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Abstract
Let T : X → X be a given operator and FT be the set of its fixed points. For a certain
function ϕ : X → [0,∞), we say that FT is ϕ-admissible if FT is nonempty and FT ⊆ Zϕ ,
where Zϕ is the zero set of ϕ . In this paper, we study the ϕ-admissibility of a new class
of operators. As applications, we establish a new homotopy result and we obtain a
partial metric version of the Boyd-Wong fixed point theorem.
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1 Introduction
Let (X, d) be a metric space. For a given function ϕ : X → [,∞), we define the set

Zϕ =
{

x ∈ X : ϕ(x) = 
}

.

Let T : X → X be a given operator. The set of fixed points of T is denoted by FT , that
is,

FT = {x ∈ X : Tx = x}.

Definition . We say that the set FT is ϕ-admissible if and only if FT �= ∅ and FT ⊆ Zϕ .

Let F be the set of functions F : [,∞) → [,∞) satisfying the following condi-
tions:

(F) max{a, b} ≤ F(a, b, c), for all a, b, c ≥ ;
(F) F(a, , ) = a, for all a ≥ ;
(F) F is continuous.

As examples, the following functions belong to F :
. F(a, b, c) = a + b + c,
. F(a, b, c) = max{a, b} + ln(c + ),
. F(a, b, c) = a + b + c(c + ),
. F(a, b, c) = (a + b)ec,
. F(a, b, c) = (a + b)(c + )n, n ∈N.
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Let � be the set of functions ψ : [,∞) → [,∞) satisfying the following conditions:

(�) ψ is upper semi-continuous from the right;
(�) ψ(t) < t, for all t > .

For given functions ϕ : X → [,∞), F ∈F , and ψ ∈ � , we denote by T (ϕ, F ,ψ) the class
of operators T : X → X satisfying

F
(
d(Tx, Ty),ϕ(Tx),ϕ(Ty)

) ≤ ψ
(
F
(
d(x, y),ϕ(x),ϕ(y)

))
, (x, y) ∈ X × X. (.)

The aim of this paper is to study the ϕ-admissibility of the set FT , where T belongs to
the class of operators T (ϕ, F ,ψ), (F ,ψ) ∈F ×� . As applications, we obtain an homotopy
result and a partial metric version of the Boyd-Wong fixed point theorem.

2 Main result
Our main result is given in the following theorem.

Theorem . Let (X, d) be a complete metric space and T : X → X be a given operator.
Suppose that the following conditions hold:

(i) there exist ϕ : X → [,∞), F ∈F , and ψ ∈ � such that T ∈ T (ϕ, F ,ψ);
(ii) ϕ is lower semi-continuous.

Then the set FT is ϕ-admissible. Moreover, the operator T has a unique fixed point.

Proof Let ξ be an arbitrary element of the set FT . Take x = y = ξ in (.), and we get

F
(
,ϕ(ξ ),ϕ(ξ )

) ≤ ψ
(
F
(
,ϕ(ξ ),ϕ(ξ )

))
. (.)

If F(,ϕ(ξ ),ϕ(ξ )) �= , from (�), we get

ψ
(
F
(
,ϕ(ξ ),ϕ(ξ )

))
< F

(
,ϕ(ξ ),ϕ(ξ )

)
,

which is impossible from (.). Consequently, we have

F
(
,ϕ(ξ ),ϕ(ξ )

)
= .

Using the above equality and (F), we obtain

ϕ(ξ ) ≤ F
(
,ϕ(ξ ),ϕ(ξ )

)
= ,

which yields

ϕ(ξ ) = .

Consequently, we have

FT ⊆ Zϕ . (.)
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Now, we have to prove that FT is a nonempty set. Let x be an arbitrary element of X.
Consider the Picard sequence {xn} ⊂ X defined by

xn = Tnx, n ∈ N = {, , , . . .},

where Tn is the nth iterate of T . If for some N ∈ N we have xN = xN+, then xN will be an
element of FT . As a result we can suppose that

d(xn, xn+) > , n ∈N. (.)

Using (.), we have

F
(
d(Txn, Txn–),ϕ(Txn),ϕ(Txn–)

)

≤ ψ
(
F
(
d(xn, xn–),ϕ(xn),ϕ(xn–)

))
, n ∈N

∗; (.)

here N
∗ = {, , . . .}. If for some N ∈N

∗, we have

F
(
d(xN , xN–),ϕ(xN ),ϕ(xN–)

)
= ,

then property (F) yields

d(xN , xN–) ≤ F
(
d(xN , xN–),ϕ(xN ),ϕ(xN–)

)
= ,

which is a contradiction with (.). Thus

F
(
d(xn, xn–),ϕ(xn),ϕ(xn–)

)
> , n ∈ N

∗. (.)

