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quasi-nonexpansive mapping, the set of solutions of equilibrium problems, and the
set of solutions of a modified system of variational inequalities without demiclosed
condition of W and W,, := (1 - )/ + wW, where W is a quasi-nonexpansive mapping
andw € (0, %) in the framework of Hilbert space. By using our main result, we obtain a
strong convergence theorem involving a finite family of nonspreading mappings and
another corollary. Moreover, we give a numerical example to encourage our main
theorem.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the map-

ping W : C — C is called quasi-nonexpansive if

Wp—qll <llp—4l,

for all p € C and g € F(W). We denote by F(W) the set of fixed points of W. Fixed point
problems have been widely studied and developed in the literature.

Let W be a bifunction of C x C into R, where R is the set of real numbers. The equilib-
rium problem for ¥ : C x C — R is to find p € C such that

V(p,$)=0, VieC. 1.1)

We denote the set of solutions of (1.1) by EP(V¥). Equilibrium problems were introduced
by Blum and Oettli [1] in 1994 and included many well-known problems such as the varia-
tional inequality problem, the optimization problem, and the nonexpansive mapping and
fixed point problem.
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A mapping D; : C — H is called d;-inverse strongly monotone if there exists a positive
real number d; > 0 such that

(Dip-Di¢,p—¢) > di|Dip - Dig %,

forallp,¢ e C.
Let B: C — H. The variational inequality is to find a point ¢ € C such that

(Bp, ¥ — ) =0, (1.2)

for all ¢ € C. The set of solutions of (1.2) is denoted by VIP(C, B). The variational inequal-
ities were initially studied and introduced by Lions and Stampacchia [2].

The concept of quasi-nonexpansive mapping was investigated by Diaz and Metcalf [3].
In 2007, Su et al. [4] introduced strong convergence theorems for quasi-nonexpansive
mappings, the monotone hybrid iteration method used to approximate the fixed point of
quasi-nonexpansive mappings. In 2011, Tian and Jin [5] introduced an iterative method of
a quasi-nonexpansive mapping in the framework of Hilbert space. They proved the strong
convergence theorem of iterative scheme {p,} generated by (1.3) as follows.

Theorem 1.1 Let H be a real Hilbert space, let F be a k -Lipschitzian and n-strongly mono-
tone operator on H withk > 0,n > 0 and let W be a quasi-nonexpansive mapping on H, and
f isa L-Lipschitzian mapping with coefficient L > 0 for all p, ; € H. Assume the set F(W) of
fixed points of W is nonempty closed and convex. Let 0 < j1 < i—g, O<y<puln- “T'g)/L =t/L
and start with an arbitrary chosen py € H, let the sequence {p,} be generated by

Pna1 = Oanf(Pn) +( - anMF)Ww "y 1.3)

where the sequence {a,} C (0,1) satisfies lim,_, o &, = 0,and Y o, o, = 00. Also w € (0, %),
W, = (1 - w) + oW with two conditions on W
1. |Wp—ql <l|lp-qll forany p € H, and q € F(W); this means that W is a
quasi-nonexpansive mapping;
2. W is demiclosed on H; that is, if {¢k} CH, & — &, and (I - W)t — 0, then & € F(W).
Then {p,} converges strongly to the p* € F(W) which is the unique solution of the VIP:

((WF -yfp*,p-p*) <0, VpeF(W).

Many strong convergence theorems of quasi-nonexpansive mapping W were proved by
assuming the following conditions:

L W,:=0-w)l+oW foralwe(0,3),

2. W is demiclosed on H.

In 2012, Dong et al. [6] proved strong convergence theorem by using a relaxed extragra-
dient method as follows.

Theorem 1.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
the mappings Dy,D, : C — H be d,-inverse strongly monotone and d,-inverse strongly
monotone, respectively. Let V be a bifunction from C x C — R satisfying (J1)-(J4) and
let (W, )2, : C — C be a countable family of nonexpansive mappings such that Q :=
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Mooy E(W,)NEP(W)NF(G) # 0. Let f : C — C be a contraction with coefficient p € (0,1/2).
Set Bo = 1. For given py € C arbitrarily, let the sequences {p,}, {¢u}, (€4}, and {¢,} be gener-
ated by

V(P ) + 5 (&~ bwbu—pu) 20, V5 €C,
&1 = Pc(pn — ApDadpn),
Cn = anf (pu) + (1= ay)Pc(En — AaDiéy), (1.4)
Pt = Bubn + 05 Yoy (Bict = B) Wik
+ (1= B~ 0,)Pc(s — AaDréy), VneN,

where A4 € (0,2d1), Ap € (0,2d,), and the sequences {o,,} C [0,1],{B,} C [0,1], {0,,} C [0,1],
and {g,} C (r,00), r > 0, are such that
(i) {Bn} is strictly decreasing,

(ii) 0<liminf,_, B, <limsup,_, . Bu<1,

(ili) limy— o0y =0and y oo oy = 00,

(iv) 0, >1/2(0=p), Y 021 |0y — Ot | < 00,

V) 302 1gn — gl < 0.
Then the sequence {p, } generated by (1.4) converges strongly to p* = Pq - f (p*), and (p*, {*) is
a solution of the general system of variational inequalities (1.5) where {* = Pc(p* — AgDop™).

Many authors used the extragradient method to prove fixed point theorem of nonlinear
mappings.

