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1 Introduction
Let (X, d) be a metric space and A a nonempty subset of X. The mapping T : A → X is
said to have a fixed point in A if the fixed point equation Tx = x has at least one solution.
In metric terminology, we say that x ∈ A is a fixed point of T if d(x, Tx) = . If the fixed
point equation of a given mapping does not have a solution, then d(x, Tx) >  for all x ∈ A.
In such a situation, it is our aim to find an element x ∈ A such that d(x, Tx) is minimum in
some sense, and the x is said to be the best approximation of the fixed point of T . In this
paper, we will study the best approximation theory and best proximity pair theorems.

Consider the following well-known best approximation theorem due to Ky Fan [].

Theorem . [] Let A be a nonempty compact convex set in a normed linear space X. If
T is a continuous map from A into X, then there exists a point x in A such that ‖x – Tx‖ =
dist(Tx, A).

The point x in the theorem above is called a best approximation point of T in A. Note
that if x ∈ A is a best approximation point, then ‖x – Tx‖ need not be the optimum. Best
proximity point theorems have been explored to find sufficient conditions so that the min-
imization problem minx∈A ‖x – Tx‖ has at least one solution. To have a concrete lower
bound, let us consider two nonempty subsets A, B of a metric space X and a mapping
T : A → B. The natural question is whether one can find an element x ∈ A such that
d(x, Tx) = min{d(x, Tx) : x ∈ A}. Since d(x, Tx) ≥ dist(A, B), it is of interest to find a point
x ∈ A such that d(x, Tx) = dist(A, B). This situation motivates the researchers to develop
the notion called best proximity point theory. It is worth to note that the best proximity
point theorems can be viewed as a generalization of fixed point theorems, since most fixed
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point theorems can be derived as corollaries of best proximity point theorems. Some of
the interesting results for best proximity points can be found in [–].

Let A, B be two nonempty subsets of a normed linear space X. Let us fix the following
notation which will be used throughout this article:

A =
{

x ∈ A : ‖x – y‖ = dist(A, B) for some y ∈ B
}

,

B =
{

y ∈ B : ‖x – y‖ = dist(A, B) for some x ∈ A
}

.

The following notion of weakly contractive mapping was introduced by Sankar Raj in
[].

Definition . [] Let A, B be nonempty subsets of a metric space (X, d). A map T : A →
B is said to be a weakly contractive mapping if

d(Tx, Ty) ≤ d(x, y) – ψ
(
d(x, y)

)
, ∀x, y ∈ A,

where ψ : [,∞) → [,∞) is a continuous and nondecreasing function such that ψ is
positive (,∞), ψ() = , and limt→∞ ψ(t) = ∞. If A is bounded, then limt→∞ ψ(t) = ∞
can be omitted.

Note that d(Tx, Ty) ≤ d(x, y) – ψ(d(x, y)) < d(x, y) if x, y ∈ A with x 	= y. That is, T is a
contractive map. In [], Sankar Raj obtained the existence theorem of a best proximity
point for weakly contractive mappings as follows.

Theorem . [] Let (A, B) be a pair of two nonempty closed subsets of a complete metric
space X such that A is nonempty. Let T : A → B be a weakly contractive mapping such
that T(A) ⊆ B. Assume that the pair (A, B) has the d-property. Then there exists a unique
point x∗ in A such that d(x∗, Tx∗) = dist(A, B).

In [], Aoyama and Kohsaka introduced the self-α-nonexpansive mapping which is
defined as follows.

Definition . [] Let X be a Banach space, let A be a nonempty subset of X, and let α

be a real number such that α < . A mapping T : A → A is said to be α-nonexpansive if

‖Tx – Ty‖ ≤ α‖Tx – y‖ + α‖Ty – x‖ + ( – α)‖x – y‖ (.)

for all x, y ∈ A.

It is obvious that every nonexpansive mapping is -nonexpansive. We denote the fixed
point set of a mapping T by F(T). In [], they proved the following result.