Using (.), (.), the definition of the sequence {xn}, and (�), we have
⎧
⎨

⎩
F(d(xn+, xn),ϕ(xn+),ϕ(xn)) ≤ ψ(F(d(xn, xn–),ϕ(xn),ϕ(xn–))),

ψ(F(d(xn, xn–),ϕ(xn),ϕ(xn–))) < F(d(xn, xn–),ϕ(xn),ϕ(xn–)),
n ∈N

∗. (.)

It follows immediately from (.) that there exists some c ≥  such that

lim
n→∞ F

(
d(xn+, xn),ϕ(xn+),ϕ(xn)

)

= lim
n→∞ψ

(
F
(
d(xn, xn–),ϕ(xn),ϕ(xn–)

))
= c. (.)

Suppose now that c > . Using the properties (�)-(�), we deduce from (.) that

c = lim sup
n→∞

ψ
(
F
(
d(xn, xn–),ϕ(xn),ϕ(xn–)

)) ≤ ψ(c) < c,

which is a contradiction. As a consequence, we have c = , that is,

lim
n→∞ F

(
d(xn+, xn),ϕ(xn+),ϕ(xn)

)

= lim
n→∞ψ

(
F
(
d(xn, xn–),ϕ(xn),ϕ(xn–)

))
= . (.)
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Using (F) and (.), we get

lim
n→∞ d(xn+, xn) = lim

n→∞ϕ(xn) = . (.)

Next, we show that {xn} is a Cauchy sequence in the metric space (X, d). Suppose that {xn}
is not a Cauchy sequence. Then there exists ε >  for which we can find two sequences of
positive integers {m(k)} and {n(k)} such that, for all k ∈N,

n(k) > m(k) > k, d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)–) < ε. (.)

Using (.), for all k ∈N we have

ε ≤ d(xm(k), xn(k))

≤ d(xm(k), xn(k)–) + d(xn(k)–, xn(k))

< ε + d(xn(k)–, xn(k)),

which yields

ε ≤ d(xm(k), xn(k)) < ε + d(xn(k)–, xn(k)), k ∈N. (.)

Letting k → ∞ in the above inequality and using (.), we obtain

lim
k→∞

d(xm(k), xn(k)) = ε+ i.e.

lim
k→∞

d(xm(k), xn(k)) = ε and d(xm(k), xn(k)) ≥ ε for k ∈N.
(.)

Using the properties (F)-(F), (.), and (.), we get

lim
k→∞

F
(
d(xn(k), xm(k)),ϕ(xn(k)),ϕ(xm(k))

)
= F(ε, , ) = ε+.

Using the above limit and (�), we obtain

lim sup
k→∞

ψ
(
F
(
d(xn(k), xm(k)),ϕ(xn(k)),ϕ(xm(k))

)) ≤ ψ(ε). (.)

On the other hand, using (.) and (F), for all k ∈ N we have

ε ≤ d(xn(k), xm(k)) ≤ d(xn(k), xn(k)+) + d(xn(k)+, xm(k)+) + d(xm(k)+, xm(k))

≤ d(xn(k), xn(k)+) + F
(
d(xn(k)+, xm(k)+),ϕ(xn(k)+),ϕ(xm(k)+)

)
+ d(xm(k)+, xm(k))

≤ d(xn(k), xn(k)+) + ψ
(
F
(
d(xn(k), xm(k)),ϕ(xn(k)),ϕ(xm(k))

))
+ d(xm(k)+, xm(k)).

Passing to the limit superior as k → ∞, using (.), (.), and (�), we obtain

ε ≤ ψ(ε) < ε,
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which is a contradiction. As a consequence, {xn} is a Cauchy sequence. Since (X, d) is a
complete metric space, there is a z ∈ X such that

lim
n→∞ d(xn, z) = . (.)

Since ϕ is lower semi-continuous, it follows from (.) and (.) that

 ≤ ϕ(z) ≤ lim inf
n→∞ ϕ(xn) = ,

which yields

z ∈ Zϕ . (.)