Let Dy, D, : C — H be two mappings. In 2008, Ceng et al. [7] introduced a relaxed ex-
tragradient method for finding solutions of problem (p*,£*) € C x C such that

(AaDi§* +p*—E*,p-p*) 20, VpeC,

(1.5)
(AsDop*™ +&* —p*,p-£*) >0, VpeC,
which is called a system of variational inequalities where A4, Ag > 0.
In 2013, Kangtunyakarn [8] modified (1.5) for finding (p*,£*) € C x C such that
(p" = U =raDy)(ap* + (1 -a)§*),p-p*) 20, VpeC, (16)

(g* - (I_ )»BDZ)P*,P - ‘i:*> Z 0: VP € C;

which is called a modification of system of variational inequalities, for every 14, Az > 0 and
€ [0,1]. If 2 = 0, (1.6) reduces to (1.5). He introduced the relation between solutions of
(1.6) and fixed point of the mapping G as follows.

Lemma 1.3 Let C be a nonempty closed convex subset of a real Hilbert space H and let
Dy, D, : C — H be mappings. For every du, g >0 and a € [0,1], the following statements
are equivalent:

1. (p*,€*) € C x C is a solution of problem (1.6),

2. p* is a fixed point of the mapping G : C — C, i.e., p* € F(G), defined by

G(p) = Pc(I = AaDy)(ap + (1 - a)Pc(I - AgDs)p),

where £* = Pc(I — AgDy)p*.
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After we investigated Theorem 1.1, Theorem 1.2 and researchers in the same direction,
we have the questions as follows:
(1) Can we prove strong convergence theorem without demiclosed condition and
W := (1 - w)l + oW, where W is a quasi-nonexpansive mapping and w € (0, %) in
the framework of Hilbert space?
(2) Can we prove strong convergence theorem without relaxed extragradient method?
In this paper, we give the answer for the mentioned questions and introduce the method
of iterative scheme {p, } for finding a common element of the set of fixed points of a quasi-
nonexpansive mapping, the set of solutions of equilibrium problems and the set of solu-
tions of a modified system of variational inequalities. Applying our main result, we prove
strong convergence theorem involving a finite family of nonspreading mappings and an-
other corollary. Moreover, We also give a numerical example to support our main theorem.

2 Preliminaries

Let H be a real Hilbert space with inner product (-, -) and norm || - ||. In this paper, we use
the symbol of weak and strong convergence by ‘—’ and ‘— respectively. For every p € H,
there exists a unique nearest point Pcp in C such that ||p — Pcp|| < ||lp - ¢|| for all ¢ € C.
P is called the metric projection of H onto C.

Remark 2.1 It is well known that metric projection Pc has the following properties:

1. Pc is firmly nonexpansive, i.e.,

IPcp - Pct||* < (Pcp—Pct,p—¢), Vp,¢ €H.

2. Foreachp e H,

E=Pclp) & (p-§E&-0)=0, VieC.

Recall that H satisfies Opial’s condition [9], i.e., for any sequence {p,} with p,, — p, the
inequality
lim inf||p, — pll < lim inf||p, - ||
n—00 n—00
holds for every ¢ € H with ¢ #p.

Lemma 2.2 Let H be a real Hilbert space. Then we have the following well-known results:
LlpxcI®=lpl>£2@¢) + 1117

2. p+ <P < lpl* +2(¢,p +¢),
forallp, € H.

Lemma 2.3 ([10]) Let (E,(-,-)) be an inner product space. Then, for all p,¢,& € E and
o, 09,03 € [0,1] with ag + as + a3z =1, we have

2 2 2 2 2
lanp + axl + as€||” = anllpll”™ + a2 I + a3 [[§ 17 — cweea[lp = £

—aiosllp - EII* - a0l — &%
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For solving the equilibrium problem, we assume that the bifunction ¥ : C x C — R
satisfies the following conditions:

(J1) ¥(p,p)=0forallp e C;

(J2) W is monotone, ie., ¥(p,¢) + ¥(¢,p) <0 forall p,¢ € C;

(J3) foreachp,¢,& € C,

lim W (25 + (1= )p,¢) < V(. 0);

(J4) foreachp e C, ¢ — W(p,¢) is convex and lower semicontinuous.

Lemma 2.4 ([1]) Let C be a nonempty closed convex subset of H and let V be a bifunction
of C x C into R satisfying (J1)-(J4). Let r > 0 and p € H. Then there exists & € C such that

1
V(o) +-(¢-§86-p) =0, VieC.

r

Lemma 2.5 ([11]) Assume that ¥ : C x C — R satisfies (J1)-(J4). For r > 0, define a map-
ping W, : H— C as follows:

Wr(P)= {E EC:\IJ(E,{)+ %(C‘Ef‘?) ZO,VC GC};

forall p € H. Then the following hold:
(1) W, is single-valued,;
(2) W, is firmly nonexpansive, i.e., for any p,¢ € H,

| W) = W) * < (Wi (p) — Wi©),p — £ );

(3) F(W,)=EP(¥);
(4) EP(W) is closed and convex.

Lemma 2.6 ([12]) Let {h,} be a sequence of nonnegative real numbers satisfying
hn+1 = (1 - an)hn +8, VYn>0,
where {a,} is a sequence in (0,1) and {3,} is a sequence such that
1) Yo =00,
(2) limsup,_, o, 2—Z <0o0rYy 22 18,] < o0.

