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Abstract
We construct a relaxed hybrid shrinking iteration algorithm for approximating
common fixed points of a countable family of totally quasi-φ-asymptotically
nonexpansive multi-valued mappings. A strong convergence theorem for solving
generalized mixed equilibrium problems is established in the framework of Banach
spaces under relaxed conditions. Since there is no need to impose a uniformity
assumption on the involved mappings and no need to compute complex series in
the iteration process, the results improve those of the authors with related interests.
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1 Introduction
Throughout this paper we assume that E is a real Banach space with its dual E∗, C is a
nonempty closed convex subset of E and J : E → E∗ is the normalized duality mapping
defined by

Jx =
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E.

In the sequel, we use F(T) to denote the set of fixed points of a mapping T .

Definition . [] () A multi-valued mapping T : C → C is said to be totally quasi-φ-
asymptotically nonexpansive, if F(T) 	= ∅ and there exist nonnegative real sequences {νn},
{μn} with νn,μn →  (as n → ∞) and a strictly increasing continuous function ζ : R+ ∪
{} →R

+ ∪ {} with ζ () =  such that

φ(p, wn) ≤ φ(p, x) + νnζ
(
φ(p, x)

)
+ μn, ∀n ≥ , x ∈ C, w ∈ Tnx, p ∈ F(T), (.)

where φ : E × E →R
+ ∪ {} denotes the Lyapunov functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)
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It is obvious from the definition of φ that

(‖x‖ – ‖y‖) ≤ φ(x, y) ≤ (‖x‖ + ‖y‖) (.)

and

φ
(
x, J–(λJy + ( – λ)Jz

)) ≤ λφ(x, y) + ( – λ)φ(x, z), ∀x, y ∈ E,λ ∈ [, ]. (.)

() A countable family of multi-valued mappings {Ti} : C → C said to be uniformly to-
tally quasi-φ-asymptotically nonexpansive, if F :=

⋂∞
i= F(Ti) 	= ∅ and there exist nonneg-

ative real sequences {νn}, {μn} with νn,μn →  (as n → ∞) and a strictly increasing con-
tinuous function ζ : R+ ∪ {} →R

+ ∪ {} with ζ () =  such that

φ(p, wn,i) ≤ φ(p, x) + νnζ
(
φ(p, x)

)
+ μn, ∀n ≥ , wn,i ∈ Tn

i x, i ≥ , x ∈ C, p ∈ F . (.)

() A totally quasi-φ-asymptotically nonexpansive multi-valued mapping T : C → C is
said to be uniformly L-Lipschitz continuous, if there exists a constant L >  such that

‖wn – sn‖ ≤ L‖x – y‖, ∀n ≥ , x, y ∈ C, wn ∈ Tnx, sn ∈ Tny. (.)

Let θ : C × C → R be a bifunction, ψ : C → R a real valued function and A : C → E∗

a nonlinear mapping. The so-called generalized mixed equilibrium problem GMEP is to
find an u ∈ C such that

θ (u, y) + 〈Au, y – u〉 + ψ(y) – ψ(u) ≥ , ∀y ∈ C, (.)

whose set of solutions is denoted by �.
In , Chang et al. [] used the following hybrid shrinking iteration algorithm finding

a common element of the set of solutions for a GMEP, the set of solutions for variational
inequality problems, and the set of common fixed points for a countable family of multi-
valued total quasi-φ-asymptotically nonexpansive mappings in a real uniformly smooth
and strictly convex Banach space with Kadec-Klee property:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C; C = C,
yn = J–[αnJxn + ( – αn)Jzn],
zn = J–[βn,Jxn +

∑∞
i= βn,iJwn,i],

un ∈ C such that ∀y ∈ C,
θ (un, y) + 〈Aun, y – un〉 + ψ(y) – ψ(un) + 

rn
〈y – un, Jun – Jyn〉 ≥ ,

Cn+ = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + ξn},
xn+ = �Cn+ x, ∀n ≥ ,

(.)

