.
Let z = Pgv. Since {x,} is bounded, we can choose a subsequence {%;} of {x,} such that

limsup(v —z,x, —z) = lim (v — z,%,, — ).
n—00 j—>00

Since {x,} is bounded, there exists a subsequence {x,,ji} of {x4;} converging weakly to a
point w € C. Without loss of generality, we can assume that x,,, —~ w.

Now, we show that w € ©. First of all, we prove that w € I" = (5, Fix(S;). In fact, since
%, —Six, — 0 for each i € N and Ky = W, by Lemma 2.5, we obtain w € ﬂlofl Fix(S;) =T.

Next, we show that w € Q, i.e., w € EP(F) and A;w € EP(F;) for each i =1,...,N;.

Letw;, =(I-AfI- T,F,j))Aix,, foreachi=1,...,N;. By (3.10) and (3.13) we see that w; ,, —
%, — 0 and T? w;,, — w;, — 0 as n — 0o. By Lemma 2.2 we see that || T} w;, — T/ w;,|| <
1- é|||T£7w,;y, — Wiu|l = 0 as n — oo. Hence wa,-,,, —w;, — 0 as n — oo for each i =
1,...,Ni. Since T¥ is non-expansive and {w;,} converges weakly to w, by Lemma 2.5 we
get w=TFw, i.e., w € EP(F). On the other hand, since (I - vAI(I - Tfn")Ai)x,, —x, — 0 (by
(3.13))and I — yA7(I - Tfn" )A; is non-expansive, from Lemmas 2.2 and 2.5 it follows that
w=(-yAiI- Tfi)Ai)w, i.e., w=TFA;w. Therefore, w € Q.

Finally, we prove that w € VI = ﬂf\g VI(C, B;) by demiclosedness principle. Obviously,
we only need to show that w = Pc(w — AB;w), where A = lim,,_, o, A,,. By (3.1) and (3.16), one

1 Ni

has ||u, — Pc(I — A,B)u,|| — 0, where u, = N > iy Uin. Then we have

|4 = Pc(I = AB)uy || < ||t4w — P = AuB)us|| + | PcI = 2nB)y — Pc(I = AB)uy |
< ||t = Pcl = 2uB)u | + | (I = 2uB)sty — (I = AB)us |

= ”un _PC(I_ }‘nB)un || + |)L - )“nlnBun”
Since A, — A > 0, {Bu,} is bounded and ||u«,, — Pc(I — AB)u,|| — 0, we have

lim ||, — Pc(I = AB)uy, | = 0.
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On the other hand, since {1,,} C (0,28), one has A € (0,28]. Thus I — AB is nonexpansive
and, further, Pc(I - AB) is nonexpansive. Noting that u,, — w as j — 00, by Lemma 2.5, we
obtain w = Pc(I — AB)w. By Lemma 2.8, we get w € VI = ﬂf\g VI(C, B;). Therefore, w € ©.
By the property on P, we have

limsup(v - z,x, —z) = lim (v-z,x,, —2) = (v—z,w-2) < 0. (3.21)
n—00 J—> 0
Step 5. x, — z=Pgvasn — 00.
By (3.1), we have

2
2
”xn+1 - Z” =

v+ Y (@i —)Siyn 2

i=1

n

= (V= 2,200 —2) + (@1 — ) (S = 2 %1 — 2)
i=1

n
Z‘=1(ai—1 _ai) 2 2
S0, (V=201 — 2) + ’f(llsiyn =z)* + %1 — 2I1%)
n
2'21(%’-1 —a;) 2 2
Sap(Vv=-2z,%u1—2) + lf(”xn —z|I” + [|%ps1 — 2|l )
1-q, 9 5
= (V=221 = 2) + — (1% = 211> + llo6ns1 — 211%)
1-a,

1
2 2
<@ (V=2%1 - 2) + e = 211" + 5 I6mer = 2117

which implies that
|[E Z||2 <A -a)lx, - Z”2 + 20, (V= 2, %141 — 2).

By Lemma 2.6 and (3.21), we can conclude that lim,_, » ||x, — z|| = 0. This completes the
proof. g

The following results follow directly from Theorem 3.1.

Corollary 3.2 Let Hy, H, be two real Hilbert spaces and C C Hy, Q C Hy be nonempty
closed convex subsets. Let A : Hl — H, be a bounded linear operator and B: C — H; be a
B-inverse strongly monotone operator. Assume that F: C x C — R, F; : Q x Q — R are bi-
functions satisfying the conditions (Al)-(A4). Let {S,,} be countable family of nonexpansive
mappings from C into C. Assume that © =T' N QN VI(C,B) # @, where I' = (-, Fix(S,)
and Q = {z € C:z € EP(F) and Az € EP(F)}. Take v € C arbitrarily and define an iterative
scheme in the following manner:

wy = T} (I =y A*(I = T, A)x,
Yn = Pc(uy — AyBuy), (3.22)
X1 = 0V + i (i1 — ) Siyus

for all n € N, where {r,} C (r,00) with r > 0, {,,} C (0,28), and y C (0,1/L2), L is the
spectral radius of the operator A*A and A* is the adjoint of A, ag = 1, and {a,,} C (0,1) isa
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strictly decreasing sequence. Assume that the control sequences {a,}, {\,}, and {r,} satisfy
the following conditions:

(1) limy—oo0t, =0and ) 2, a, = 00;

(2) Zzi1 |71 — 1| < 00 and ZEZ1 [Ans1 = Anl < 005

(3) limyoo A = A € (0,28).
Then the sequence {x,} defined by (3.22) converges strongly to a point z = Pgv.