Then lim,_, o h,, = 0.

Lemma 2.7 ([13]) Let H be a real Hilbert space, let C be a nonempty closed convex subset
of H and let D, be a mapping of C into H. Let u € C. Then for A >0,

u=Pc(I-\D))u < ueVIP(C,D),

where Pc is the metric projection of H onto C.
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Lemma 2.8 ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H and
let W : C — C be a quasi-nonexpansive mapping with F(W) # (). Then VIP(C,I — W) =
F(W).

Remark 2.9 From Lemmas 2.7 and 2.8, we have
F(W)=VIP(C,I - W) =F(Pc(I-A(I-W))),
forall A > 0.

3 Main result

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H, let
Uy, W, : C x C — R be bifunctions satisfying (J1)-(J4) and let W : C — C be a quasi-
nonexpansive mapping. Let Dy, D, : C — H be di, dy-inverse strongly monotone mappings,
respectively. Define the mapping G : C — C by G(p) = Pc(I — AaD1)(ap + (1 — a)Pc(I -
AgDy)p) for all p € C and a € [0,1]. Assume F = EP(W;) N EP(W,) N F(G) N F(W) # .
Suppose that p1,u € C and let {p,}, {¢.}, and {V,,} be sequences generated by

\Ijl(d)m;)"'gln(g_(pm(pn _pn) ZO: V; EC;
\IIZ(wm C) + i(g - wm wn _pn> = O; Vé‘ € C) (3'1)
Pl = 0l + Bupy + VVIPC(I A= W), +6,G(¥), VmeN,

where the sequences L4 € (0,2d,), A € (0,2dy) and {a,},{Bs}, {vu}, {8,} C [0,1] with o, +
Bu + Vn + 8, =1 for all n € N. Suppose the following conditions hold:
(i) limyooay =0andy o) o, =00,

(i) 0<c<BuVYubu <d<1forsomec,d>0andforalln=>1,

(ili) 0<e<gyh, <f forsomee,f >0 and foralln>1,

(iv) Yol Ap<ooand0<hy, <1,

W) Z:il lotns1 — oty < 00, Z:il |Bns1 — Bul < 00, Z;il [Vni1 = Yl < 00,

> [t = Al <00, D02 |@net — Gul < 00, Yoy [y — hyl < 00.

Then {p,}, {¢n}, and {Y,,} converge strongly to py = Pru and (po,&o) is a solution of (1.6)
where & = Pc(I — AgDs)po.

Proof First, we show that G is a nonexpansive mapping. Let p,¢ € C. Since D;, D, are
dy, dy-inverse strongly monotone, A4 € (0,2d;), and Ap € (0,2d,), we have

|(Z = 3aD)p = (I = 2aD0)E |*
=lp - ¢I* = 2xalp - ¢, Dip — Dig) + 25| D1p - Dig |
<llp - ¢II” = 2dixallDrp — Dig || + 35| Dip — Dig |
= lp = ¢I* + ka(ha — 2d1)||D1p — Di |
<lp-c¢I*

Then I — A4D; is a nonexpansive mapping. Similarly I — AgD, is a nonexpansive mapping.

Then G is a nonexpansive mapping.
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Next, we show {p,} is bounded. Let £ € F, then ¢, = W, p, and ¥, = W}, p,.. It is clear
that [[¢, — &1l < lp. — &l and ||, — &Il < |lpn — & ||. By Remark 2.9, we have

£ € F(Pc(I - 11— W))). (32)
Observe that
IW s —ENI = [ (b — §) = (U = W) ||”

= =17 = 2(pn — &, (L= W) + | (1 - W), |
<lign—&I*

It implies that
| = W) |* < 20 — £, (L = Wepa). (3.3)
From (3.2) and (3.3), we have

|Pc (1 = 1ull = W)y s|| ||Pc(1—kn(1—W))qbn—Pc(I—)Ln(I—W))é”z
< @0 =) =2 (U = W) — L - W)E) |
= llpn = E1> = 22n(¢n — &, (I = W)bs)
sa@-wiga|*
< Nl = E11% + 2 G = || (T = W) |*
< lign— €I (3.4)

From the definition of p,, and (3.4), we have

”pm—l _E” = ||an(u_§) + ,Bn(pn _é) + Vn(PC(I_)‘n(I_ W))¢n _E)

8:(G(ym) - §) |
< aullu—Ell + Bullpn = €Il + V| Pc(I = 2uT = W)y — €|
+8:|G() €|

S aullu =&l + Bullpn — &Nl + Vulldn — Nl + 8ullrn - &1l
< anllu—E&ll + Bullpn = &Nl + Vullpn — Ell + Snllpn — &l

= aullu— &l + A —an)llpn &Il
By induction, we can conclude that
P — &Il < max{|lu—-&], |pr - £1l},
for all n > 1. This implies that the sequence {p,} is bounded and so are {¢,}, {¥,}, {({ -

W)én}, and {Pc(l = A1 = W)y}
Then we show that lim,,, » |41 — prll = 0.
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From the definition of p,, and nonexpansiveness of G, we have

1201 = Pall = || (en = w1t + Bu(Pn — Pu-1) + (Bu — Bu-1)Pnr

+ ¥Yu(Pe (I = 2ull = W) = Pe(I = hua (I = W) 1)
+ (Vn = Yu)Pc(I = hua (T = W)
+8u(G(Wn) = G(Yu1)) + (8 = 841) G ()|