where {Ti} : C → C is a countable family of closed and uniformly totally quasi-φ-
asymptotically nonexpansive multi-valued mappings; wn,i ∈ Tn

i xn, ∀n ≥ , i ≥ , ξn :=
νn supp∈F ζ (φ(p, xn)) + μn, �Cn+ is the generalized projection (see (.)) of E onto Cn+.
Their results not only generalized the corresponding results of [–] from single-valued
mappings to multi-valued mappings, but they also improved and extended the main re-
sults of Homaeipour and Razani [].
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However, it is obviously a quite strong condition that the involved multi-valued map-
pings are assumed to be uniformly ({νn}, {μn}, ζ )-totally quasi-φ-asymptotically nonex-
pansive. In addition, the accurate computation of the series

∑∞
i= βn,iJwn,i at each step of

the iteration process is not easily attainable, which leads to gradually increasing errors.
Inspired and motivated by the study mentioned above, in this paper, we use a relaxed

hybrid iteration algorithm for approximating common fixed points of a countable family of
multi-valued totally quasi-φ-asymptotically nonexpansive mappings and obtain a strong
convergence theorem under some suitable conditions. The results improve those of Chang
et al. [].

2 Preliminaries
We say that a Banach space E is strictly convex if the following implication holds for x, y ∈ E:

‖x‖ = ‖y‖ = , x 	= y ⇒
∥∥∥∥

x + y


∥∥∥∥ < . (.)

E is also said to be uniformly convex if for any ε > , there exists δ >  such that

‖x‖ = ‖y‖ = , ‖x – y‖ ≥ ε ⇒
∥∥∥∥

x + y


∥∥∥∥ ≤  – δ. (.)

It is well known that if E is a uniformly convex Banach space, then E is reflexive and strictly
convex. A Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x, y ∈ S(E) := {x ∈ E : ‖x‖ = }. E is said to be uniformly smooth if the limit
(.) is attained uniformly for x, y ∈ S(E).

Following Alber [], the generalized projection �C : E → C is defined by

�C = arg inf
y∈C

φ(y, x), ∀x ∈ E. (.)

Lemma . [] Let E be a smooth, strictly convex and reflexive Banach space and C be a
nonempty closed convex subset of E. Then the following conclusions hold:

() φ(x,�Cy) + φ(�Cy, y) ≤ φ(x, y) for all x ∈ C and y ∈ E;
() If x ∈ E and z ∈ C, then z = �Cx ⇔ 〈z – y, Jx – Jz〉 ≥ , ∀y ∈ C;
() For x, y ∈ E, φ(x, y) =  if and only if x = y.

Remark . The following basic properties for a Banach space E can be found in Cio-
ranescu [].

(i) If E is uniformly smooth, then J is uniformly continuous on each bounded subset
of E;

(ii) If E is reflexive and strictly convex, then J– is norm-weak-continuous;
(iii) If E is a smooth, strictly convex and reflexive Banach space, then the normalized

duality mapping J : E → E∗ is single valued, one-to-one and onto;
(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly convex;
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(v) Each uniformly convex Banach space E has the Kadec-Klee property, i.e., for any
sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x as n → ∞.

Lemma . [] Let E be a real uniformly smooth and strictly convex Banach space with
Kadec-Klee property, and C be a nonempty closed convex subset of E. Let {xn} and {yn} be
two sequences in C such that xn → p and φ(xn, yn) → , where φ is the function defined by
(.), then yn → p.

Lemma . [] Let E and C be the same as in Lemma .. Let T : C → C be a closed and to-
tally quasi-φ-asymptotically nonexpansive multi-valued mappings with nonnegative real
sequences {νn}, {μn} and a strictly increasing continuous function ζ : R+ ∪ {} →R

+ ∪ {}
such that νn,μn →  and ζ () = . If μ = , then the fixed point set F(T) of T is a closed
and convex subset of C.