Now we show that z ∈ FT . Using (.), (F), and (.), we have

d(xn+, Tz) ≤ ψ
(
F
(
d(xn, z),ϕ(xn), 

))
, n ∈N. (.)

Also using the continuity of F , (F), (.), and (.), we have

lim
n→∞ F

(
d(xn, z),ϕ(xn), 

)
= F(, , ) = .

Note that from (�), we have

lim
t→+

ψ(t) = .

Then

lim
n→∞ψ

(
F
(
d(xn, z),ϕ(xn), 

))
= lim

t→+
ψ(t) = . (.)

Now, passing n → ∞ in (.) and using (.), we get

lim
n→∞ d(xn+, Tz) = .

The uniqueness of the limit yields z = Tz. Thus FT is a nonempty set, and the ϕ-
admissibility of FT is proved. Finally, in order to prove the uniqueness of the fixed point, let
us assume that w ∈ FT with d(z, w) > . Since FT is ϕ-admissible, we know that z, w ∈ Zϕ .
Now, applying (.) with (x, y) = (z, w), we obtain

F
(
d(z, w), , 

) ≤ ψ
(
F
(
d(z, w), , 

))
.

Using the properties (F) and (�), we get

d(z, w) ≤ ψ
(
d(z, w)

)
< d(z, w),

which is a contradiction. Thus T has a unique fixed point. �
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Remark . Take ϕ ≡  and F(a, b, c) = a + b + c in Theorem ., and we recover the Boyd-
Wong fixed point theorem [].

Now, we give some examples to illustrate our main result given by Theorem ..

Example . We endow the set X = [,∞) with the standard metric

d(x, y) = |x – y|, (x, y) ∈ X × X.

Let T : X → X be the mapping defined by

Tx =

⎧
⎨

⎩
 if  ≤ x ≤ ,
x
 if  < x.

Observe that T is not continuous in X. So, there is no ψ ∈ � such that

d(Tx, Ty) ≤ ψ
(
d(x, y)

)
, (x, y) ∈ X × X.

Then the Boyd-Wong fixed point theorem cannot be applied in this case. Let ϕ : X →
[,∞) be the function defined by

ϕ(x) = xn, x ∈ X, for some n ∈ N
∗.

Let F : [,∞) → [,∞) be the function defined by

F(a, b, c) = a + b + c, a, b, c ≥ .

Let ψ : [,∞) → [,∞) be the function defined by

ψ(t) =
t


, t ≥ .

Observe that F belongs to the set F and ψ belongs to the set � . We claim that T ∈
T (ϕ, F ,ψ), that is,

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ 

[
d(x, y) + ϕ(x) + ϕ(y)

]
, (x, y) ∈ X × X. (.)

In order to prove our claim, we distinguish three cases.
Case . (x, y) ∈ [, ] × [, ].
In this case, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) =  ≤ 

[
d(x, y) + ϕ(x) + ϕ(y)

]
.

Case . (x, y) ∈ [, ] × (,∞).
In this case, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) =
y


+
(

y


)n

,
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while



[
d(x, y) + ϕ(x) + ϕ(y)

]
=



[
y – x + xn + yn].

Then we have to prove that

yn
(


n– – 

)
≤ xn – x.

Observe that the function h : [, ] →R defined by

h(x) = xn – x, x ∈ [, ],

has a global minimum at xn = ( 
n ) 

n– which is equal to xn( –n
n ) ≥ –n

n . So, we have just to
check that

yn
(


n– – 

)
≤ 

n
– .

Since y > , we have

yn
(


n– – 

)
≤ 

n– –  ≤ 
n

– .

Then our claim holds in this case.
Case . x, y > .
In this case, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) =
|x – y|


+

(
x


)n

+
(

y


)n

and



[
d(x, y) + ϕ(x) + ϕ(y)

]
=

|x – y|


+
xn + yn


.

Obviously, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ 

[
d(x, y) + ϕ(x) + ϕ(y)

]
.

Finally, in all cases our claim (.) holds, which yields T ∈ T (ϕ, F ,ψ). By Theorem .,
the set FT is ϕ-admissible and T has a unique fixed point. In this example, FT = {} and
ϕ() = .

Example . We endow the set X = [
√

,∞) with the standard metric

d(x, y) = |x – y|, (x, y) ∈ X × X.
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Let T : X → X be the mapping defined by

Tx =

⎧
⎨

⎩

√
 if

√
 ≤ x ≤ 

√
,

x
 if 

√
 < x.

