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Abstract

In this paper, we propose a class of generalized proximal-type method by the virtue
of Bregman functions to solve weak vector variational inequality problems in Banach
spaces. We carry out a convergence analysis on the method and prove the weak
convergence of the generated sequence to a solution of the weak vector variational
inequality problems under some mild conditions. Our results extend some known
results to more general cases.
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1 Introduction

The well-known proximal point algorithm (PPA, for short) is a powerful tool for solving
optimization problems and variational inequality problems, which was first introduced by
Martinet [1] and its celebrated progress was attained in the work of Rockafellar [2]. The
classical proximal point algorithm generated a sequence {z¥} C H with an initial point z°

through the following iteration:
= (I + ¢ T) 2, (1.1)

where {c} is a sequence of positive real numbers bounded away from zero. Rockafellar [2]
proved that for a maximal monotone operator T, the sequence {z¥} weakly converges to
a zero of T' under some mild conditions. From then on, many works have been devoted
to the investigation of the proximal point algorithms, its applications, and generalizations
(see [3—-8] and the references therein for scalar-valued optimization problems and varia-
tional inequality problems; see [9-14] for vector-valued optimization problems). The no-
tion of a Bregman function hasits origin in [15] and the name was first used in optimization
problems and its related topics by Censor and Lent in [16]. Bregman function algorithms
have been extensively used for various optimization problems and variational inequal-
ity problems (e.g. [17-20] in finite-dimensional spaces, [21, 22] in infinite-dimensional
spaces).
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The concept of vector variational inequality was firstly introduced by Giannessi [23] in
finite-dimensional spaces. The vector variational inequality problems have found a lot of
important applications in multiobjective decision making problems, network equilibrium
problems, traffic equilibrium problems, and so on. Because of these significant applica-
tions, the study of vector variational inequalities has attracted wide attention. Chen and
Yang [24] investigated general vector variational inequality problems and vector comple-
mentary problems in infinite-dimensional spaces. Chen [25] considered vector variational
inequality problems with a variable ordering structure. Through the last 20 years of de-
velopment, existence results of solutions, duality theorems, and topological properties of
solution sets of several kinds of vector variational inequalities have been derived. One can
find a fairly complete review of the main results as regards the vector variational inequal-
ities in the monograph [26]. Very recently, Chen [27] constructed a class of vector-valued
proximal-type method for solving a weak vector variational inequality problem in finite-
dimensional spaces. They generalized some the classical results of Rockafellar [2] from
the scalar-valued case to the vector-valued case.

An important motivation for making an analysis of the convergence properties of both
proximal point algorithms and Bregman function algorithms is related to the mesh in-
dependence principle [28—30]. The mesh independence principle relies on infinite di-
mensional convergence results for predicting the convergence properties of the discrete
finite-dimensional method. Furthermore it can provide a theoretical foundation for the
justification of refinement strategies and help to design the refinement process. As we
know, many practical problems in economics and engineering are modeled in infinite-
dimensional spaces, thus it is necessary to analyze the convergence property of the algo-
rithms in abstract spaces. Motivated by [22, 27], in this paper we propose a class of gener-
alized proximal-type methods by virtue of the Bregman function for solving weak vector
variational inequality problems in Banach spaces. We carry out a convergence analysis of
the method and prove convergence of the generated sequence to a solution of the weak
vector variational inequality problems under some mild conditions.

The paper is organized as follows.

In Section 2, we present some basic concepts, assumptions and preliminary results. In
Section 3, we introduce the proximal-type method and carry out convergence analysis on
the method. In Section 4, we draw a conclusion and make some remarks.

2 Preliminaries
In this section, we present some basic definitions and propositions for the proof of our
main results.

Let X be a smooth reflexive Banach space with norm || - ||x, denote by X* the dual space
of X and Y is also a smooth reflexive Banach space ordered by a nontrivial, closed and
convex cone C with nonempty interior int C, which defines a partial order <¢ in Y, i.e.,
y1 <c y2 ifand onlyif y, —y; € Cforany y1,y, € Y and for relation <i¢, given by y1 <inrc 72
if and only if ¥, — 94 € intC for any y;,y, € Y. We denote by Y* the dual space of Y, by C*
the positive polar cone of C, i.e.,

C*={zeY*:(z,y) >0,Vze C}.