Corollary 3.3 Let Hy, H, be two real Hilbert spaces and C C Hy, Q C Hy be nonempty
closed convex subsets. Let A : Hl — H, be a bounded linear operator and B: C — H; be a
B-inverse strongly monotone operator. Assume that F: C x C— R, F1 : Q x Q — R are the
bifunctions satisfying the conditions (A1)-(A4). Let S : C — C be a nonexpansive mapping.
Assume that © = Fix(S) N QN VI(C, B) # 8, where Q = {z € C : z € EP(F) and Az € EP(F})}.
Take v € C arbitrarily and define an iterative scheme in the following manner:

Uy = TE (L= yA* (I T;)A)x,,
Yn = Pc(u, — AyBuy), (3.23)

Xn+l = OV + (1 - an)Syn

for all n € N, where {r,} C (r,00) with r > 0, {,,} C (0,28), and y C (0,1/L2], L is the
spectral radius of the operator A*A and A* is the adjoint of A, {«,} C (0,1) is a sequence.
Assume that the control sequences {a,}, {r,}, and {r,} satisfy the following conditions:

(1) lim, o0, =0and oo oy = 00;

(2) 221 741 = 1| < 00 and Z;il [Ans1 = Anl < 005

(3) limy_ o A = A € (0,28).
Then the sequence {x,} defined by (3.23) converges strongly to a point z = Pgv.

Remark 3.4 Theorem 3.1 and Corollary 3.3 extend the corresponding one of Kazmi and
Rizvi [14] from a nonexpansive mapping to a finite of family of nonexpansive mappings
and from a split equilibrium problem to a finite of family of split equilibrium problems. It
is a little simple to prove that w € VI by the demiclosedness principle in Theorem 3.1.

We give an example to illustrate Theorem 3.1 as follows.

Example 3.5 Let H; =R and H, = R?, C = [0,1], and Q = [0,1] x [0,1]. Let A, : H; — H,
and A : H; — H, defined by A1x = (x,x)” and Ax = (%, %)” for each x € Hy. Then A}y =
y1+y2and Ajy = yl% for each y = (y1,92)T € Hy. Then L; =2 and L, = %, where L; and L,
are the spectral radius of AJA; and A}A,, respectively.

Let B; =2(x—1) and B, = —4 forallx € C. Then it is easy to see that B; and B, are % and 1-
inverse strongly monotone operators from C into H;. Find that VI = VI(C, B;) N VI(C, By) =
{1}. For each n € N, let S,, : C — C defined by S, (x) = x+ 5 for eachx € [0, 3] and S,,(x) = x
for each x € (%, 1]. Then {S,} is a countable family of nonexpansive mappings from C into
C and it is easy to see that I" = ()7, Fix(S,,) = (%, 1]. For each %,y € C, define the bifunction
F:CxC— RbyF(xy) =x-yforallx,y € C.For each u = (u;,u;)" and v = (v, )" € Q,
define F1: Qx Q— Rand F,: Q x Q— R by

Fi(u,v) =uy + s — v — vy
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and
0, ifu=v,
2, ifu=(1,1 1 Lyandv#(1,1 11y
Fy(u,v) = if = ( >°r<12 12> and v # (1,1) or (f f)
-2, ifv=(1,1) or(3,3)and u #(1,1) or (3, 3),

ul +ul—vi—vy, otherwise.

It is easy to check that the bifunctions F, F;, and F; satisfy the conditions (Al)-(A4) and F;.
Moreover, 2 = {1}, where Q = {z € C: z € EP(F),A;z € EP(F;) and A,z € EP(F,)}. There-
fore, ®=T'NVINQ ={1}.

Letag=1, =y = %, and y = i. Foreachn e N, letr, =2, A, = %, oy = % Then the
sequences {o,}, {A,}, {r,} satisfy the conditions (1)-(3) in Theorem 3.1.

