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Abstract
Let X be either a uniformly convex Banach space or a reflexive Banach space having
the Opial property. It is shown that a multivalued nonexpansive mapping on a
bounded closed convex subset of X has an endpoint if and only if it has the
approximate endpoint property. This is the first result regarding the existence of
endpoints for such kind of mappings even in Hilbert spaces. The related result in a
complete CAT(0) space is also given.
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1 Introduction
Let (X, d) be a metric space, ∅ �= E ⊆ X, and x ∈ X. The distance from x to E is defined by

dist(x, E) = inf
{

d(x, y) : y ∈ E
}

.

We denote by CB(E) the family of nonempty closed bounded subsets of E and by K(E) the
family of nonempty compact subsets of E. Let H(·, ·) be the Hausdorff distance on CB(E),
i.e.,

H(A, B) = max
{

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)
}

, A, B ∈ CB(E).

A multivalued mapping T : E → CB(X) is said to be contractive if there exists a constant
k ∈ [, ) such that

H
(
T(x), T(y)

) ≤ kd(x, y), x, y ∈ E. ()

If () is valid when k = , then T is said to be nonexpansive. It is clear that every contractive
mapping is nonexpansive and, in general, the converse is not true.

A point x ∈ E is called a fixed point of T if x ∈ T(x). A point x ∈ E is called an endpoint (or
stationary point) of T if x is a fixed point of T and T(x) = {x}. We shall denote by Fix(T)
the set of all fixed points of T and by End(T) the set of all endpoints of T . We see that
for each mapping T , End(T) ⊆ Fix(T). Thus, the concept of endpoints seems to be more
difficult (but more important) than the concept of fixed points. However, both concepts
are equivalent when T is a single-valued mapping since, in this case, End(T) = Fix(T).
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The existence of endpoints for a special kind of contractive mappings was first stud-
ied by Aubin and Siegel []. They proved that every multivalued dissipative mapping on
a complete metric space always has an endpoint. Since then the endpoint results for sev-
eral kinds of contractive mappings have been rapidly developed and many papers have
appeared (see, e.g., [–]).

The first result regarding the existence of endpoints for non-contractive type mappings
was discovered by Garcia-Falset et al. []. They proved that every J-type mapping on a
weakly compact convex subset of a Banach space with compact faces always has an end-
point. Later on, Garcia-Falset et al. [] introduced the class of (SL)-type mappings and
proved that every (SL)-type mapping on a weakly compact convex subset of a Banach space
with normal structure always has an endpoint. But, both classes of J-type and (SL)-type
mappings are different from the class of nonexpansive mappings (see Remark ., [],
Example , [], Example  and [], p.). Summary: there is no result in metric or
Banach spaces regarding the existence of endpoints for nonexpansive mappings.

In this article, we give a necessary and sufficient condition for the existence of endpoints
for multivalued nonexpansive mappings in uniformly convex Banach spaces and reflexive
Banach spaces having the Opial property. We also obtain the related result in a special
kind of metric spaces, namely, CAT() spaces. Our main discoveries are Theorems .,
. and ..

2 Preliminaries
In this section we collect some geometric properties of Banach spaces. For more details
the reader is referred to [, ].

Let E be a bounded subset of a metric space (X, d). For x ∈ X, we set

rx(E) = sup
{

d(x, y) : y ∈ E
}

,

r(E) = inf
{

rx(E) : x ∈ E
}

,

c(E) =
{

x ∈ E : rx(E) = r(E)
}

,

diam(E) = sup
{

d(x, y) : x, y ∈ E
}

.

The number rx(E) is called the radius of E relative to x; r(E), c(E) and diam(E) are called,
respectively, the Chebyshev radius, Chebyshev center and diameter of E. A point x ∈ E
is said to be a diametral point of E if rx(E) = diam(E). A Banach space X is said to have
normal structure if for each bounded closed convex subset K of X, which contains at least
two points, there exists an element of K which is not a diametral point of K .