We denote C** = {z € Y*: (y,z) > 0} for all y € C\{0}.
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Lemma 2.1 [31] Let e € int C be fixed and C° = {z € C* | (z,e) = 1}, then C° is a weak*-
compact subset of C*.

Denote by L(X, Y) the set of all continuous linear operators from X to Y. Denote by (¢, x)
the value ¢(x) of p at x € X if ¢ € L(X,Y). Let Xy C X be nonempty, closed, and convex,
consider the weak vector variational inequality problem of finding x € X, such that

(WVVD) (T(x),x—%) Linc 0 Vx € Xo,
where T : Xy — L(X,Y) be a mapping. Denote by X the solution set of (VVI). Let A €

C% and A(T) : Xo — X*, consider the corresponding scalar-valued variational inequality
problem of finding x* € X, such that

(VIP;) (MT)(x*),x—x*)>0 Vxe X,.
Denote by X; the solution set of (VIP;).
Definition 2.1 [32] Let X, C X be nonempty, closed, and convex, and F : Xy — X* be a

single-valued mapping.

(i) F is said to be monotone on Xy if, for any x;, x5 € Xy, we have
(F(x1) = F(xo), %1 — x2) > 0.

(ii) F is said to be pseudomonotone on Xy if, for any x1,x, € Xo, we have
(F(xz),xl - xz) >0 = (F(xl):xl —xz) >0.

Definition 2.2 [26] Let X, C X be nonempty, closed, and convex. T : Xo — L(X,Y) is a
mapping, which is said to be C-monotone on X, if, for any x;,x, € Xo, we have

(T(x1) = T(x2),%1 = 2x2) > O.

Proposition 2.1 [26] Let Xy and T be defined as in Definition 2.2, we have the following
statements:
(i) T is C-monotone if and only if, for any A € C°, the mapping M(T) : Xo — X* is
monotone;
(i) if T is C-monotone, then for any k. € C°, M(T) : Xo — X* is pseudomonotone.

Definition 2.3 [33] Let L C L(X,Y) be a nonempty set. The weak and strong C-polar
cones of L are defined, respectively, by

L ={xeX:(,x) £c0,Vle L} 2.1)
and

LY :={xeX:(Lx)<c0,VleL}. (2.2)
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Definition 2.4 [26] Let K C X be nonempty, closed, and convex, let F: K — Y be a
vector-valued mapping. A linear operator V is said to be a strong subgradient of F at
x e K if

F(x)—F(x)—(V,x—x)>c0 Vxek.
A linear operator V is said to be a weak subgradient of F at x € K if

Fx) —F(X)—(V,x—X) Linc 0 VxeK.
Denote by 9~ F(x) the set of weak subgradients of F on K at x.

Let K C X be nonempty, closed, and convex. A vector-valued indicator function §(x | K)

of K at x is defined by
0eY, ifxek;
Sx | K) =
+o0oc, ifxé¢ K.

An important and special case in the theory of weak subgradients is the case that F(x) =
8(x | K) becomes a vector-valued indicator function of K. By Definition 2.4, we obtain
V e d%é(x* | K) if and only if

(Vix—x*) imc 0 VxeK. (2.3)

Definition 2.5 A set VNY(x*) C L(X,Y) is said to be a weak normality operator set to K
at x*, if for every V' € VN (x*), the inequality (2.3) holds.

Clearly, VN¢(x*) = 9¢8(x* | K). As for the scalar-valued case, from [34] we know that
v* € 38k (x*) = Nk (x*) if and only if

(vx-a")<0 VxeKk, (2.4)

where 8 (x) is the scalar-valued indicator function of K. The inequality (2.4) means that
v* is normal to K at x*.