For each x € C and each n € N, we compute T,I;}Alx, ie., T,Fn1 (%,%). Find z = (1,1) such
that

R+ - r-az—Am) =201 +32) + 2 [0 =D -2) + Oz~ (1~ )]

n

=2 (u+3) + 5 (-0 +72-2)

:[2—<y1+y2)][1—%<1—x>]

>0

for all y = (y1,%2) € Q. Thus, from Lemma 2.1(1), it follows that TfnlAlx = (1,1) for each
x € C. Similarly, for each x € [0,1], we can find z = (1,1) such that, for y = (%, %),

1
> 0;

l\JI
»-PIR

1
F)(z,y) + r—(y—z,z—Azx) 1- —(1 x) =

n

fory = (1,1),
1
Fy(z,9) + r—(y—z,z—Azx) =0;
fory € Q\ {(1,1),(3, 1)},
Fy(z,y) + rl(y—z,z—Azx) 2+ —|:(y1 —1)<1— —) +(n —1)<1_ _>:| > 0.

Thusz=(1,1) = T,?Azx for all x € C by Lemma 2.1(1).

Now, take v = % and x; = i and define the sequence {x,} defined by (3.1). Since each

x, € C, from the statement above we get Tr 'A;x, = (1,1) for each i = 1,2. Furthermore, we
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can get

(I -y AT (I = T/ AL)n = (%0 — AT (Arxy — T/ Ar,))

= (xn — )/Ai< ((xmxn) - (1’ 1)))

:xn_zy(xn_l)
_1+xn
=
Note that
1 1+x, 1 1+x,
FLy) + —(y-zz- “1-y+-(y-1f1-
AT FN LR PR £

forally € C. Thus u;, =1 by Lemma 2.1(1) for each # € N. Similarly, we can conclude that
Uy, =1 foreachm e N.

Next, we compute the sequence {y,}. By the definition of {y,}, we see that

Bl +Bz L{l' +L{2,
yn:PC|:<I_)‘-n 9 ) n2 ‘

2
=Pc(1+7)=1

forall n e N.

Finally, we compute the sequence {x,} by the following iteration:

n
Xpsl = AV + E (0ti1 — ) Siyp
i1

=u,v+1-0a,
1
:1——
2n

1
— 1:P@V:P{1}—
2
as n — oo as shown by Theorem 3.1.

4 Applications
In this section, let H;, H, be two real Hilbert spaces and C, Q be two nonempty closed
convex subsets of H; and H», respectively. Let f : C — R, g: Q — R be two operators and

A : Hy — H, be a bounded linear operator.
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We consider the following optimization problem:

find x* € C such that f(x*) <f(x), VxeC,
(4.1)
and y* = Ax* such that g(y*) <g(»), VyeQ.

We denote the set of solutions of (4.1) by ® and assume that ® # . Let F(x,y) =f(y) — f (x)
for all x,y € C and Fi(x,y) = g(y) — g(x) for all x,y € Q. Then F(x,y) and G(x, y) satisfy the
conditions (A1)-(A4) in Section 2 provided that f is convex and lower semicontinuous on
C and g is convex and lower semicontinuous on Q. Let 2 = {z € C:z € EP(F) and Az €
EP(F1)}. Obviously, © = Q.

By Corollary 3.3 with B = I and S = I, we have the following iterative algorithm, which
strongly converges to a point z = Pgv, which solves the optimization problem (4.1):

Uy = TE (L= yA*(I = T;)A)x,,
Y = Pty — Mythy), (4.2)

Kpp1 =V + (1 - O[n)ym

where {r,} C (r,00) with r > 0, {A,} C (0,2), and y C (0,1/L?], L is the spectral radius of
the operator A*A and A* is the adjoint of A4, {«,} C (0,1) is a sequence. Assume that the
control sequences {a,}, {*,}, and {r,} satisfy the following conditions:

(1) limy—oo0, =0and Y o) oy = 00;

(2) 0 1rne1 = Tul <00, 302 lotsr — ] < 00, and 300, At — A < 005

(3) limy_o0 Ay = A €(0,2).

For the special case with H; = H, and C = Q, we consider the following multi-objective
optimization problem:

min{f (x), g(x)},

xeC.

(4.3)

We denote the set of solution of (4.3) by I" and assume that I # §. In (4.2), setting A = I we
get the following algorithm, which strongly converges to the solution of multi-objective
optimization problem (4.3):

= Th (I =y (I = T},
Vn = PC(un - Anun),

Xp+l = OpV + (1 - an)yn;

where y C (0,1/L?], L is the spectral radius of the operator I*I and I* is the adjoint of 1,
other parameters such as {«,}, {1,}, and {r,} satisfy the same conditions (1)-(3).

5 Conclusion

In this paper, we construct an iterative algorithm to find a common element of the set
of solutions of a finite family of split equilibrium problems and the set of common fixed
points of a countable family of nonexpansive mappings in Hilbert spaces. In the proof
methods, we use the inverse strong monotonicity of each A*(I — T, )A, which is such that
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the proof is simple and is different from the ones given in [14—16]. Also, in the results of
this paper, we do not assume that each F; is upper semi-continuous in the first argument
foreachi=1,...,N, which is required in the result in [14-16]. As an application, we solve

an optimization problem by the result of this paper.
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