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Abstract
It is well known that equilibrium problems are very important mathematical models
and are closely related with fixed point problems, variational inequalities, and Nash
equilibrium problems. Gap functions and error bounds which play a vital role in
algorithms design, are two much-addressed topics of vector equilibrium problems.
This paper is devoted to studying the scalar-valued gap functions and error bounds
for the generalized mixed vector equilibrium problem (GMVE). First, a scalar gap
function for (GMVE) is proposed without any scalarization methods, and then error
bounds of (GMVE) are established in terms of the gap function. As applications, error
bounds for generalized vector variational inequalities and vector variational
inequalities are derived, respectively. The main results obtained are new and improve
corresponding results of Charitha and Dutta (Pac. J. Optim. 6:497-510, 2010) and Sun
and Chai (Optim. Lett. 8:1663-1673, 2014).
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1 Introduction
Equilibrium problems, which were firstly studied by Blum and Oettli [], provide an uni-
fied framework for fixed point problems, variational inequality, complementarity prob-
lems, and optimization problems. It is well known that the vector equilibrium problem
is a vital extension of equilibrium problems, which contain vector variational inequality,
vector complementarity problems, and vector optimization problems as special cases. In
the past decades, various kinds of vector equilibrium problems and their applications have
been introduced and studied; see [–] and the references therein. Recently, Chang et al.
[] and Kumam et al. [] researched a generalized mixed equilibrium problem,

F(x, y) +
〈
A(x), y – x

〉
+ g(y) – g(x) ≥ , ∀y ∈ K .

It is very general in the sense that it includes fixed point problems, optimization problems,
variational inequality problems, Nash equilibrium problems, and equilibrium problems as
special cases.

Error bounds, which play a critical role in algorithm design, can be used to measure
how much the approximate solution fails to be in the solution set and to analyze the con-
vergence rates of various methods. Recently, kinds of error bounds have been presented
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for variational inequalities in [–]. Results for error bounds have been established for
a weak vector variational inequality (WVVI) in [–, ]. Xu and Li [] obtained error
bounds for a weak vector variational inequality with cone constraints by using a method of
image space analysis. By using a scalarization approach of Konnov [], Li and Mastroeni
[] established error bounds for two kinds of (WVVI) with set-valued mappings. By a
regularized gap function and a D-gap function, Charitha and Dutta [] used a projec-
tion operator method to obtain error bounds of (WVVI), respectively. Sun and Chai []
studied some error bounds for generalized vector variational inequalities in virtue of the
regularized gap functions. Very recently, a global error bound of a weak vector variational
inequality was established by the nonlinear scalarization method in Li [].

However, to the best of our knowledge, an error bound of the generalized mixed vector
equilibrium problem (GMVE) has never been investigated. In this paper, motivated by
ideas in Sun and Chai [] and Yamashita et al. [], we introduce a scalar gap function
for (GMVE). Then an error bound of (GMVE) is presented. As an application of an error
bound for (GMVE), we also get error bounds of (GVVI) and (VVI), respectively.

This paper is organized as follows: In Section , we first recall some basic definitions.
In Section , we introduce scalar gap functions for (GMVE), (GVVI), and (VVI). By using
these gap functions, we obtain some error bound results for (GMVE), (GVVI), and (VVI),
respectively.

2 Mathematical preliminaries
Throughout this paper, let Rn be the n-dimensional Euclidean space and denote Rn

+ = {x =
(x, x, . . . , xn) : xj ≥ , j = , , . . . , n}, the norms of all finite dimensional spaces be denoted
by ‖ · ‖, the inner products of all finite dimensional spaces be denoted by 〈·, ·〉. Let K ⊆R

n

be a nonempty closed convex set. Let Ai : Rn → R
n (i = , , . . . , m) be a vector-valued

mapping, Fi : Rn × R
n → R and gi : Rn → R (i = , , . . . , m) be real-valued functions. For

abbreviation, we put

A := (A, A, . . . , Am), F := (F, F, . . . , Fm), g := (g, g, . . . , gm)

and for any x, v ∈R
n

〈
A(x), v

〉
:=

(〈
A(x), v

〉
,
〈
A(x), v

〉
, . . . ,

〈
Am(x), v

〉)
.