Lemma . [] Let E be a real uniformly convex Banach space and let Br() be the
closed ball of E with center at the origin and radius r > . Then for any for any sequence
{xi} ⊂ Br() and for any sequence {λi} of positive numbers with

∑∞
i= λi = , there exists a

continuous strictly increasing convex function g : [,∞) → [,∞) with g() =  such that
such that for any positive integer i 	= , the following hold:

∥∥∥∥∥

∞∑

i=

λixi

∥∥∥∥∥



≤
∞∑

i=

λi‖xi‖ – λλig
(‖x – xi‖

)
(.)

and, for all x ∈ E,

φ

(

x, J–

( ∞∑

i=

λiJxi

))

≤
∞∑

i=

λiφ(x, xi) – λλig
(‖Jx – Jxi‖

)
. (.)

Assume that, to obtain the solution of GMEP, the function ψ : C → R is convex and
lower semi-continuous, the nonlinear mapping A : C → E∗ is continuous and monotone,
and the bifunction θ : C × C →R satisfies the following conditions:

(A) θ (x, x) = ;
(A) θ is monotone, i.e., θ (x, y) + θ (y, x) ≤ ;
(A) lim supt↓ θ (x + t(z – x), y) ≤ θ (x, y);
(A) the mapping y �→ θ (x, y) is convex and lower semicontinuous.

Lemma . [] Let E be a smooth, strictly convex, and reflexive Banach space, and C
be a nonempty closed convex subset of E. Let A : C → E∗ be a continuous and monotone
mapping, ψ : C → R a lower semi-continuous and convex function, and θ : C × C → R a
bifunction satisfying the conditions (A)-(A). Let r >  and x ∈ E. Then the following hold:

() There exists an u ∈ C such that

θ (u, y) + 〈Au, y – u〉 + ψ(y) – ψ(u) +

r
〈y – u, Ju – Jx〉 ≥ , ∀y ∈ C.

() A mapping κr : C → C is defined by

κr(x) =
{

u ∈ C : θ (u, y) + 〈Au, y – u〉 + ψ(y) – ψ(u) +

r
〈y – u, Ju – Jx〉 ≥ 

}
.
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Then the mapping κr has the following properties:
(i) κr is single-valued;

(ii) κr a firmly nonexpansive-type mapping, i.e.,

〈κrz – κry, Jκrz – Jκry〉 ≤ 〈κrz – κry, Jz – Jy〉;

(iii) F(κr) = � = F̃(κr);
(iv) � is a closed convex set of C;
(v) φ(p,κrz) + φ(κrz, z) ≤ φ(p, z), ∀p ∈ F(κr), z ∈ E,

where F̃(κr) denotes the set of asymptotic fixed points of κr , i.e.,

F̃(κr) :=
{

x ∈ C : ∃{xn} ⊂ C, s.t., xn ⇀ x,‖xn – κrxn‖ →  (n → ∞)
}

.

Lemma . [] The unique solutions to the positive integer equation

n = in +
(mn – )mn


, mn ≥ in, n = , , . . . , (.)

are

in = n –
(mn – )mn


, mn = –

[



–
√

n +



]
, n = , , . . . , (.)

where [x] denotes the maximal integer that is not larger than x.

3 Main results
Recall that a multi-valued mapping T : C → C is said to be closed, if for any sequence
{xn} ⊂ C with xn → x and wn ∈ Txn with wn → y as n → ∞, then y ∈ Tx.

Theorem . Let E be a real uniformly smooth and strictly convex Banach space with
Kadec-Klee property and C a nonempty closed convex subset of E. Let θ : C × C → R be
a bifunction satisfying the conditions (A)-(A), A : C → E∗ a continuous and monotone
mapping, and ψ : C → R a lower semi-continuous and convex function. Let {Ti} : C → C

be a countable family of closed and totally quasi-φ-asymptotically nonexpansive multi-
valued mappings with nonnegative real sequences {ν(i)

n }, {μ(i)
n } satisfying ν

(i)
n →  and

μ
(i)
n →  (as n → ∞ and for each i ≥ ) and a strictly increasing and continuous func-

tion ζ : R+ ∪{} →R
+ ∪{} satisfying condition (.) and each Ti is uniformly Li-Lipschitz

continuous with μ
(i)
 = . Let {αi} be a sequence in [, ) and {βi} be a sequence in (, ). Let