< lay = |l + Bullpn = pucall + 1Bn = Bual1pwca |
+ V| Pc(I = kI = W) — Pc(I = Apa (I = W) s |
+1¥n = Yl | Pe(I = pr (T = W) s |
+ 80| G(Wrn) = GWrun) | + 180 = 8ua || G|

< lay = |l + Bullpn = pucrll + 1Bn = Buallpucs |
+ V| (@ = But) = (hnlT = W)y = AT = W)b_1)
= (MnlT = W1 = dpr (T = W1 |
+ 1 = Vua | |Pe (T = na (T = W) bt || + 8l = Yruca
+185 = 8p1l | G|

< laty = |l + Bullpn = pucrll + 1Bn = Buallpucs |
+ Valldn = Gnca | + Au| (T = W) — (T = W)pyia |
+ 1w = Al [T = W)pa |
+ 1V = Vurl | Pe(I = s (U= W) s | + 8l = Yrna

+ |8n - 8n—1| “ G(l//n—l) ” . (35)

On the other hand, from ¢, = W, p, and ¢,,.; = Wy, ., pni1, we have

1
qjl(‘{bnr é‘) + g_ (; - ¢n: ¢n _pn> = 0: V{ eC (3-6)
and
1
\I‘Jl(¢n+lr é‘) + (é- - ¢n+1’ ¢n+1 _pn+1) 2 O, V( S C (37)
n+l

Putting ¢ = ¢,,41 in (3.6) and ¢ = ¢, in (3.7), we have
1
\pl(¢nr ¢n+l) + g_ (¢n+1 - ¢nt ¢n _pn> = 0

and

1

“I'll (¢n+lr ¢n) +
&

n+l

(D1 — Gus1s Prs1 — Pus1) = 0.
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From (J2), we have

¢n _pn _ ¢n+1 _pn+1> 2 0.

n 8n+1

<¢n+1 - ¢n»

So

<¢n+1 = Pus B — Pus1 + Pus1 — P — g_n(¢n+l _pn+1)> >0.

n+l

Then

&n

n+l

”¢n+1 - ¢n”2 < <¢n+1 - ¢mpn+1 _pn + ¢n+1 _pn+1 - (¢n+1 _pn+l)>

= <¢n+l - ¢nrpn+1 —Pnt (1 - & >(¢n+1 _pn+l)>
8n+1

8n

n+l

1-

= ||¢n+1 - ¢n” (”PVHI _pn” + ||¢n+1 —Pn+1||>,

and hence

1

lpns1 = Gull < pre1 — pall + g 1gn+1 = Gul | Prs1 — Prall

n+l

1
=< ||pn+1 _pn” + ;lgnﬂ _grl| ||¢r1+1 _pm—l”' (38)

We use ¥, = Wy, p, and ¥,.1 = W, Pua. By using the same method as (3.8), we have

1
”wn+1 - 1prz” = ”pm—l _pn” + ;|hn+1 - hn| ||1//n+1 —Pn+l ” (39)

From (3.5), (3.8), and (3.9), we have

1201 = Pull < lotw = analltll + Bullpw = usll + 1Bu = Bucal |
- (npm ~pall+ g ~ ol I —Pn+1||)
+ | (= Wb = (I = W) || + 1A = A l|| (T = W) |
+ 1V = Vurl | Pe(I = hpa (U= W) |
+ an(npm ~pall+ i~ Bl —Pn+1||)
+ 185 = 8ua || G(¥ru) |
< letn — cpa [|4l] + Bullpn = Pt ll + 1Bu = Bual Dt
+ Vullpuir = pall + %|gn+l = Gl 1 — Puatll
+ || (T = W) = (I = W)t | + 2o = e || (T = W) |
+1¥n = Vuetl | Pe(I = Anr T = W)t || + 84l Piar —

1
+ ;lhnﬂ - hn| ”wnﬂ — Pn+l ” + |5n - 8n—1| ||G(1//n—1)||



Cheawchan et al. Fixed Point Theory and Applications (2015) 2015:216 Page 10 of 19

< A -a)llpn —pull + loy — €y |M + 1By — BpalM
+ |yn — Vn-1 |M + |5n - 3n—1|M + p‘n - )Ln—1|M + )‘nM

1 1
+ ;Ignﬂ —gn|M + E|hn+1 - hn|M’

where

M= Iileal\?;{llull, 12all, | Pc(I = 2n = W) |, | GWn) |, | T = Wb,
1 = W1 = (I = WG|, 6 = pull, 19 = pull}-
From the conditions (i), (iv), (v), and Lemma 2.6, we have
i [|py1 = pall = 0. (3.10)
Since Wy, is a firmly nonexpansive mapping, we obtain
¢ — &1 = | We,on — We, £ 11
= (Wgnpn - Wgng’pn - 5)
< <¢n_€xpn_$>
1
= 5 (1w = €17 + 2w = £17 = 16 = pull®).
It implies that
I — &1 < pu —E1% = Il — Pl (3.11)
By using the same method as (3.11), we have
1 — &1 < lpu = E17 = 1¥n — pull. (3.12)

From the definition of p,, (3.4), (3.11), and (3.12), we have

12ni1 = EN* = [ n(ue = &) + Bupn = &) + ¥u (P (I = 1uI = W) — §)

+8,(G(Y) - £)]?