In this paper, we consider the generalized mixed vector equilibrium problem (GMVE)
of finding x ∈ K such that

F(x, y) +
〈
A(x), y – x

〉
+ g(y) – g(x) /∈ – intRm

+ , ∀y ∈ K . ()

Denote by SGMVE the solution set of (GMVE).
If m = , our problem is to find x ∈ K such that

F(x, y) +
〈
A(x), y – x

〉
+ g(y) – g(x) ≥ , ∀y ∈ K . ()

Then this problem reduces to a generalized mixed equilibrium problem [].
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If F = , our problem is to find x ∈ K such that

〈
A(x), y – x

〉
+ g(y) – g(x) /∈ – intRm

+ , ∀y ∈ K . ()

Then this problem reduces to a generalized vector variational inequality problem (GVVI)
[].

In the case of F =  and g = , (GMVE) is a vector variational inequality problem (VVI),
introduced and studied by Giannessi [], finding x ∈ K such that

〈
A(x), y – x

〉
/∈ – intRm

+ , ∀y ∈ K . ()

In the case of A ≡  and g = , then (GMVE) is a vector equilibrium problem, finding
x ∈ K such that

F(x, y) /∈ – intRm
+ , ∀y ∈ K . ()

In the case of A ≡  and F = , (GMVE) is a vector optimization problem, finding x ∈ K
such that

g(y) – g(x) /∈ – intRm
+ , ∀y ∈ K . ()

For i = , , . . . , m, we denote the generalized mixed vector equilibrium problems
(GMVE) associated with Fi, Ai and gi as (GMVE)i, the generalized vector variational in-
equality problems (GVVI) associated with Ai and gi as (GVVI)i, and the vector variational
inequality problems (VVI) associated with Ai as (VVI)i, respectively. The solution sets of
(GMVE)i, (GVVI)i, and (VVI)i will be denoted by Si

GMVE , Si
GVVI , and Si

VVI , respectively.
In the paper, we intend to investigate gap functions and error bounds of (GMVE),

(GVVI), and (VVI). We shall recall some notations and definitions, which will be used
in the sequel.

Definition . A real-valued function f : Rn → R is convex (resp. concave) over Rn, if

f
(
λx + ( – λ)y

) ≤ λf (x) + ( – λ)f (y)
(
resp. f

(
λx + ( – λ)y

) ≥ λf (x) + ( – λ)f (y)
)
,

for every x, y ∈R
n and λ ∈ [, ].

Definition . A vector-valued function h : Rn →R
n is strongly monotone over Rn with

modulus κ > , if for any x, y ∈R
n,

〈
h(y) – h(x), y – x

〉 ≥ κ‖y – x‖.

Definition . A real-valued function ϑ : Rn → R is said to be a scalar-valued gap func-
tion of (GMVE) (resp. (GVVI) and (VVI)), if it satisfies the following conditions:

(i) ϑ(x) ≥ , for any x ∈ K ,
(ii) ϑ(x) =  if and only if x ∈ K is a solution of (GMVE) (resp. (GVVI) and (VVI)).
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3 Main results
Notice that Sun and Chai [] introduced a new scalar-valued gap function of (GVVI)
without any scalarization approach; the gap function discussed in [] is simpler from the
computational view. In terms of an approach due to Sun and Chai [] and Yamashita et
al. [], we construct the function ϑα : K →R for α > ,

ϑα(x) := sup
y∈K

{
min

≤i≤m

{
–Fi(x, y) +

〈
Ai(x), x – y

〉
+ gi(x) – gi(y)

}
– αϕ(x, y)

}
, ()

ψα(x) := sup
y∈K

{
min

≤i≤m

{〈
Ai(x), x – y

〉
+ gi(x) – gi(y)

}
– αϕ(x, y)

}
, ()

and

φα(x) := sup
y∈K

min
≤i≤m

〈
Ai(x), x – y

〉
– αϕ(x, y)}, ()

respectively, where Fi,ϕ : Rn × R
n → R, i = , , . . . , m are real-valued functions. In the

following, let ϕ be a continuously differentiable function, which has the following property
with the associated constants γ ,β > .