Definition 2.6 Let VNZ(-) : X = L(X, Y) be a set-valued mapping, which is said to be a
weak normal mapping for K, if for any y € K, V € VNg(y) such that

(V,x—9) 2inc0 VxeK. (2.5)
VN (-) is said to be a strong normal mapping for K, if for any y € K, V' € VN}(y) such that
(V,x—y) <c0 VxeKk. (2.6)

As in [35], the normal mapping for K is a set-valued mapping, which is defined, for any
y € K, ve Nk(), by

(vyx—-y) <0 Vxek.
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Next we will introduce the definition and some basic results as regards the maximal mono-

tone mapping.

Definition 2.7 [32] Leta set-valued map G : Xy C X =% X™* be given, it is said to be mono-
tone if

(z—z,w—w) >0

for all z and z in Xy, all w in G(z) and w in G(2). It is said to be maximal monotone if, in
addition, the graph

gph(G) = {(z,w) eXxX"|\we G(z)}
is not properly contained in the graph of any other monotone operator from X to X*.

Definition 2.8 [36] An operator A : X — X* is said to be regular if for any # € R(A) and

for any y € dom(A),
sup (v—u,y—2z)<oo. (2.7)
(z,vegrh(A))

Proposition 2.2 [37] The subdifferential of a proper lower semicontinuous convex func-

tion ¢ is a regular operator.

Lemma 2.2 [35] Let K be a nonempty, closed, and convex subset of X.
(a) If T : X = X* is the normal mapping to K and Ty : X — X* is a single-valued
monotone operator such that int K N dom(T,) # B and T, is continuous on K, then
Ty + Ty is a maximal monotone operator.
(b) If Ty, Ty : X = X* are maximal monotone operators, and int(dom T7) N dom T # @,
then Ty + Ty is a maximal monotone operator.

Lemma 2.3 [22] Assume that X is a reflexive Banach space and ] its normalized duality
mapping. Let Ty, T1 : X = X* be maximal monotone operators such that

(a) T isregular.

(b) domT) Ndom Ty # @ and R(Ty) = X*.

(c) Ty + Ty is maximal monotone.
Then we have R(Ty + Ty) = X*.

Proposition 2.3 [38] Any maximal monotone operator S : X = X* is demiclosed, if the
conditions below hold:

o If {xx} converges weakly to x and {wy € S(xx)} converges strongly to w, then w € S(x).

o If {xx} converges strongly to x and {wi € S(xx)} converges weakly to w, then w € S(x).

Definition 2.9 [22] Let X be a smooth reflexive Banach space and f : X — R a strictly
convex, proper, and lower semicontinuous function with closed domain D := dom(f). As-
sume from now on thatint D # ¢J and that f is Gateaux differentiable on int D. The Bregman
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distance with respect to f is the function By(z,x) : D x intD — R defined by

By(z,%) := f(2) = f(x) = (Vf (x), 2 — ), (2.8)

where Vf(x) is the differential of f defined in intD.
Consider the following set of assumptions on f.

A;: The right level sets of Br(y, -),
Sy ={z€intD: By(y,2) < a}, (2.9)

are bounded for all @ > 0 and for all y € D.
Ay: If (¥} CintK and {y*} C int K are bounded sequences such that lim_, ..o [|l%x — y& ]| =0,
then

kErPOO(Vf(xk) - Vf(y)) = 0. (2.10)
Asz: Assume {x*} C K is bounded, {y*} C intK is such that w-lim;_, o, ¥* = y. Further as-
sume that w-limy_, ;o Bf(xk,yk) =0, then
k

w- lim x* =y.
k—+00

Ay: For every y € X*, there exists x € int D such that Vf(x) = y.

We say that f is said to be a Bregman function if it satisfies A;-A3, and f is said to be
a coercive Bregman function if it satisfies A;-A4. Without loss of generality, we assume
Xo C domf.

Definition 2.10 [39] Let X, C X be a closed and convex set with intXy # ¢, f : Xo —
R a convex function which is Gateaux differentiable in int Xj. We define the modulus of
convexity of f, vy :int Xy x R, — R, by

vr(z, t) := inf{Bf(x, 2):|lx—z| = t}, (2.11)

where By (x,z) is the Bregman distance with respect to f.
(a) The function f is said to be totally convex in int X, if and only if v/(z, £) > 0 for all
zeintXy and £ > 0.
(b) The function f is said to be uniformly totally convex if for any bounded set
K CintXy and ¢ > 0, we have

inf v/(x,t) > 0. (2.12)
xeK

Next we will introduce some fundamental definitions of the asymptotic analysis in infi-
nite spaces.