{xn} be the sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C; C = C,
yn = J–[αin Jxn + ( – αin )Jzn],
zn = J–[βin Jxn + ( – βin )Jw(in)

mn ],
un ∈ C such that ∀y ∈ C,
θ (un, y) + 〈Aun, y – un〉 + ψ(y) – ψ(un) + 

rn
〈y – un, Jun – Jyn〉 ≥ ,

Cn+ = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + ξn},
xn+ = �Cn+ x, n ∈ N,

(.)
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where w(in)
mn ∈ Tmn

in xn, ∀n ≥ , ξn := ν
(in)
mn supp∈F ζin (φ(p, xn)) + μ

(in)
mn , �Cn+ is the generalized

projection of E onto Cn+; and in and mn are the solutions to the positive integer equation:
n = in + (mn–)mn

 (mn ≥ in, n = , , . . .), that is, for each n ≥ , there exist unique in and mn

such that

i = , i = , i = , i = , i = ,

i = , i = , i = , . . . ;

m = , m = , m = , m = , m = ,

m = , m = , m = , . . . .

If G := F ∩ � 	= ∅ and F :=
⋂∞

i= F(Ti) is bounded, then {xn} converges strongly to �Gx.

Proof Two functions τ : C × C →R and κr : C → C are defined by

τ (x, y) = θ (x, y) + 〈Ax, y – x〉 + ψ(y) – ψ(x);

κr(x) =
{

u ∈ C : τ (u, y) +

r
〈y – u, Ju – Jx〉 ≥ ,∀y ∈ C

}
.

By Lemma ., we know that the function τ satisfies the conditions (A)-(A) and κr has
the properties (i)-(v). Therefore, (.) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C; C = C,
yn = J–[αin Jxn + ( – αin )Jzn],
zn = J–[βin Jxn + ( – βin )Jw(in)

mn ],
un ∈ C such that τ (un, y) + 

rn
〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Cn+ = {v ∈ Cn : φ(v, un) ≤ φ(v, xn) + ξn},
xn+ = �Cn+ x, n ∈ N.

(.)

We divide the proof into several steps.
(I) F and Cn (∀n ≥ ) both are closed and convex subsets in C.
In fact, it follows from Lemma . that each F(Ti) is a closed and convex subset of C, so

is F . In addition, with C (= C) being closed and convex, we may assume that Cn is closed
and convex for some n ≥ . In view of the definition of φ we have

Cn+ =
{

v ∈ C : ϕ(v) ≤ a
} ∩ Cn,

where ϕ(v) = 〈v, Jxn – Jyn〉 and a = ‖xn‖ – ‖yn‖ + ξn. This shows that Cn+ is closed and
convex.

(II) G is a subset of
⋂∞

n= Cn.
It is obvious that G ⊂ C. Suppose that G ⊂ Cn for some n ≥ . Since un = κrn yn, by

Lemma ., it is easily shown that κrn is quasi-φ-nonexpansive. Hence, for any p ∈ G ⊂ Cn,
it follows from (.) that

φ(p, un) = φ(p,κrn yn) ≤ φ(p, yn) = φ
(
p, J–[αnJxn + ( – αn)Jxn

])

≤ αnφ(p, xn) + ( – αn)φ(p, zn). (.)
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Furthermore, it follows from Lemma . that for any p ∈ G ⊂ Cn, w(in)
mn ∈ Tmn

in xn, we have

φ(p, zn) = φ
(
p, J–[βin Jxn + ( – βin )Jw(in)

mn

])

≤ βinφ(p, xn) + ( – βin )φ
(
p, w(in)

mn

)
– βin ( – βin )g

(∥∥Jxn – Jw(in)
mn

∥∥)

≤ βinφ(p, xn) + ( – βin )
[
φ(p, xn) + ν(in)

mn ζin
(
φ(p, xn)

)
+ μ(in)

mn

]

– βin ( – βin )g
(∥∥Jxn – Jw(in)

mn

∥∥)

≤ φ(p, xn) + ν(in)
mn sup

p∈F
ζin

(
φ(p, xn)

)
+ μ(in)

mn – βin ( – βin )g
(∥∥Jxn – Jw(in)

mn

∥∥)

= φ(p, xn) + ξn – βin ( – βin )g
(∥∥Jxn – Jw(in)

mn

∥∥)
. (.)