Theorem . [] Let X be a uniformly convex Banach space, let A be a nonempty, closed,
and convex subset of X, and let T : A → A be an α-nonexpansive mapping for some real
number α such that α < . Then F(T) is nonempty if and only if there exists x ∈ A such that
{Tn(x)} is bounded.
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In [] and [], Abkar and Gabeleh studied the best proximity points of some non-self-
mappings under appropriate conditions.

Motivated and inspired by the above mentioned work, in this article, we consider a map
T : A → B, where A and B are nonempty subsets of a Banach space X, which is non-self-
α-nonexpansive in the sense of Definition .. We attempt to study the sufficient and nec-
essary conditions for the existence of a best proximity point for non-self-α-nonexpansive
mappings and convergence results. Moreover, we discuss the existence of common best
proximity points for a family of non-self-α-nonexpansive mappings. When the map T is
considered to be a self-map, then our result reduces to the fixed point theorem of Aoyama
and Kohsaka for α-nonexpansive mappings. Our results are generalization and improve-
ment of the recent results obtained by many authors.

2 Preliminaries
Let X be a normed linear space and C be a nonempty subset of X. Then the metric pro-
jection operator PC : X → C is defined by

PC(x) =
{

y ∈ C : ‖x – y‖ = dist(x, C)
}

for all x ∈ X.

It is well known that, if C is assumed to be a closed and convex subset of a strictly convex
and reflexive Banach space X, then PC(x) is nonempty and single valued for all x ∈ X.

In [], Kirk et al. proved the following lemma which guarantees the nonemptiness of
A and B.

Lemma . [] Let X be a reflexive Banach space and A be a nonempty, closed, bounded,
and convex subset of X, and B be a nonempty, closed, and convex subset of X. Then A and
B are nonempty and satisfy PB(A) ⊆ B, PA(B) ⊆ A.

Also, in [], Sadiq Basha and Veeramani proved that A is contained in the boundary
of A. It is easy to verify that A and B are closed convex subsets of A and B, respectively,
if A and B are closed and convex.

The notion called the d-property was introduced in [].

Definition . [] A pair (A, B) of nonempty subsets of a normed linear space X is said
to have the d-property if and only if

‖x – y‖ = dist(A, B),
‖x – y‖ = dist(A, B)

}

⇒ ‖x – x‖ = ‖y – y‖,

whenever x, x ∈ A and y, y ∈ B.

Definition . [] A normed linear space X is said to have the d-property if and only if
every pair (A, B) of nonempty and closed convex subsets of X has the d-property.

Lemma . [] X is strictly convex if and only if X has the d-property.

Lemma . [] Let A, B be nonempty, closed, and convex subsets of a strictly convex space
X such that A is nonempty. Then the restriction of the metric projection mapping PA to
B is an isometry. That is, PA : B → A is an isometry.
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Let A, B be nonempty, closed, and convex subsets of a strictly convex space X such that
A is nonempty. Consider the mapping P : A ∪ B → A ∪ B defined by

P(x) =

{
PB(x), if x ∈ A;
PA(x), if x ∈ B.

Let us define the notion of non-self-α-nonexpansive maps as follows.

Definition . Let A, B be nonempty subsets of a Banach space X and α a real number
such that α < . A map T : A → B is said to be an α-nonexpansive mapping if

‖Tx – Ty‖ ≤ α‖Tx – Py‖ + α‖Ty – Px‖ + ( – α)‖x – y‖ (.)

for all x, y ∈ A.

Remark . We note that a non-self-nonexpansive mapping (‖Tx–Ty‖ ≤ ‖x–y‖, x, y ∈ A)
T : A → B is a non-self--nonexpansive mapping.

The following example shows that there is a discontinuous non-self-α-nonexpansive
mapping.

Example . Let X be a uniformly convex Banach space, A = {x ∈ X : ‖x – x‖ ≤ }, B =
{x ∈ X : ‖x‖ ≤ }, where ‖x‖ ≥ . Let α and γ be real numbers such that 

 ≤ α <  and
 < γ ≤ 

 . Then the mapping F : A → B defined by

F(x) =

{
γ PB(x), if x ∈ A;
, if x ∈ A/A,

is non-self-α-nonexpansive and discontinuous.