< ayllu—&17+ Bullpn = EI1P + v | Pe(I = 1ul = W) — &
+8,|GWn) — & |* = Buva|Pc(I = 2l = W) — |
~ Budu | GW) — pu”

< ayllu—E1” + Bullpn = EI* + vull b — EII + Sull v — EII°
~ Bu¥ul Pe(I = 2all = W) b = pu|” = B | G) — |

< aullu—E17 + Bullpn = EI* + vu(lpw — E17 = 1 — pall®)
+ 84 (1w = E17 = 19 = Pall?) = Buba | G(W) — pu]”

2
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— B | Pc(I = nll = W) —
= ayllee =12 + (1= ) 1w — £ 12 = Vull b — pull?
= 8l = pull? = Buyun|| P (I = 2nll = W) — pa
— Buda | GW) — b
< &l &1 + 112w~ E17 = Vulldn — Pull® = 8all Y5 — pall?

- ﬂn}’n ”PC(I_ )&n(l_ W))¢n ~Pn ||2 - ﬁnsn H G(%) —Pn 2

’

which implies that

Vn”¢n —Pn||2 = an””‘SHZ + ”pn _5”2 - ||pn+1 _5”2

< anllu =&+ 1pn = Pl (12n = 1| + 1 Pnir — &11).
From the conditions (i), (ii), and (3.10), we have
lim ¢, — pull = 0.
n—0o0

By using the same method as (3.13), we can imply that

lim ”wn _pn” = lim “PC([_)W:(I_ W))¢n —Pn ” = lim ” G(llfn) —Pn ” =0.
n—00 n—0o00 n—00

From (3.13) and (3.14), we have

Tim 4, — Yl = 0.
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(3.13)

(3.14)

(3.15)

Afterwards, we show that limsup,,_, . (¥ —po, pn —po) < 0, where py = Pru. To show this

inequality, take a subsequence Py} of {p,} such that

lim sup (% — po, pn — po) = jlirgo<u = P0:Pn; = Po)-

n— 00

Without loss of generality, we may assume that u,, —  as j — oo. From (3.15), we have

Vy, — w as j — 00. By using the same method as [15] in Theorem 3.2, we have
[OXS] EP(\DI)
and

w € EP(W,).

(3.16)

(3.17)

Furthermore, we show that w € F(W). From Remark 2.9, we have F(W) = F(Pc(I - A, (-
W))). Assume that w ¢ F(W), we have w # Pc(I - Ay (I-W))w. From (3.13), we havepn/, —

w as j — 00. By (3.13), (3.14), the condition (iv), and Opial’s property, we have
liminf ||p,,, — || < liminf|p,, - Pc(I -y (- W))o|
j—o0 Jj—00

< tim inf({lpy; — Pe(f =2y (I = W))ua |
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+ | Pe(I = k(I = W)t = P (I = A, (I = W))py |

+ | Pc(I = h, (I = W) pry, = P(I = d (I = W)
< iminf (||, = py || + oy | (1 = Wt = (I = W)p, |

j—=o00

+ ”pn, _a)” + )"Vl/‘ H(I_ W)Pn, - (1_ W)w”)

= liminf ||p,,i —o|.
J—> 00

It is a contradiction. So we have
w € F(W). (3.18)

After that, we show that w € F(G). Assume that w ¢ F(G), that is, w # G(w). Since Pny —
w as j — 00, (3.14), the condition (iv), and Opial’s property, we have

liminf [|p,,, = w| < liminf]p, - G(«)|
j—o0 j—=o00
< timinf(|p, ~ G| + |G() - G|
+]6@,) - G@))

< timinf(, —p |l + lIpw, = )

= lilrgglf pn; = .
It is a contradiction. So we have
o € F(G). (3.19)
Therefore € F. Since p,; — w as j — 00, we have

lim sup{u — po, P — Po) =1,Li1glo(14 = Do, P = Po)

n—o0

= (u - po,w - po) = 0. (3.20)

Finally, we show that the sequences {p,}, {¢,}, and {v,,} converge strongly to py = Pru.
From the definition of p,, (3.4), and po = Pru, we have

2w = poll* = [ttt = po) + Bupu = Po) + u(Pc(I = 2u(I = W) — po)
+82(GW) = po) |
< |Bu@n = p0) + vu(Pc(I = 2ulI = W)y — po)
+8,(G(Wn) = po) | + 20, (1t = po, pus1 — po)
< (=) pn = Poll* + 20, (tt = Po, Pus1 = po).
From the condition (i), (3.20), and Lemma 2.6, we can conclude that the sequence {p,}

converges strongly to po = Pru. Consequently, we see that {¢,} and {y,} also converge
strongly to po = Pru. This completes the proof. d
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From our main result, if we take a = 0, we have the following corollary.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H, let
Uy, W, : C x C — R be bifunctions satisfying (J1)-(J4) and let W : C — C be a quasi-
nonexpansive mapping. Let Dy, D, : C — H be dy, dy-inverse strongly monotone mappings,
respectively. Define the mapping G : C — C by G(p) = Pc(I — AaD1)(Pc(I — AgDy)p) for all
p € C. Assume F = EP(W;) N EP(W,) N F(G) N F(W) # @. Suppose that p1,u € C and let
{pu}, {Pn}, and {,} be sequences generated by

q’l(d’mg)"'g%l(;_(pm(pn -pn) >0, V¢eC,
Vo (¥, §) + ﬁ(( Y ¥n—pu) >0, VieC, (3.21)
Pril = Ouh + Bupy + VP — Ay = W)y, + 8,G(Y,), VneN,

where the sequences L4 € (0,2d,), Mg € (0,2d) and {a,.}, {Bn} {yu}, {84} € [0,1] with o, +
By + Vu + 8, =1 for all n € N. Suppose the following conditions hold:
(i) limyooay =0andy o2 a, =00,