As in the previous example, the Boyd-Wong fixed point theorem cannot be applied in this
case. Let ϕ : X → [,∞) be the function defined by

ϕ(x) = x – , x ∈ X.

Let F : [,∞) → [,∞) be the function defined by

F(a, b, c) = a + b + c, a, b, c ≥ .

Let ψ : [,∞) → [,∞) be the function defined by

ψ(t) =
t


, t ≥ .

We distinguish three cases.
Case . (x, y) ∈ [

√
, 

√
] × [

√
, 

√
].

In this case, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) =  ≤ 

[
d(x, y) + ϕ(x) + ϕ(y)

]
.

Case . (x, y) ∈ [
√

, 
√

] × (
√

,∞).
In this case, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) =
y


–
√

 +
y


– ,

while



[
d(x, y) + ϕ(x) + ϕ(y)

]
=

y


–
x


+
x


+

y


– .

Clearly, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ 

[
d(x, y) + ϕ(x) + ϕ(y)

]
.

Case . (x, y) ∈ (
√

,∞).
In this case, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) =
|x – y|


+

x


+

y


– ,

while



[
d(x, y) + ϕ(x) + ϕ(y)

]
=

|x – y|


+
x


+

y


– .
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Also, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ 

[
d(x, y) + ϕ(x) + ϕ(y)

]
.

As a consequence, the mapping T belongs to T (ϕ, F ,ψ). By Theorem ., the set FT is
ϕ-admissible and T has a unique fixed point. In this example, FT = {√} and ϕ(

√
) = .

Example . Let (X, d) be the metric space considered in Example .. We take the func-
tions ϕ, F , and ψ defined in Example .. Let T : X → X be the mapping defined by

Tx =

⎧
⎨

⎩

√
 if

√
 ≤ x ≤ 

√
,

sin x
 if 

√
 < x.

Similarly, we have T ∈ T (ϕ, F ,ψ). By Theorem ., the set FT is ϕ-admissible and T has a
unique fixed point. In this example, FT = {√} and ϕ(

√
) = .

3 Applications
3.1 An homotopy result
Let us denote by F∗ the set of functions F ∈F satisfying the following property:

(F) for all a, b, c, d ≥ ,

a ≤ c + d �⇒ F(a, b, ) ≤ F(c, b, ) + d.

As examples, the following functions belong to F∗:
. F(a, b, c) = (a + b)ec,
. F(a, b, c) = (a + b)(c + )n, n ∈N.

Observe that F∗
�F . To see this, let us consider the function

F(a, b, c) = aec+b + bea+c, a, b, c ≥ .

It is not difficult to check that F ∈F but F /∈F∗.
We have the following homotopy result.

Theorem . Let (X, d) be a complete metric space, U be an open subset of X, and V
be a closed subset of X with U ⊂ V . Suppose that H : V × [, ] → X has the following
properties:

(C) x �= H(x,λ) for every x ∈ V\U and λ ∈ [, ];
(C) there exist a continuous function ϕ : X → [,∞), L ∈ (, ), and F ∈ F∗ such that for

all x, y ∈ V and λ ∈ [, ],

F
(
d
(
H(x,λ), H(y,λ)

)
,ϕ

(
H(x,λ)

)
,ϕ

(
H(y,λ)

)) ≤ LF
(
d(x, y),ϕ(x),ϕ(y)

)
;

(C) there exists a continuous function η : [, ] →R such that for all x ∈ V and λ,μ ∈ [, ],

F
(
d
(
H(x,λ), H(x,μ)

)
,ϕ

(
H(x,λ)

)
,ϕ

(
H(x,μ)

)) ≤ ∣∣η(λ) – η(μ)
∣∣.

Then H(·, ) has a fixed point if and only if H(·, ) has a fixed point.
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Proof Suppose that H(·, ) has a fixed point. Consider the set

Q =
{

t ∈ [, ] : x = H(x, t) for some x ∈ U
}

.

From (C), clearly  is an element of Q, so Q is a nonempty set. We will show that Q
is both closed and open in [, ], and so by the connectedness of [, ], we are finished
since Q = [, ]. First, let us prove that Q is open in [, ]. Let t ∈ Q and x ∈ U with
x = H(x, t). Using (C) with x = y = x and λ = t, we obtain

F
(
,ϕ(x),ϕ(x)

) ≤ LF
(
,ϕ(x),ϕ(x)

)
,

which implies since L ∈ (, ) that

F
(
,ϕ(x),ϕ(x)

)
= .