Proof Since X is a uniformly convex Banach space and A, B are bounded closed convex
subsets of X, we know that B is a nonempty, closed, and convex subset in the boundary
set of B and PB(x) = PB (x), for all x ∈ A. For any x, y ∈ A, by Lemma ., we have

∥∥F(x) – F(y)
∥∥ =

∥∥γ PB(x) – γ PB(y)
∥∥ ≤ ∥∥PB (x) – PB (y)

∥∥

= α
∥∥PB (x) – PB (y)

∥∥ + α
∥∥PB (x) – PB (y)

∥∥

+ ( – α)
∥∥PB (x) – PB (y)

∥∥

= α
∥∥PB (x) – PB (y)

∥∥ + α
∥∥PB (x) – PB (y)

∥∥ + ( – α)‖x – y‖

= α
∥∥F(x) – PB (y)

∥∥ + α
∥∥PB (x) – F(y)

∥∥ + ( – α)‖x – y‖.

Thus, in the case when either x, y ∈ A or x, y ∈ A/A, we obviously have
∥∥F(x) – F(y)

∥∥ ≤ α
∥∥F(x) – P(y)

∥∥ + α
∥∥P(x) – F(y)

∥∥ + ( – α)‖x – y‖.

In the case when x ∈ A and y ∈ A/A, we have

α
∥∥F(x) – P(y)

∥∥ + α
∥∥P(x) – F(y)

∥∥ + ( – α)‖x – y‖

≥ α
∥∥P(x) – F(y)

∥∥ = α
∥∥P(x)

∥∥ = α
∥∥PB (x)

∥∥ = α
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and

∥∥F(x) – F(y)
∥∥ =

∥∥F(x) – F(y)
∥∥ =

∥∥γ PB(x)
∥∥ = γ ∥∥PB (x)

∥∥ = γ .

Then F is α-nonexpansive. �

Lemma . Let A, B be nonempty, closed, and convex subsets of a strictly convex space X
such that A is nonempty. Then P(x) = x for all x ∈ A ∪ B.

Proof For any x ∈ A, we have

∥∥x – PB (x)
∥∥ = dist(A, B).

From the above equality, we can obtain x = PA PB (x), that is, P(x) = x. Similarly, we have
P(x) = x for all x ∈ B. �

Remark . We note that there exists x ∈ A such that ‖x – T(x)‖ = dist(A, B) if and only
if x is the fixed point of PA T .

3 Best proximity point theorems
Now let us use the above characterization of strictly convex spaces to prove the following
best proximity point theorem of non-self-α-nonexpansive mappings.

Theorem . Let X be a uniformly convex Banach space and A, B be nonempty, closed,
and convex subsets of X. Suppose that A is nonempty and T : A → B is an α-nonexpansive
mapping on A for some real number α such that  < α <  and T(A) ⊆ B. Then T has
at least one best proximity point if and only if there exists x ∈ A such that {(PT)n(x)} is
bounded. Moreover, if T is continuous and ‖(PT)(x) – x‖ ≤ r‖(PT)(x) – x‖ for all x ∈ A,
where  < r <

√
, then (PT)n(x) converges to a proximity point for all x ∈ A.

Proof First we remark that P(x) = PB (x), P(y) = PB (y) for any x ∈ A, y ∈ B. Let us con-
sider the mapping PT : A → A on A, i.e. PA T : A → A. Since T : A → B is an α-non-
expansive mapping, by Lemmas . and ., for all x, y ∈ A, we have

∥∥(PT)(x) – (PT)(y)
∥∥

=
∥∥T(x) – T(y)

∥∥

≤ α
∥∥T(x) – P(y)

∥∥ + α
∥∥T(y) – P(x)

∥∥ + ( – α)‖x – y‖

= α
∥∥(

PT
)
(x) – P(y)

∥∥ + α
∥∥(

PT
)
(y) – P(x)

∥∥ + ( – α)‖x – y‖

= α
∥∥(PT)(x) – y

∥∥ + α
∥∥(PT)(y) – x

∥∥ + ( – α)‖x – y‖. (.)