(i) 0<c=< By VY du <d<1forsomec,d>0andforaln=>1,

(iii) 0<e<gyh, <f forsomee,f >0 and foralln>1,

(iv) Yol Ap<ooand0<hy, <1,

(V) 302 loter — atul < 00, Y021 Bt — Bl < 00, Yo a1 — ¥l < 00,

Yoo a1 = Al <00, D021 |gnit — &nl < 00, Yoy [ — | < 00.

Then {p,}, {¢n}, and {,,} converge strongly to po = Pru and (po,&o) is a solution of (1.5)
where & = Pc(I — AgDs)po.

4 Application
In this section, we use our main result to obtain Theorem 4.7 and Theorem 4.8. Before we
prove these theorems, we need the following definition and lemma. A mapping W:C — C

is said to be nonspreading if
21Wp - Wel” < |Wp—¢I? +IWe -pl?, VpreC. (4.1)

Such a mapping is defined by Kohsaka and Takahashi [16].
In 2009, Ilemoto and Takahashi [17] proved that (4.1) is equivalent to

IWp-W¢l?<llp-¢I*+2(p- Wp,e - W), VpteC. (4.2)
Remark 4.1 A nonspreading mapping W with F(W) # {J is quasi-nonexpansive mapping.
Example 4.2 Let W : [-5,00) — [-5,00) be defined by

-5
Wp = pT, Vp € [-5,0).

Since W is a nonspreading mapping and F(W) = {-5}, we have W is a quasi-nonexpansive

mapping.

The following lemmas and definition are used to prove the results in this section.
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Lemma 4.3 ([8]) Let C be a nonempty closed convex subset of a real Hilbert space H
and let D1,D, : C — H be di,dy-inverse strongly monotone mappings, respectively, with
VIP(C, D) N VIP(C, D,) # @. Define a mapping G : C — C by

G(p) = Pc(I = aD1)(ap + (1 - a)Pc(I - AzD2)p),
forevery L4 € (0,2d1), Mg € (0,2d,) and a € (0,1). Then F(G) = VIP(C, D;) N VIP(C, D).

Lemma 4.4 ([16]) Let H be a Hilbert space, let C be a nonempty closed convex subset of
H, and let W be a nonspreading mapping of C into itself. Then F(W) is closed and convex.

In 2009, Kangtunyakarn and Suantai [18] introduced the S-mapping generated by
Wi, Wa, Ws,..., Wy and Ay, Ag,..., Ay as follows.

Definition 4.5 Let C be a nonempty convex subset of a real Banach space. Let {W;}, be
a finite family of (nonexpansive) mappings of C into itself. For each j = 1,2,...,N, let o;; =
(a{,aé,aé) €l x I x1,wherele[0,1] and a{ + aé + aé = 1. Define the mapping S: C — C
as follows:

Uy =1,
u = a%WlLIO +a%LI0 +aé],
U, = alezL[l +a§L[1 +(x§1,

Us = ad Wally + a3y + 31,

cey

N-1 N-1 N-1
UN—I =0 WN_1UN_2 t o, UN_2 t 03 1,

S=Uy=aNWyly_1 +a) Uy + a1
This mapping is called an S-mapping generated by Wi, W, ..., Wy and a3, g, ..., oty

Foreveryi=1,2,...N, put aé = 0 in Definition 4.5, then the S-mapping is reduced to the
K-mapping generated by o, a2, ..., ¥ where the K-mapping is defined by Kangtunyakarn
and Suantai [19] as follows.

Lemma 4.6 ([20]) Let C be a nonempty closed convex subset of a real Hilbert space. Let
(WYY, be a finite family of nonspreading mappings of C into C with ﬂﬁl F(W;) #9, and
letoj= (o), ) eI x I xI,j=1,2,...,N, where [ = [0,1], &} + &) + oty = 1, o), ot} € (0,1)
forallj=1,2,...,N-1and o € (0,1], & €[0,1), &, € [0,1) forallj=1,2,...,N. Let S be
the mapping generated by W1, Wa, ..., Wy and a1, aa, ..., on. Then F(S) = ﬂfil F(W;) and

S is a quasi-nonexpansive mapping.
By using these results, we obtain the following theorems.