(P) For all x, y ∈ R
n,

β‖x – y‖ ≤ ϕ(x, y) ≤ (γ – β)‖x – y‖, γ ≥ β > . ()

For example, let κ >  and let ϕ : Rn ×R
n →R be defined by

ϕ(x, y) = κ‖x – y‖, x, y ∈ R
n.

Then ϕ satisfies condition (P), with γ = κ and β = κ .
For any i = , , . . . , m, we suppose that Fi satisfies the following conditions:
(A) Fi is a convex function about the second variable on R

n ×R
n.

(A) Fi(x, y) = , ∀x, y ∈ R
n, if and only if x = y.

(A) For any x, y, z ∈ K , Fi(x, y) + Fi(y, z) ≤ Fi(x, z).

Theorem . If Fi : Rn ×R
n →R is convex about the second variable and gi is convex over

R
n for any i = , , . . . , m, then the function ϑα , with α > , defined by () is a gap function

for (GMVE).

Proof (i) It is clear that for any x ∈ K ,

ϑα(x) := sup
y∈K

{
min

≤i≤m

{
–Fi(x, y) +

〈
Ai(x), x – y

〉
+ gi(x) – gi(y)

}
– αϕ(x, y)

}
≥ 

follows simply by setting x = y in the right hand side of the expression for ϑα(x).
(ii) If there exists x ∈ K such that ϑα(x) = , then

min
≤i≤m

{
–Fi(x, y) +

〈
Ai(x), x – y

〉
+ gi(x) – gi(y)

} ≤ αϕ(x, y), ∀y ∈ K .
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For arbitrary x ∈ K and κ ∈ (, ), let y = x + κ(x – x). Since K is convex, we get y ∈ K
and

min
≤i≤m

{
–Fi

(
x, x + κ(x – x)

)
+

〈
Ai(x), x –

(
x + κ(x – x)

)〉
+ gi(x) – gi

(
x + κ(x – x)

)}

≤ αϕ
(
x, x + κ(x – x)

)
.

Since Fi is convex over Rn ×R
n about the second variable and gi is convex over Rn for any

i = , , . . . , m, we have

min
≤i≤m

{
–κFi(x, x) – ( – κ)Fi(x, x) +

〈
Ai(x), ( – κ)(x – x)

〉

+ gi(x) – κgi(x) – ( – κ)gi(x)
}

≤ min
≤i≤m

{
–Fi

(
x, x + κ(x – x)

)
+

〈
Ai(x), ( – κ)(x – x)

〉
+ gi(x) – gi

(
x + κ(x – x)

)}

≤ αϕ
(
x, x + κ(x – x)

)
. ()

For the function ϕ(x, y), by using (), we have

ϕ
(
x, x + κ(x – x)

) ≤ ( – κ)(γ – β)‖x – x‖. ()

By the property (A) of the function Fi, we obtain Fi(x, x) = .
Hence, from () and (), we get

( – κ) min
≤i≤m

{
–Fi(x, x) +

〈
Ai(x), x – x

〉
+ gi(x) – gi(x)

}

≤ α(γ – β)( – κ)‖x – x‖.

So,

min
≤i≤m

{
–Fi(x, x) +

〈
Ai(x), x – x

〉
+ gi(x) – gi(x)

} ≤ α(γ – β)( – κ)‖x – x‖.

Taking the limit as κ → , we obtain

min
≤i≤m

{
–Fi(x, x) +

〈
Ai(x), x – x

〉
+ gi(x) – gi(x)

} ≤ .

Then, for any x ∈ K , there exists  ≤ i ≤ m such that

–Fi (x, x) +
〈
Ai(x), x – x

〉
+ gi (x) – gi (x) ≤ .

This means that

F(x, x) +
〈
Ai(x), x – x

〉
+ g(x) – g(x) /∈ – intRm

+ , ∀x ∈ K .