Thus PA T : A → A is α-nonexpansive. By Theorem ., we see that F(PA T) is
nonempty if and only if there exists x ∈ A such that {(PA T)n(x)} is bounded. Then T
has at least one best proximity point if and only if there exists x ∈ A such that {(PT)n(x)}
is bounded.
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Since ‖(PT)(x) – x‖ ≤ √
‖(PT)(x) – x‖ for all x ∈ A and T is α-nonexpansive, we have

∥∥(PT)n+(x) – (PT)n(x)
∥∥

=
∥∥T(PT)n(x) – T(PT)n–(x)

∥∥

≤ α
∥∥T(PT)n(x) – P(PT)n–(x)

∥∥ + α
∥∥P(PT)n(x) – T(PT)n–(x)

∥∥

+ ( – α)
∥∥(PT)n(x) – (PT)n–(x)

∥∥

= α
∥∥(PT)n+(x) – (PT)n–(x)

∥∥ + α
∥∥(PT)n(x) – (PT)n(x)

∥∥

+ ( – α)
∥∥(PT)n(x) – (PT)n–(x)

∥∥

= α
∥∥(PT)n+(x) – (PT)n–(x)

∥∥ + ( – α)
∥∥(PT)n(x) – (PT)n–(x)

∥∥

≤ rα
∥∥(PT)n(x) – (PT)n–(x)

∥∥ + ( – α)
∥∥(PT)n(x) – (PT)n–(x)

∥∥

=
[
 –

(
 – r)α

]∥∥(PT)n(x) – (PT)n–(x)
∥∥

≤ [
 –

(
 – r)α

]∥∥(PT)n–(x) – (PT)n–(x)
∥∥

≤ · · · ≤ [
 –

(
 – r)α

]n∥∥(PT)(x) – x
∥∥. (.)

Consequently, since  – ( – r)α < , one has

∥∥(PT)n+p(x) – (PT)n(x)
∥∥ ≤ [ – ( – r)α]n

( – r)α
∥∥(PT)(x) – x

∥∥. (.)

Thus {(PT)n(x)} is a Cauchy sequence in A, and hence there exists x∗ ∈ A such that
{(PT)n(x)} → x∗ for n → ∞. Since T is continuous, we have T(PT)n–(x) → T(x∗). Thus

∥∥T
(
x∗) – x∗∥∥ = lim

n→∞
∥∥T(PT)n–(x) – (PT)n(x)

∥∥ = dist(A, B). (.)

The assertion is proved. �

Remark . If A = B, Theorem . is the fixed point theorem of Aoyamma and Kohsaka
[] with convergence result.

Remark . If T is a weakly contractive mapping, by Theorem ., we can obtain the best
proximity point theorem of Sankar Raj [] with convergence result.

Corollary . Let X be a uniformly convex Banach space and A, B be nonempty, closed,
and convex subsets of X. Suppose that A is bounded and T : A → B is an α-nonexpansive
mapping for some real number α <  such that T(A) ⊆ B. Then T has at least one best
proximity point.

Proof Since X is a uniformly convex Banach space and A is bounded, we see that A is
nonempty and {(PT)n(x)} is bounded for any x ∈ A. By Theorem ., T has at least one
best proximity point. �

Corollary . Let X be a uniformly convex Banach space and A, B be nonempty, closed,
and convex subsets of X, and let A be nonempty. Suppose that T(A) ⊆ B and T : A → B



Kong et al. Fixed Point Theory and Applications  (2015) 2015:159 Page 7 of 10

is a nonexpansive mapping on A, i.e. ‖T(x) – T(y)‖ ≤ ‖x – y‖, for all x, y ∈ A. Then T has
at least one best proximity point if and only if there exists x ∈ A such that {(PT)n(x)} is
bounded.