Theorem 4.7 Let C be a nonempty closed convex subset of a real Hilbert space H, let
Wy, W, : C x C — R be bifunctions satisfying (J1)-(J4) and let W : C — C be a quasi-
nonexpansive mapping. Let D1, D, : C — H be di, dy-inverse strongly monotone mappings,
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respectively. Assume F = EP(W;) NEP(Wy) NF(W) N VIP(C, D;) N VIP(C, D,) # . Suppose
that p1,u € C and let {p,}, {¢,}, and {,,} be sequences generated by

i@ §) + 56 = bwbn—pa) 20, VE€C,
WY, §) + 546 = Y ¥n —pa) 20, VE €C,
Pt = 0uth + Bupy + YuPc = Ay(I = W)y
+8,Pc(I = haDy)(apy + (1 - a)Pc(I = AgDa)p), VneN,

(4.3)

where the sequences A4 € (0,2dy), Ag € (0,2d,), and {a,},{Bn}, {vu}, {84} € [0,1] with o), +
Bu+Vn+du=1forallneN, and a € (0,1). Suppose the following conditions hold:
(i) limy—ooay =0andy o) ay =00,

(i) 0<c=< By VY dn <d<1forsomec,d>0andforalln=>1,

(i) 0 <e<gyh, <f forsomee,f >0 and foralln>1,

(iv) Yol An<ooand <y, <1,

V) Yopea lena = @l < 00, 3021 [Buer = Bul < 00, Y52y [Vt — Vil < 00,

Z;.,il [Ans1 = Aul < 00, 221 |gn+1 — gnl < 00, Z;il [7401 — hy| < 00.

Then {py}, {¢n}, and {,} converge strongly to po = Pru and (po, &) be a solution of (1.6)
where &y = Pc(I — AgDs)po.

Proof By using Theorem 3.1 and Lemma 4.3, we obtain the conclusion. d

Theorem 4.8 Let C be a nonempty closed convex subset of a real Hilbert space H, let
Uy, W, : C x C — R be bifunctions satisfying (J1)-(J4). Let {W}Y, be a finite family of non-
spreading mappings of C into C and let o = (a{,aé,aé) elxIxIj=12,...,N, where
1=[0,1), &, + o+ =1,0f,a} € (0,1) forall j=1,2,...,N =1 and o € (0,1], & € [0,1),
aé €[0,1) forall j =1,2,...,N. Let S be the mapping generated by Wy, Ws,..., Wx, and
a1,0,...,0yN. Let Dy,Dy : C — H be dy,d,-inverse strongly monotone mappings, respec-
tively. Define the mapping G : C — C by G(p) = Pc(I — AuD1)(ap + (1 —a)Pc(I — AgDy)p) for
all p € C and a € [0,1]. Assume F = EP(W;) N EP(W,) N F(G) N ﬂf\il F(W;) # 0. Suppose
that py,u € C and let {p,}, {¢,}, and {,,} are sequences generated by

U@ §) + S = bwbu—pa) 20, VE€C,
lIIZ(wnr C) + i(; - wm wn _pn> = O’ Vé’ € Cr (4'4)
Pui1 = Otk + Bupp + YuPcI = Ayl = 8))pn + 8,G(¥,), VmeN,

where the sequences A4 € (0,2dy), Ag € (0,2d,), and {a,}, {Bn}, {vu}, {84} € [0,1] with o, +
Bn + Yu + 6u =1 for all n € N. Suppose the following conditions hold:
(i) limy—ooay =0andy o2 a, =00,

(i) 0<c=< By VY dn <d<1forsomec,d>0and foralln=>1,

(iii) 0<e<gy hy <f forsomee,f >0 and foralln=>1,

(iv) Yol An<ooand0<h, <1,

(V) Yoy lonen — ol < 00, Y_n21 |Bust = Bul < 00, Y opoy [Vl — ¥l < 00,

S At = Al <00, D02 |@net — gul < 00, Yoy [y — Byl < 00.

Then {p,}, {¢n}, and {V,,} converge strongly to py = Pru and (po,&o) is a solution of (1.6)
where &y = Pc(I — AgDs)py.-
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Proof By using Theorem 3.1 and Lemma 4.6, we obtain the conclusion. O
The following result is directly proven from Theorem 4.8. Therefore, we omit the proof.

Corollary 4.9 Let C be a nonempty closed convex subset of a real Hilbert space H, let
Wy, U, : C x C — R be bifunctions satisfying (J1)-(J4). Let W be a nonspreading mappings
of Cinto itself with F(W) # (. Let D1, D, : C — H be dh, dy-inverse strongly monotone map-
pings, respectively. Define the mapping G : C — C by G(p) = Pc(I—*aD1)(ap + (1—a)Pc(I -
AgDy)p) forallp € C and a € [0,1]. Assume F = EP(¥;) NEP(W,) NF(G) NEF(W) # (. Sup-
pose that p1,u € C and let {p,}, {¢,}, and {,} be sequences generated by

\Ijl(¢n:§)+gln(§_¢m¢n —pn)ZOJ V; €C¢
‘IJZ(WW é-) + i(; - w'n! wn _pn> >0, V¢e C, (45)
Pn+1 =0 + ﬁnpn + ynPC(I - )Ln(l - W))¢n + (SnG(wn)y Vn e N,

where the sequences L4 € (0,2d,), A € (0,2d,) and {«,},{Bs}, {vu}, {8,} C [0,1] with o, +
Bu+ ¥n + 8, =1 for all n € N. Suppose the following conditions hold:
(i) limy—ooay =0andy o) ay =00,

(i) 0<c<BuVubu <d<1forsomec,d>0andforalln=>1,

(i) 0 <e<gy h, <f forsomee,f >0 and foralln>1,

(iv) Yol Ap<ooand0<hy, <1,

V) Yot | =l <00, D202 |Busr = Bul <00, 3021 (Vo1 — Yl < 00,

Yoot it = Anl <00, 302 @1 — Gul < 00, Yooy a1 — Byl < 00.