Definition 2.11 [40] Let K be a nonempty set in X. Then the asymptotic cone of the set
K, denoted by K, is the set of all vectors d € X that are weak limits in the direction of

Page 6 of 14
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the sequence {x;} C K, namely

I(O":{deX’Eltk—>+oo, andxkeK,w—klim ﬁ:d}. (2.13)

00 B
In the case that K is convex and closed, then, for any %y € K,
K® ={deX |xo+tdeK,Vt>0}. (2.14)
3 Main results
Proposition 3.1 Let Xo C X be nonempty, closed, and convex, and VNy () be a weak
normal mapping for Xo. For any x* € Xo, and ¢ € VNy, (x*), there exists a 1 € CO such that
M) € Nx, (x).
Proof By the definition of the weak normal mapping, we know that
(go,x —x*) Finc 0 Vx € X,.
It follows that
(px—a*)eY\intC Vxe Xo,
and
(@, X0 —x*) C Y\intC.
That is,

((p,Xo - x*) Nint C = @.

By virtue of the convexity of X, and the Hahn-Banach theorem, there exists a A* € C*\{0}
such that

(A (@)x-x") <0 VxeX,.

Since ||A*|| > 0, one obtains

A'*
<||)\*|| ((p),x—x*> <0 VxeXp.

Clearly, we have % € C°. Without loss of generality, let A = %, one has
(A(ga),x - x*) <0 VxeX,.
That is, A(¢) € Ny, (x*). The proof is complete. a

We propose the following exact generalized proximal-type method (GPTM, for short)
for solving the problem (WVVI):
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Step (1) take xg € Xo;
Step (2) given any x; € X, if 2 € X, then the algorithm stops; otherwise go to Step (3);
Step (3) take x; ¢ X; we define xz,, by the following expression:

0 € T(wis1)hx + VNy (i) + 81 (VS (K1) — VS (1)), (3.1)

where the sequence A; € C°, g € (0,¢], £ > 0,and VN)“(’O(~) is the weak normal mapping to
Xo, f is a coercive Bregman function; go to Step (2).

Remark 3.1 The algorithm GPTM is actually a kind of exact proximal point algorithm,
where the sequence {A} € C is called a sequence of scalarization parameters, a bounded
exogenous sequence of positive real numbers {g;} is called a sequence of regularization
parameters. For every x; ¢ X, we try to find a x,; such that 0 € X* belongs to the inclusion
(3.1).

Next we will show the main results of this paper.

Theorem 3.1 Let Xy C X be nonempty, closed, and convex, T : Xo — L(X,Y) be contin-
uous and C-monotone on Xy, if domT NintXy # . The sequence {xi} generated by the
method (GPTM) is well defined.

Proof Let x9 € X, be an initial point and suppose that the method (GPTM) reaches Step
(k). We then show that the next iterate xy,; does exist. By the assumptions, 7'(-) is con-
tinuous and C-monotone on Xj. By virtue of Proposition 2.1, we see that A(T’) is mono-
tone and continuous on X, for any A € C°. From Proposition 3.1, there exists a A € C°
such that the mapping VN;(VO(~)X is a normal mapping on Xy. Thus, by the assumption
dom T NintX, # ¥ and the statement (a) of Lemma 2.2, one sees that, for any x € X;, the
mapping (VNy, (x) + T (x)) is maximal monotone. Without loss of generality, let A; = A.
Once again by the statement (b) of Lemma 2.2, we see that T'(-)Ax + VN)‘{O ()Ax +exVS() is
maximal monotone. Taking &, Vf as T7 in Lemma 2.3, it is easy to check that all assump-
tions are satisfied. It follows that R(T'(-)Ax + VN, ()Ax + &xVf(-)) = X*. Then we see that,
for any given &, Vf(xx) € X*, there exists a xx,; such that