Proof It is well known that nonexpansive mappings are -nonexpansive. By Theorem .,
the assertion is proved. �

Let A, B be nonempty convex subsets of a normed linear space. A mapping T : A → B is
said to be affine if T(λx + ( – λ)y) = λT(x) + ( – λ)T(y), for all x, y ∈ A and λ ∈ (, ). For
convenience, we define FA(T) = {x ∈ A : ‖x – T(x)‖ = dist(A, B)}.

Theorem . Let X be a uniformly convex Banach space and A, B be nonempty, closed,
and convex subsets of X. Suppose that A is nonempty, bounded and T : A → B, S : A → A
satisfy the following conditions:

(i) T , S are, respectively, non-self-α-nonexpansive and β-nonexpansive mappings on
A such that α,β < ;

(ii) T is an affine and continuous mapping, and T(A) ⊆ B;
(iii) PB S(x) = TS(x) for all x ∈ FA(T).

Then there exists at least one point x∗ ∈ A such that ‖S(x∗) – T(x∗)‖ = dist(A, B).

Proof Since A is bounded, by Theorem ., we see that FA(T) ⊆ A is nonempty. Assume
that {xn} ∈ FA(T) and xn → x for n → ∞, then ‖xn – T(xn)‖ = dist(A, B). Since T is con-
tinuous, we have ‖x – T(x)‖ = dist(A, B). Therefore, x ∈ FA(T) and FA(T) is closed. As T is
affine, take x, y ∈ FA(T) and λ ∈ (, ), we have

∥∥λx + ( – λ)y – T
(
λx + ( – λ)y

)∥∥

=
∥∥λ

(
x – T(x)

)
+ ( – λ)

(
y – T(y)

)∥∥

≤ λ
∥∥x – T(x)

∥∥ + ( – λ)
∥∥y – T(y)

∥∥ = dist(A, B). (.)

Thus FA(T) is convex. Now we consider S on FA(T). Take any x ∈ FA(T), by (iii), we have

∥∥S(x) – TS(x)
∥∥ = dist(A, B). (.)

Hence S restricted to FA(T) is a self-map. That is S : FA(T) → FA(T). By Theorem ., there
exists x∗ ∈ FA(T) such that x∗ = S(x∗). Furthermore, ‖S(x∗) – T(x∗)‖ = dist(A, B). �

Remark . In Theorem ., S does not need to be continuous.

Example . Consider the uniformly convex space (R,‖ · ‖). Let

A =
{

(x, y) :  ≤ x ≤ ,  ≤ y ≤ 
}

and

B =
{

(x, y) :  ≤ x ≤ ,  ≤ y ≤ 
}

.

Then A and B are nonempty, closed, bounded, and convex subsets ofR with dist(A, B) = .
It is easy to verify that A = {(, y) :  ≤ y ≤ } and B = {(, y) :  ≤ y ≤ }. Define a map
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T : A → B by T(x, y) = (x + , y) for all (x, y) ∈ A. Clearly, T(A) ⊆ B and T is an α-
nonexpansive mapping for any α < . Define a map S : A → A by S(x, y) = (x, 

 y) for all
(x, y) ∈ A. It is easy to prove that S is 

 -nonexpansive on A and PB S(x) = TS(x) for all
x ∈ A. Note that x∗ = (, ) satisfies ‖S(x∗) – T(x∗)‖ = dist(A, B).

4 Common best proximity points
In this section, we discuss sufficient conditions for the existence of common best proximity
points for α-nonexpansive mappings.

Theorem . Let X be a uniformly convex Banach space and A, B be nonempty, closed,
and convex subsets of X. Suppose that A is nonempty and bounded, and T : A → B and
S : A → B satisfy the following conditions:

(i) T , S are respectively α-nonexpansive and β-nonexpansive mappings on A such
that α,β < ;

(ii) T is an affine and continuous mapping, and T(A) ⊆ B, S(A) ⊆ B;
(iii) for any x ∈ FA(T), there exists y ∈ FA(T) such that S(x) = T(y).