Substituting (.) into (.) and simplifying it, we have

φ(p, un) ≤ φ(p, yn) ≤ φ(p, xn) + ( – αin )ξn – ( – αin )βin ( – βin )g
(∥∥Jxn – Jw(in)

mn

∥∥)

≤ φ(p, xn) + ξn – ( – αin )βin ( – βin )g
(∥∥Jxn – Jw(in)

mn

∥∥)

≤ φ(p, xn) + ξn. (.)

This implies that p ∈ Cn+, and so G ⊂ Cn+.
(III) xn → x∗ ∈ C as n → ∞.
In fact, since xn = �Cn x, from Lemma .() we have 〈xn – y, Jx – Jxn〉 ≥ , ∀y ∈

Cn. Again since F ⊂ ⋂∞
n= Cn, we have 〈xn – p, Jx – Jxn〉 ≥ , ∀p ∈ F . It follows from

Lemma .() that for each p ∈ F and for each n ≥ ,

φ(xn, x) = φ(�Cn x, x) ≤ φ(p, x) – φ(p, xn) ≤ φ(p, x),

which implies that {φ(xn, x)} is bounded, so is {xn}. Since for all n ≥ , xn = �Cn x and
xn+ = �Cn+ x ∈ Cn+ ⊂ Cn, we have φ(xn, x) ≤ φ(xn+, x). This implies that {φ(xn, x)} is
nondecreasing, hence the limit

lim
n→∞φ(xn, x) exists.

Since E is reflexive, there exists a subsequence {xni} of {xn} such that xni ⇀ x∗ ∈ C as
i → ∞. Since Cn is closed and convex and Cn+ ⊂ Cn, this implies that Cn is weakly closed
and x∗ ∈ Cn for each n ≥ . In view of xni = �Cni

x, we have

φ(xni , x) ≤ φ
(
x∗, x

)
, ∀i ≥ .

Since the norm ‖ · ‖ is weakly lower semi-continuous, we have

lim inf
i→∞ φ(xni , x) = lim inf

i→∞
(‖xni‖ – 〈xni , Jx〉 + ‖x‖)

≥ ∥∥x∗∥∥ – 
〈
x∗, Jx

〉
+ ‖x‖

= φ
(
x∗, x

)
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and so

φ
(
x∗, x

) ≤ lim inf
i→∞ φ(xni , x) ≤ lim sup

i→∞
φ(xni , x) ≤ φ

(
x∗, x

)
.

This implies that limi→∞ φ(xni , x) = φ(x∗, x), and so ‖xni‖ → ‖x∗‖ as i → ∞. Since xni ⇀

x∗, by virtue of Kadec-Klee property of E, we obtain

lim
i→∞ xni = x∗.

Since {φ(xn, x)} is convergent, this, together with limi→∞ φ(xni , x) = φ(x∗, x), shows that
limn→∞ φ(xn, x) = φ(x∗, x). If there exists some subsequence {xnj} of {xn} such that xnj →
y as j → ∞, then from Lemma .() we have

φ
(
x∗, y

)
= lim

i,j→∞φ(xni , xnj ) = lim
i,j→∞φ(xni ,�Cnj

x)

≤ lim
i,j→∞

(
φ(xni , x) – φ(�Cnj

x, x)
)

= lim
i,j→∞

(
φ(xni , x) – φ(xnj , x)

)

= φ
(
x∗, x

)
– φ

(
x∗, x

)
= ,

that is, x∗ = y and so

lim
n→∞ xn = x∗. (.)

(IV) x∗ is a member of F .
Set Ki = {k ≥  : k = ik + (mk –)mk

 , mk ≥ ik , mk ∈ N} for each i ≥ . Note that ν
(ik )
mk = ν

(i)
mk ,

μ
(ik )
mk = μ

(i)
mk , and ζik = ζi whenever k ∈Ki for each i ≥ . For example, by Lemma . and the

definition of K, we have K = {, , , , , , . . .} and i = i = i = i = i = i = · · · = .
Then we have

ξk = ν(i)
mk

sup
p∈F

ζi
(
φ(p, xk)

)
+ μ(i)

mk
, ∀k ∈Ki. (.)