exVf(xx) € T(xxs1) i + VNy, Kks1) Ak + € VS (411 (3.2)
The proof is complete. d

Theorem 3.2 Let the same assumptions as those in Theorem 3.1 hold. Further suppose that
X5 N[T(Xo)] = {0} and X is nonempty and bounded. Then the sequence {x;) generated
by the method (GPTM) is bounded and

oo

> By (xicn,20) < 00 (33)
k=0

Proof From the method (GPTM), we know that if the algorithm stops at some iteration,
the point x; will be a constant thereafter. Now we assume that the sequence {x;} will not
stop after a finite number of iterations. From Proposition 3.1, we know that there exist
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Ak € C® and ¢, € Vi Y (xx41) such that Ag(@ks1) € Nx,(xks1). From the inclusion (3.1),
one has

0 = T (1) k + Mic(@ii1) + & (VS (K1) = VS (1))

By the fact that Ax(¢ks1) € Nx, (%k41), we obtain

(Aie@rs1)sx = x141) <0 Vx € X (3.4)
It follows that
(T@ors)Ak + e (Vf (tiar) = V(). % — xu41) = 0V € Xo. (3.5)

On the other hand, from the assumption that X is nonempty and bounded, without loss of
generality, let x* € X. By virtue of Theorem 3.3 in [41], we know that x* is also a solution
of the problem (VIP,,), where

(VIP;,) (T(x*)iex—x")>=0 VxeX,.
It follows that

(T (") Ao 8™ = xpe41) < 0.
By the C-monotonicity of T, one has

(TG h o 6" = 211) < 0. (3.6)
Combining (3.5) with (3.6), we obtain

{ex(Vf (k1) = Vf(x0)), 2" = 2x01) = 0.
By Property 2.1 of [22] (‘three points property’), we have

By (%, Xic11) = By (%,501) — By (icar, 1) + (Vf () = Vf (K1), % — K41 (3.7)

for any x € Xj. Hence from the inclusion (3.1), we know there exists Ax(¢.1) € VN, (%+1)
such that

— (Tea)ha i) = Vo) = VS o) (3.8)
Combining (3.7) with (3.8), we obtain

By .0 = By 20) = By (s, )+ (T + M) (3.9)
Since Ax(@ri1) € Nx, (%k41), we have

(Aic(@ra1), ™ = xpea1) < 0. (3.10)
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It follows that
* * 1 *
By (x*, %ks1) < By (x*, %) — By (%ics1, %) — ;(T(xku)lk,xku —x"). (3.11)
Clearly, we have i (T (%g1) ke, Xre1 — x*) > 0. It follows that
By (%", k41) < By (", %k) — By (a1, %) (3.12)
Hence we see that the sequence By(x*, %) is decreasing as k — oo. Taking o = Br(x*, %),
we obtain the sequence {xx} C S;+ o, which is a bounded set, by the assumption A; of the

Bregman function.

As for the sequence Br(x*, %), it converges to a limit /*. From (3.12), we have
By (%1, %%) < By (x*, %) — Bp (%", %141 (3.13)

Summing up the above inequality, we obtain

ZBf(ka,xk) < Z{Bf(x*,xk) —Bf(x*,xk+1)} = Bf(x*,xo) —I* < o0. (3.14)
k=0 k=0
The proof is complete. O

Theorem 3.3 Let the same assumptions as those in Theorem 3.2 hold. If we assume that
the Bregman function f is uniformly totally convex, then any weak accumulation point of
{xx} is a solution of the problem (WVVI).