Thus, x ∈ SGMVE .
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Conversely, if x ∈ SGMVE , then there exists  ≤ i ≤ m such that

Fi (x, y) +
〈
Ai(x), y – x

〉
+ gi (y) – gi (x) ≥  for any y ∈ K .

This means that

min
≤i≤m

{
–Fi(x, y) +

〈
Ai(x), x – y

〉
+ gi(x) – gi(y)

} ≤  for any y ∈ K .

So,

ϑα(x) ≤ .

Since ϑα(x) ≥  for any x ∈ K ,

ϑα(x) = .

This completes the proof. �

By a similar method, we conclude the following results for (GVVI) and (VVI), respec-
tively.

Corollary . The function ψα , with α > , defined by () is a gap function for (GVVI).

Corollary . The function φα , with α > , defined by () is a gap function for (VVI).

Now, by using the gap function ϑα(x), we obtain an error bound result for (GMVE).

Theorem . Assume that each Ai are strongly monotone over K with the modulus κi > .
Assume Fi is convex about the second variable over Rn × R

n and gi is convex over Rn for
any i = , , . . . , m. Further assume that

⋂m
i= Si

GMVE �= ∅. Moreover, let κ = min≤i≤m κi and
α >  be chosen such that κ > α(γ – β), where γ ≥ β >  are constants associated with the
function ϕ. Then for any x ∈ K ,

d(x, SGMVE) ≤ 
√

κ – α(γ – β)

√
ϑα(x),

where d(x, SGMVE) denotes the distance from the point x to the solution set SGMVE .

Proof By (), we get

ϑα(x) ≥ min
≤i≤m

{
–Fi(x, y) +

〈
Ai(x), x – y

〉
+ gi(x) – gi(y)

}
– αϕ(x, y) for any y ∈ K .

Since
⋂m

i= Si
GMVE �= ∅, all (GMVE)i have the same solution. Without loss of generality, we

can assume that the same solution is x ∈ K . Obviously, x ∈ SGMVE and

ϑα(x) ≥ min
≤i≤m

{
–Fi(x, x) +

〈
Ai(x), x – x

〉
+ gi(x) – gi(x)

}
– αϕ(x, x).
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Without loss of generality, we assume that

–F(x, x) +
〈
A(x), x – x

〉
+ g(x) – g(x)

= min
≤i≤m

{
–Fi(x, x) +

〈
Ai(x), x – x

〉
+ gi(x) – gi(x)

}
.

Since A is strongly monotone, we obtain

ϑα(x) ≥ –F(x, x) +
〈
A(x), x – x

〉
+ g(x) – g(x) + κ‖x – x‖ – αϕ(x, x).

It follows from the property (P) of the function ϕ that

ϑα(x) ≥ –F(x, x) +
〈
A(x), x – x

〉
+ g(x) – g(x)

+ κ‖x – x‖ – α(γ – β)‖x – x‖. ()

By x ∈ S
GMVE , we get

F(x, x) +
〈
A(x), x – x

〉
+ g(x) – g(x) ≥ . ()

For the function F, by using (A), we get from () and ()

ϑα(x) = ϑα(x) + F(x, x) ≥ ϑα(x) + F(x, x) + F(x, x) ≥ [
κ – α(γ – β)

]‖x – x‖.

Namely,

ϑα(x) ≥ [
κ – α(γ – β)

]‖x – x‖.

Then

‖x – x‖ ≤ 
√

κ – α(γ – β)

√
ϑα(x),

which means that

d(x, SGMVE) ≤ 
√

κ – α(γ – β)

√
ϑα(x).

This complete the proof. �

The following example shows that, in general, the conditions of Theorem . can be
achieved.

Example . Let n = , m = , K ⊆ R, and K = [–, ]. Define A, A, g, g : R → R, F :
R × R → R, F : R × R → R by

A(x) = x, A(x) = x + x, g(x) = x, g(x) = x,

F(x, y) = –x + y, F(x, y) = –x + y.
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Then

F(x, y) =
(
–x + y, –x + y), A(x) =

(
x, x + x

)
, g(x) =

(
x, x).