Note that {mk}k∈Ki = {i, i + , i + , . . .}, i.e., mk ↑ ∞ as Ki � k → ∞. It follows from (.)
and (.) that

lim
k→∞

ξk = . (.)

Since xn+ ∈ Cn+, it follows from (.), (.), and (.) that

φ(xk+, yk) ≤ φ(xk+, xk) + ξk →  (.)

as Ki � k → ∞. Since xk → x∗, it follows from (.) and Lemma . that

lim
Ki�k→∞

yk = x∗. (.)
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Note that w(ik )
mk = w(i)

mk , Tmk
ik = Tmk

i , αik = αi, and βik = βi whenever k ∈ Ki for each i ≥ .
From (.), for any p ∈ F and w(i)

mk ∈ Tmk
i xk , ∀k ∈Ki, we have

φ(p, yk) ≤ φ(p, xk) + ξk – ( – αi)βi( – βi)g
(∥∥Jxk – Jw(i)

mk

∥∥)
,

that is,

( – αi)βi( – βi)g
(∥∥Jxk – Jw(i)

mk

∥∥) ≤ φ(p, xk) + ξk – φ(p, yk) →  (Ki � k → ∞).

This, together with assumption conditions imposed on the sequence {αi} and {βi}, shows
that limKi�k→∞ g(‖Jxk – Jw(i)

mk ‖) = . In view of property of g , we have

lim
Ki�k→∞

∥∥Jxk – Jw(i)
mk

∥∥ = .

In addition, Jxk → Jx∗ implies that limKi�k→∞ Jw(i)
mk = Jx∗. From Remark .(ii) it yields, as

Ki � k → ∞,

w(i)
mk

⇀ x∗, ∀i ≥ . (.)

Again, since, for each i ≥ , as Ki � k → ∞,

∣∣∥∥w(i)
mk

∥∥ –
∥∥x∗∥∥∣∣ =

∣∣∥∥Jw(i)
mk

∥∥ –
∥∥Jx∗∥∥∣∣ ≤ ∥∥Jw(i)

mk
– Jx∗∥∥ → ,

this, together with (.) and the Kadec-Klee property of E, shows that

lim
Ki�k→∞

w(i)
mk

= x∗, ∀i ≥ . (.)

For each i ≥ , we now consider the sequence {s(i)
mk }k∈Ki generated by

s(i)
mk+

∈ Tiw(i)
mk

⊂ Tmk+
i xk , k ∈Ki,∀i ≥ . (.)

By the assumptions that for each i ≥ , Ti is uniformly Li-Lipschitz continuous. Noting
again that {mk}k∈Ki = {i, i + , i + , . . .}, i.e., mk+ –  = mk for all k ∈Ki, we then have

∥∥s(i)
mk+

– w(i)
mk

∥∥ ≤ ∥∥s(i)
mk+

– w(i)
mk+

∥∥ +
∥∥w(i)

mk+
– xk+

∥∥

+ ‖xk+ – xk‖ +
∥∥xk – w(i)

mk

∥∥

≤ (Li + )‖xk+ – xk‖ +
∥∥w(i)

mk+
– xk+

∥∥

+
∥∥xk – w(i)

mk

∥∥. (.)

From (.) and xk → x∗ we have limKi�k→∞ ‖s(i)
mk+ – w(i)

mk ‖ =  and

lim
Ki�k→∞

s(i)
mk+

= x∗, ∀i ≥ . (.)

In view of the closedness of Ti, it follows from (.) and (.) that x∗ ∈ Tix∗ for each
i ≥ , namely x∗ ∈ F .



Qian Fixed Point Theory and Applications  (2015) 2015:213 Page 10 of 12

(V) x∗ is also a member of G.
Since xn+ = �Cn+ x, it follows from (.) and (.) that

φ(xk+, uk) ≤ φ(xk+, xk) + ξk → 

as Ki � k → ∞. Since xk → x∗, by virtue of Lemma . we have

lim
Ki�k→∞

uk = x∗. (.)