Then there exists at least one point x∗ ∈ A such that ‖x∗ – S(x∗)‖ = dist(A, B) and ‖x∗ –
T(x∗)‖ = dist(A, B).

Proof From the proof of Theorem ., we know that FA(T) is a nonempty, closed, and
convex subset of A. Now we consider S : A → B on FA(T). Take any x ∈ FA(T), by (iii), we
have

∥∥y – S(x)
∥∥ =

∥∥y – T(y)
∥∥ = dist(A, B). (.)

Thus

∥∥S(x) – PFA(T)
(
S(x)

)∥∥ ≤ ∥∥y – S(x)
∥∥ = dist(A, B). (.)

Therefore, PFA(T)(S(x)) = PA (S(x)) for all x ∈ FA(T). Hence S is a β-nonexpansive mapping
on FA(T). By Theorem ., there exists at least one point x∗ ∈ FA(T) such that ‖x∗ –S(x∗)‖ =
dist(A, B). The assertion is proved. �

The following theorem guarantees the existence of a common best proximity point for
a finite family � = {T, T, . . . , Tn} of affine, α-nonexpansive mappings.

Theorem . Let X be a uniformly convex Banach space and A, B be nonempty, closed,
and convex subsets of X. Suppose that A is nonempty and bounded and � = {T, T, . . . , Tn}
is a family mappings, where Ti : A → B (i = , , . . . , n) satisfy the following conditions:

(i) Ti are respectively αi-nonexpansive mappings on A such that αi < , for all
i = , , . . . , n;

(ii) Ti are an affine and continuous mappings, and Ti(A) ⊆ B for all i = , , . . . , n;
(iii) for any x ∈ ⋂i–

k= FA(Tk), there exists y ∈ ⋂i–
k= FA(Tk) such that Ti(x) = T(y) for all

i = , , . . . , n.
Then there exists at least one point x∗ ∈ A such that ‖x∗ – Ti(x∗)‖ = dist(A, B) for all i =
, , . . . , n.
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Proof From the proof of Theorem ., we know that FA(Ti) is a nonempty, closed, and
convex subset of A for all i = , , . . . , n. Theorem . implies that FA(T) ∩ FA(T) is a
nonempty, closed, and convex set. Following a similar argument as Theorem ., we can
prove that T on FA(T) ∩ FA(T) is an α-nonexpansive mapping. Thus there exists a best
proximity point z∗ ∈ FA(T) ∩ FA(T). By repeating the argument, we can prove that there
exists x∗ ∈ ⋂n

i= FA(Ti) such that ‖x∗ – Ti(x∗)‖ = dist(A, B) for all i = , , . . . , n. �

Example . Consider the uniformly convex space (R,‖ · ‖). Let

A =
{

(x, y) :  ≤ x ≤ ,  ≤ y ≤ 
}

,

B =
{

(x, y) :  ≤ x ≤ ,  ≤ y ≤ 
}

.

Then A and B are nonempty, closed, bounded, and convex subsets ofR with dist(A, B) = .
It is easy to verify that A = {(, y) :  ≤ y ≤ } and B = {(, y) :  ≤ y ≤ }. Define a map
T : A → B by T(x, y) = (x + , y) for all (x, y) ∈ A. Clearly, T(A) ⊆ B and T is an α-non-
expansive mapping for any α < . Define a map S : A → B by

S(x) =

⎧
⎪⎨

⎪⎩

(x + , 
 y), if (x, y) ∈ {(x, y) : (x, y) ∈ A such that y ≥ 

 };
(x – , y), if (x, y) ∈ {(x, y) : (x, y) ∈ A such that y < 

 };
(x + , y), if (x, y) ∈ A/A.

It is easy to prove S is 
 -nonexpansive on A. Note that x∗ ∈ {(x, y) : (x, y) ∈ A such that y <


 } satisfies ‖x∗ – S(x∗)‖ = dist(A, B) and ‖x∗ – T(x∗)‖ = dist(A, B).
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