Obviously, F(x, y) and F(x, y) are convex about the second variable, respectively. A and
A are strongly monotone over K with the modulus κ =  and κ = , respectively. More-
over, g and g are convex over R. On the other hand, by direct calculations, we have

⋂

i=

Si
GMVE = {}.

Thus, the conditions of Theorem . are satisfied.

Similarly, by using gap functions ψα and φα , we can also obtain error bound results for
(GVVI) and (VVI), respectively.

Corollary . Assume that each Ai are strongly monotone over K with the modulus κi > .
If gi is convex over R

n for any i = , , . . . , m. Further assume that
⋂m

i= Si
GVVI �= ∅. More-

over, let κ = min≤i≤m κi and α >  be chosen such that κ > α(γ – β), where γ ≥ β >  are
constants associated with the function ϕ. Then, for any x ∈ K ,

d(x, SGVVI) ≤ 
√

κ – α(γ – β)

√
ψα(x),

where d(x, SGVVI) denotes the distance from the point x to the solution set SGVVI .

Corollary . Assume that each Ai are strongly monotone over K with the modulus κi > .
Further assume that

⋂m
i= Si

VVI �= ∅. Moreover, let κ = min≤i≤m κi and α >  be chosen such
that κ > α(γ – β), where γ ≥ β >  are constants associated with the function ϕ. Then, for
any x ∈ K ,

d(x, SVVI) ≤ 
√

κ – α(γ – β)

√
φα(x),

where d(x, SVVI) denotes the distance from the point x to the solution set SVVI .

Remark . (i) In [], there exist some mistakes in the proof of Theorem ., which lead
to the requirement of Lipschitz properties of gi, i = , , . . . , n. Hence, we give the modified
error bound for (GVVI) in Corollary . without Lipschitz assumption.

(ii) In [], Charitha and Dutta established error bounds for (VVI) by using the pro-
jection operator method and strongly monotone assumptions, whereas it seems that our
method is more simple from the computational view since there are not any scalarization
parameters.

(iii) Under the conditions of Theorem ., the strong assumption that
⋂m

i= Si
GMVE �= ∅

shows that SGMVE is a singleton set but not a general set. In fact, by
⋂m

i= Si
GMVE �= ∅, there

exists x ∈ K such that x ∈ ⋂m
i= Si

GMVE , namely, for every i = , , . . . , m,

Fi(x, y) +
〈
Ai(x), y – x

〉
+ gi(y) – gi(x) ≥ , ∀y ∈ K . ()
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It is clear that x ∈ SGMVE . If SGMVE is not a singleton set, there exists x′ ∈ SGMVE with x′ �= x.
Therefore, there exists j ∈ {, , . . . , m} such that

Fj
(
x′, y

)
+

〈
Aj

(
x′), y – x′〉 + gj(y) – gj

(
x′) ≥ , ∀y ∈ K . ()

Thus, from (), we have

Fj
(
x, x′) +

〈
Aj(x), x′ – x

〉
+ gj

(
x′) – gj(x) ≥ . ()

From (), we have

Fj
(
x′, x

)
+

〈
Aj

(
x′), x – x′〉 + gj(x) – gj

(
x′) ≥ . ()

According to () and (), we get

Fj
(
x, x′) + Fj

(
x′, x

)
+

〈
Aj(x), x′ – x

〉
+

〈
Aj

(
x′), x – x′〉 ≥ . ()

However, by the properties (A) and (A) of the function Fj,

Fj
(
x, x′) + Fj

(
x′, x

) ≤ . ()

As Aj is strongly monotone, we have

〈
Aj(x) – Aj

(
x′), x – x′〉 ≥ κ

∥∥x – x′∥∥ > . ()

By combining () and (), we have

Fj
(
x, x′) + Fj

(
x′, x

)
+

〈
Aj(x) – Aj

(
x′), x′ – x

〉
< . ()

This, however, contradicts ().
Now we ask: How do we establish error bounds for SGMVE in terms of the gap func-

tion ϑα , under mild assumptions, such that SGMVE need not be a singleton set in general?
This problem may be interesting and valuable in vector optimization.
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