This, together with (.), shows that limKi�k→∞ ‖uk –yk‖ =  and limKi�k→∞ ‖Juk – Jyk‖ =
. By the assumption that {rk}k∈Ki ⊂ [a,∞) for some a > , we have

lim
Ki�k→∞

‖Juk – Jyk‖
rk

= . (.)

Since τ (uk , y) + 
rk

〈y – uk , Juk – Jyk〉 ≥ , ∀y ∈ C, by condition (A), we have


rk

〈y – uk , Juk – Jyk〉 ≥ –τ (uk , y) ≥ τ (y, uk), ∀y ∈ C. (.)

By the assumption that the mapping y �→ τ (x, y) is convex and lower semi-continuous,
letting Ki � k → ∞ in (.), from (.) and (.), we have τ (y, x∗) ≤ , ∀y ∈ C.

For any t ∈ (, ] and any y ∈ C, set yt = ty + ( – t)x∗. Then τ (yt , x∗) ≤  since yt ∈ C. By
condition (A) and (A), we have

 = τ (yt , yt) ≤ tτ (yt , y) + ( – t)τ
(
yt , x∗) ≤ tτ (yt , y).

Dividing both sides of the above equation by t, we have τ (yt , y) ≥ , ∀y ∈ C. Letting t ↓ ,
from condition (A), we have τ (x∗, y) ≥ , ∀y ∈ C, i.e., x∗ ∈ � and so x∗ ∈ G.

(VI) x∗ = �Gx, and so xn → �Gx as n → ∞.
Put u = �Gx. Since u ∈ G ⊂ Cn and xn = �Cn x, we have φ(xn, x) ≤ φ(u, x), ∀n ≥ .

Then

φ
(
x∗, x

)
= lim

n→∞φ(xn, x) ≤ φ(u, x), (.)

which implies that x∗ = u since u = �Gx , and hence xn → x∗ = �F x as n → ∞. This
completes the proof. �

A numerical result is given as follows.

Example . Let E = R
 with the standard norm ‖ ·‖ = | · | and C = [, ]. Let {Ti}∞i= : C →

C be a sequence of multi-valued nonlinear mappings defined by

Tix =
{

(λx)i+

i + 
: λ ∈ [, ]

}
.
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Consider the following iteration sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈ C; C = C,
yn = J–[αnJxn + ( – αn)Jzn],
zn = J–[βnJxn + ( – βn)Jwin ],
Cn+ = {v ∈ Cn : φ(v, yn) ≤ φ(v, xn)},
xn+ = �Cn+ x, ∀n ≥ ,

(.)

where wi := xi+

i+ ∈ Tix, {αn} = { 
 – 

n }, {βn} = { 
 – 

n }, and �Cn+ (x) := arg infy∈Cn+ |y – x|.
Note that J = I and φ(x, y) = |x – y| for all x, y ∈ E since E is a Hilbert space. Moreover, it
is not difficult to obtain Cn+ = [, xn+yn

 ] for all n ≥ . Then (.) is reduced to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈ C; C = C,
yn = ( 

 – 
n )xn + ( 

 + 
n )zn,

zn = ( 
 – 

n )xn + ( 
 + 

n )win ,
Cn+ = {v ∈ Cn : |v – yn| ≤ |v – xn|},
xn+ = xn+yn

 , ∀n ≥ ,

(.)

where in is the solution to the positive integer equation: n = in + (mn–)mn
 (mn ≥ in, n =

, , . . .). It is clear that {Ti} is a sequence of closed and totally quasi-φ-asymptotically non-
expansive multi-valued mappings with a common fixed point zero. It then can be shown
by similar way of Theorem . that {xn} converges strongly to zero. The numerical exper-
iment outcome obtained by using MATLAB ... shows that, as x = , the compu-
tations of x, x, x, and x are ., ., .,
and ., respectively. This example illustrates the effectiveness of the in-
troduced algorithm for countable families of totally quasi-φ-asymptotically nonexpansive
multi-valued mappings.
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