Then (F) yields

ϕ(x) = .

Moreover, observe that, for all t ∈ [, ], if x ∈ U is a fixed point of H(·, t), then ϕ(x) = . On
the other hand, since U is open in (X, d), there exists r >  such that B(x, r) ⊆ U , where

B(x, r) =
{

z ∈ X : d(x, z) < r
}

.

Consider the set


(x,ϕ) =
{

z ∈ X : F
(
d(z, x),ϕ(z), 

)
< r

}
.

Clearly 
(x,ϕ) is nonempty (since x ∈ 
(x,ϕ)) and 
(x,ϕ) ⊆ B(x, r). Let ε =
( – L)r > . Since η is continuous on t, there exists α(ε) >  such that

t ∈ (
t – α(ε), t + α(ε)

) ∩ [, ] �⇒ ∣∣η(t) – η(t)
∣∣ < ε.

Let t ∈ (t – α(ε), t + α(ε)) ∩ [, ]. For x ∈ 
(x,ϕ) (the closure of 
(x,ϕ)), we have

F
(
d
(
H(x, t), x

)
,ϕ

(
H(x, t)

)
, 

)
= F

(
d
(
H(x, t), H(x, t)

)
,ϕ

(
H(x, t)

)
, 

)
.

Also since

d
(
H(x, t), H(x, t)

) ≤ d
(
H(x, t), H(x, t)

)
+ d

(
H(x, t), H(x, t)

)
,

using the properties (F), (F) we get

F
(
d
(
H(x, t), H(x, t)

)
,ϕ

(
H(x, t)

)
, 

)

≤ F
(
d
(
H(x, t), H(x, t)

)
,ϕ

(
H(x, t)

)
, 

)
+ d

(
H(x, t), H(x, t)

)

≤ F
(
d
(
H(x, t), H(x, t)

)
,ϕ

(
H(x, t)

)
, 

)
+ F

(
d
(
H(x, t), H(x, t)

)
,ϕ

(
H(x, t)

)
, 

)
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≤ ∣∣η(t) – η(t)
∣∣ + LF

(
d(x, x),ϕ(x), 

)

< ε + Lr = r.

Thus we proved that, for all t ∈ (t – α(ε), t + α(ε)) ∩ [, ], the operator

H(·, t) : 
(x,ϕ) → 
(x,ϕ)

is well defined. Now, using (C) and Theorem ., we deduce that, for all t ∈ (t – α(ε),
t + α(ε)) ∩ [, ], the operator H(·, t) has a fixed point in V . However, such a fixed point
should be in U from (C). As a consequence,

(
t – α(ε), t + α(ε)

) ∩ [, ] ⊆ Q,

which proves that Q is open in [, ]. Next, we show that Q is closed in [, ]. To see this,
let {tn} be a sequence in Q with tn → t ∈ [, ] as n → ∞. We have to prove that t ∈ Q.
From the definition of Q, for all n ∈N, there exists xn ∈ U with

xn = H(xn, tn) and ϕ(xn) = .

Also for all m, n ∈N, we have

d(xn, xm) = d
(
H(xn, tn), H(xm, tm)

)

≤ d
(
H(xn, tn), H(xn, tm)

)
+ d

(
H(xn, tm), H(xm, tm)

)

≤ F
(
d
(
H(xn, tn), H(xn, tm)

)
,ϕ

(
H(xn, tn)

)
,ϕ

(
H(xn, tm)

))

+ F
(
d
(
H(xn, tm), H(xm, tm)

)
,ϕ

(
H(xn, tm)

)
,ϕ

(
H(xm, tm)

))

≤ ∣∣η(tn) – η(tm)
∣∣ + LF

(
d(xn, xm), , 

)

=
∣∣η(tn) – η(tm)

∣∣ + Ld(xn, xm),

which yields

d(xn, xm) ≤ |η(tn) – η(tm)|
 – L

, m, n ∈N.