Proof 1If there exists ky > 1 such that x¢.,, = xx,, Yp > 1, then it is clear that xy, is the
unique weak cluster point of {x;} and it is also a solution of problem (WVVI). Suppose
that the algorithm does not terminate finitely. Then, by Theorem 3.2, we see that {x;}
is bounded and it has some weak cluster points. Next we show that all of weak cluster
points are solutions of problem (WVVI). Let x be a weak cluster point of {x;} and {%;} be
a subsequence of {x;}, which weakly converges to . From the inequality (3.3), we know
that

lim Bf(xk,+1:xk,) =0. (3.15)
J—>+00
Hence by the assumption A3 of f, we obtain
w- lim x4 = X. (3.16)
J—>+00

Next we will show that lim;_, . ||xk].+1 - % | = 0. Suppose the contrary, without loss of

generality we assume there exists a 8 > 0 such that

%41 — i1l > B, (3.17)



Pu et al. Fixed Point Theory and Applications (2015) 2015:191 Page 11 of 14

for all j > 0. Let D be a bounded set which contains the sequence {x;}. We have
By(xx1,%5) = inf{Br(z,50) : 161 — || = 12— 21} = vy (% a1 =2 11). - (3.18)
From the assumption (3.17) and Property 2.2 in [22], we obtain
Ve (%, 196k 41 — 28 11) > v (o, ) > ;glf)Vf(x,ﬂ). (3.19)
Since we assume f is uniformly totally convex, it follows that inf,cp v¢(x, ) > 0. One has
By (%41, %) = ;Iellf) vr(x, B) > 0. (3.20)
Clearly, there is a contradiction between (3.20) and (3.15), hence we have
,iilfloo %41 — %k 1| = 0.
By the assumption A, of the Bregman function f, one has
,. lim (V/(i51) = Vf () = 0. (3.21)
By the inclusion (3.1), one sees that there exist Ay € C% and @i € VN, (xkﬁl), such that
0 = T(g 1)ty + hig (@r1) + £ (Vf Gern) = Vf ().
It follows that

. 1
lim _{T(xijrl))"k/ + )"k]((pk/+1)} =0. (3'22)

Jj—+00 ‘9/(,

{Akj} c C% which is a weal*-compact set. Without loss of generality, we assume the se-

quence w* — limy, o0 Ag; = . From Proposition 3.1, for every j we have
M (@x;41) € Nixo (6p;41)-

By the demiclosedness of the graph T + Nx, (see Proposition 2.3), we conclude that
0 € T(%)A + VNy, (R)A.

Meanwhile, from Proposition 3.1, we know that there exists a @ € VN)“(’0 (9_6))_». By the defi-
nition of Ny, (x), we know that

(0,x—%) <0 VxeXo.
That is,

(T@A,x-%)=0 VxeX,. (3.23)
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Thus
(T(x),x—%) ¢ -intC Vx € X,. (3.24)
We conclude that x is a solution of problem (WVVI). The proof is complete. d

Theorem 3.4 Let the same assumptions as those in Theorem 3.3 hold. If Vf is a weak to
weak continuous mapping, then the whole sequence {xi} converges weakly to a solution of
problem (WVVI).

Proof In this part we will show x is the only solution of (WVVI). Suppose the contrary,
assume that both x and ¥ are weak cluster points of {x,}

w- lim Xy = X, w- lim x, =%
j—+00 i—+00
and X and X are also solutions of (WVVI). From the proof of Theorem 3.2, we see that the
sequences Br(#,x¢) and Br(¥, %) are bounded and let /; and ; be their limits, then

Jim (Bx) ~ By(x0)) = — b =) ~f(@) + lim (Vi) 5~ 3. (3.25)
Let limj .00 (Vf(x¢),% — &) = [. Taking k = k; in (3.25) and by virtue of the weak to weak
continuity of Vf(-) we obtain

[=(Vf(x),% - ). (3.26)

Once again taking k = k; in (3.25) and by virtue of the weak to weak continuity of Vf(-) we
obtain

[=(Vf(z),%- ). (3.27)
Combining the equality (3.26) with the equality (3.27), one has
(Vf(®) - Vf(&),x-Z)=0. (3.28)

From the strict convexity of f, we have x = &, which means ¥ is the only solution of (WVVI).
The proof is complete. O

4 Conclusions

In this paper, we proposed a class of generalized proximal-type method by virtue of the
Bregman distance functions to solve weak vector variational inequality problems in Ba-
nach spaces. We carried out a convergence analysis on the method and proved weak con-
vergence of the generated sequence to a solution of the weak vector variational inequality
problems under some mild conditions. Our results extended some well-known results to

more general cases.
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