Then {p,}, {¢n}, and {V,,} converge strongly to py = Pru and (po,&o) is a solution of (1.6)
where &y = Pc(I — AgD-)py.

5 Example and numerical results
In this section, we give an example supporting Theorem 3.1.

Example 5.1 Let R be the set of real numbers and let the mapping Dy, D, : R — R defined
by Dip = ’%2 and Dyp = ’%2, Vp € R, respectively. Let the mapping W : R — R be defined
by Wp = %,VpeR, let U3, ¥ : R x R — R be defined by

‘1’1(P’C):—(P—§)(—4+P+§): VP»CGR

and
Wa(p,0)=—2(p-2°+(p-2)( -2)+( -2 VpieR
By the definition of W;, we have
1
0 < qjl((ﬁn’ ;) + g_@ - ¢ru¢n _pn)
1
= _(¢n - ;)(_4 + ¢n + ;) + g_(g - ¢n)(¢n _pn)

1
=—(pp— )4+ Py + )+ g—(wn —Pn—bp + Pubn)
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& 0= —gu(@u— )4+ u+0) + (Cu— LPu— Dy + Pubn)
= 4gn¢n - ¢3 —gn¢ﬁ + Qupn + (_4‘gn + ¢y —pn)§ +gn€2~

Let G(¢) = 8482 + (=4gy + Pn—Pn)C + 48y — 9% — 8uP> + Py, which is a quadratic function

of ¢ with coefficient a = g,,, b = —4g, + ¢, — pn, and ¢ = 4g, P, — ¢ﬁ —gnd)ﬁ + ¢, py. Determine
the discriminant A of G as follows:

A =b*-4dac

= (_4'gn + ¢n —Pn)2 - 4‘gn (4gn¢n - ¢§ _gn(pﬁ + ¢npn)
= 16g, — 8¢:bn — 1626y + & + 48Py + 4835 + 8¢uPn = 20D — 4u$un + P,
= (_4gn + ¢n + 2gn¢n _pn)2~

We know that G(¢) > 0, V¢ € R. If it has at most one solution in R, then A < 0. So we
obtain

4g, + py
= . 5.1
®n 1+ 22, (5.1)

By using the same method as (5.1), we have

6h, + pn
= . 5.2
v 1+ 3h, 2)

Let p1,u € R, and {p,} be generated by (3.1) as follows:

Wi(pn§) + 5 (& = bwrbu —Pu) 20, V5 €C,
‘Ifz(llfm()+ ﬁ(é‘_wmwn _pn) ZO, V; GC:
Pril = Ouh + Bupy + VP — Ay = W)y, + 8,G(Y,), VneN,

n n 1 3n-1 10n-3 3n—4
where a =05, A4 =1, A3 = 1;gn = 3url’ hy = T ¥ = g Bn = 16n° V"= T6n Sn = 16n °’

and A, = # for all n € N. By the definitions of W3, ¥,, G, and W, we have EP(¥;) N
EP(W,) N F(G)NF(W) = {2}. From Theorem 3.1, we can conclude that the sequences {p,},

{¢n}, and {¢,} converge strongly to 2. From (5.1) and (5.2), we can rewrite (3.1) as follows:

_ 4gntpn
¢V’ T 1+2g,

_ 6hp+pn
Yn = 1+3hy, ’ (5:3)
Punt = gt + ¥odp, + W21 L (1= W), + 2=2G(Y), Vn=1.

Table 1 shows the values of the sequences {p,}, {¢,}, and {¢,,} where u = p; = -1 and
u=p; =5andn=300.
Conclusion

1. The sequences {p,}, {¢,}, and {¢,,} in Table 1 and Figure 1 converge to 2, where
{2} = EP(W;) N EP(W,) N E(G) N E(W).

2. Theorem 3.1 ensures the convergence of {p,}, {¢,}, and {y,,} in Example 5.1.
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Table 1 The values of {¢,}, {¥n}, and {p,} where n =300

n u=pq=-1 u=p1=5
On Yn Pn On ¥n Pn
1 0.0000 0.1250 -1.0000 4.000000 3.8750 5.0000
2 04339 0.5234 -0.4609 3.5661 34766 44609
3 0.7688 0.8360 0.0301 3.2312 3.1640 3.9699
4 1.0254 1.0771 04256 29746 3.9229 3.5744
5 1.2188 1.2595 0.7306 2.7812 2.7405 3.2694
150 1.9837 1.9845 1.9728 20163 2.0155 20272
296 1.9918 1.9922 1.9863 2.0082 2.0078 20137
297 1.9918 1.9922 1.9864 2.0082 2.0078 20136
298 1.9918 1.9922 1.9864 2.0082 2.0078 20136
299 1.9919 1.9923 1.9865 2.0081 2.0077 20135
300 1.9919 1.9923 1.9865 2.0081 2.0077 20135
- Fixed point problem - Fixed point problem
! —Pp, —P,
—o, —o,
4 — 4\ —V
3 3
£ = k
< 2r <2
1 ﬁ 4 1
0 0
-10 50 160 150 2(‘)0 24550 300 -10 50 160 150 2(‘10 250 300
(@Qu=p=-1 (bu=p=5
Figure 1 The convergence comparison of the sequences {p,}, {¢n}, and {¥,} with different initial
values u and p;.
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