Letting m, n → ∞ in the above inequality and using the continuity of η, we get d(xn, xm) →
 as m, n → ∞, which implies that {xn} is a Cauchy sequence in the complete metric space
(X, d). Then there is some z ∈ V (since V is closed) such that

lim
n→∞ d(xn, z) =  and ϕ(z) = ,

since ϕ is lower semi-continuous. Now, for all n ∈N we have

d
(
xn, H(z, t)

)
= d

(
H(xn, tn), H(z, t)

) ≤ d
(
H(xn, tn), H(xn, t)

)
+ d

(
H(xn, t), H(z, t)

)

≤ F
(
d
(
H(xn, tn), H(xn, t)

)
,ϕ

(
H(xn, tn)

)
,ϕ

(
H(xn, t)

))

+ F
(
d
(
H(xn, t), H(z, t)

)
,ϕ

(
H(xn, t)

)
,ϕ

(
H(z, t)

))
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≤ ∣∣η(tn) – η(t)
∣∣ + LF

(
d(xn, z), , 

)

=
∣∣η(tn) – η(t)

∣∣ + Ld(xn, z).

Letting n → ∞ in the above inequality, we obtain

lim
n→∞ d

(
xn, H(z, t)

)
= .

The uniqueness of the limit yields z = H(z, t). Using (C), we deduce that z ∈ U and t ∈ Q.
Thus Q is closed in [, ].

For the reverse implication, we use the same technique. �

3.2 A partial metric version of Boyd-Wong fixed point theorem
In this part, using Theorem ., we obtain a partial metric version of the Boyd-Wong fixed
point theorem.

We start by recalling some basic definitions and properties of partial metric spaces. For
more details of such spaces, we refer the reader to [–].

A partial metric on a nonempty set X is a function p : X → X → [,∞) such that for all
x, y, z ∈ X, we have

(i) p(x, x) = p(y, y) = p(x, y) ⇐⇒ x = y;
(ii) p(x, x) ≤ p(x, y);

(iii) p(x, y) = p(y, x);
(iv) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
on X. It is clear that, if p(x, y) = , then from (i)-(ii), x = y; but if x = y, p(x, y) may not be .
A basic example of a partial metric space is the pair ([,∞), p), where p(x, y) = max{x, y}.

Each partial metric p on X generates a T topology τp on X which has as a base the
family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where

Bp(x, ε) :=
{

y ∈ X : p(x, y) < p(x, x) + ε
}

.

Let (X, p) be a partial metric space. A sequence {xn} ⊂ X converges to some x ∈ X with
respect to p if and only if

lim
n→∞ p(xn, x) = p(x, x).

A sequence {xn} ⊂ X is said to be a Cauchy sequence if and only if limm,n→∞ p(xn, xm)
exists and is finite. The partial metric space (X, p) is said to be complete if and only if every
Cauchy sequence {xn} in X converges to some x ∈ X such that limn,m→∞ p(xn, xm) = p(x, x).

If p is a partial metric on X, then the function dp : X → X → [,∞) defined by

dp(x, y) = p(x, y) – p(x, x) – p(y, y), (x, y) ∈ X, (.)

is a metric on X.

Lemma . Let (X, p) be a partial metric space. Then:
(i) {xn} is a Cauchy sequence in (X, p) if and only if {xn} is a Cauchy sequence in the

metric space (X, dp);
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(ii) the partial metric space (X, p) is complete if and only if the metric space (X, dp) is
complete. Furthermore, limn→∞ dp(xn, x) =  if and only if

lim
n→∞ p(xn, x) = p(x, x) = lim

m,n→∞ p(xn, xm).

We have the following result.

Corollary . Let (X, p) be a complete partial metric space and let T : X → X be an oper-
ator such that

p(Tx, Ty) ≤ ψ
(
p(x, y)

)
, (x, y) ∈ X × X, (.)

where ψ ∈ � . We have the following results:
(i) if z ∈ X is a fixed point of T then p(z, z) = ;

(ii) T has a unique fixed point.

Proof Let dp be the metric on X defined by (.). We have

p(x, y) = d(x, y) + ϕ(x) + ϕ(y), (x, y) ∈ X × X,

where

d(x, y) =
dp(x, y)


, ϕ(x) =

p(x, x)


.

Then (.) yields

F
(
d(Tx, Ty),ϕ(Tx),ϕ(Ty)

) ≤ ψ
(
F
(
d(x, y),ϕ(x),ϕ(y)

))
, (x, y) ∈ X × X,

where

F(a, b, c) = a + b + c, a, b, c ≥ .

From (ii) Lemma ., the metric space (X, d) is complete and the function ϕ is continuous
with respect to the topology of d. Finally the desired result follows from Theorem .. �

Remark . Take in Corollary ., ψ(t) = kt with k ∈ (, ), and we recover Matthews
fixed point theorem [].
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