Let {xn} be a bounded sequence in X and ∅ �= E ⊆ X. The asymptotic radius of {xn} in E
is defined by

r
(
E, {xn}

)
= inf

{
lim sup

n→∞
d(xn, x) : x ∈ E

}
.

The asymptotic center of {xn} with respect to E is defined by

A
(
E, {xn}

)
=

{
x ∈ E : lim sup

n→∞
d(xn, x) = r

(
E, {xn}

)}
.

If the asymptotic center is taken with respect to X, then it is simply denoted by A({xn}).
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The sequence {xn} is called regular relative to E if r(E, {xn}) = r(E, {xnk }) for all subse-
quences {xnk } of {xn}. It is known that there always exists a subsequence of {xn} which is
regular relative to E (see, e.g., [, ]).

A Banach space X is said to be uniformly convex if for each ε ∈ (, ] there exists δ > 
such that for any x, y ∈ X the conditions ‖x‖ ≤ , ‖y‖ ≤ , ‖x – y‖ ≥ ε imply



‖x + y‖ ≤  – δ.

It is well known that if E is a bounded closed convex subset of a uniformly convex Banach
space, then A(E, {xn}) consists of exactly one point (see, e.g., [], p.).

A Banach space X is said to have the Opial property if given whenever {xn} converges
weakly to x ∈ X,

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖ for each y ∈ X with y �= x.

From now on, we will use the notation ‘xn ⇀ x’ for a sequence {xn} converging weakly
to a point x.

Proposition . The following statements hold.
() Every Hilbert space is a uniformly convex Banach space.
() Every Hilbert space is a reflexive Banach space having the Opial property.
() Every uniformly convex Banach space has normal structure.
() Every reflexive Banach space with the Opial property has normal structure.

Let E be a nonempty subset of a metric space X and T : E → CB(X) be a mapping.
A sequence {xn} in E is called an approximate fixed point sequence for T (a.f.p.s. in short)
if limn→∞ dist(xn, T(xn)) = . The mapping T is said to have the approximate fixed point
property if it has an a.f.p.s. in E (or, equivalently, infx∈E dist(x, T(x)) = ). The mapping T
is said to have the approximate endpoint property [] if infx∈E rx(T(x)) = .

Proposition . The following statements hold.
() If T has the approximate endpoint property, then T has the approximate fixed point

property.
() If T is a single-valued mapping, then T has the approximate endpoint property if and

only if T has the approximate fixed point property.

The following example shows that the converse of () in Proposition . may not be true
if T is a multivalued mapping.

Example . Let E = [, ] and T : E → CB(E) be defined by

T(x) = [,  – x] for all x ∈ E.

Since T has a fixed point, it is immediately clear that T has the approximate fixed point
property. Next, we consider the values of rx(T(x)) in the following cases.

Case .  ≤ x < /. We have rx(T(x)) = sup{|x – y| : y ∈ [,  – x]} ≥ |x – ( – x)| =  – x >
/.
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Case . x ≥ /. We have rx(T(x)) = sup{|x – y| : y ∈ [,  – x]} ≥ |x – | = x ≥ /.
Thus, infx∈E rx(T(x)) ≥ /. Therefore, T does not have the approximate endpoint prop-

erty.

However, the converse of () in Proposition . is true under some additional conditions.

Proposition . Let E be a nonempty subset of a metric space (X, d), {xn} be a sequence
in E, and T : E →K(X) be a mapping. Then rxn (T(xn)) →  if and only if dist(xn, T(xn)) →
 and diam(T(xn)) → .

Proof Suppose that rxn (T(xn)) → . Then dist(xn, T(xn)) ≤ rxn (T(xn)) → . To show that
diam(T(xn)) → , we let u, v ∈ T(xn). Then

d(u, v) ≤ d(u, xn) + d(xn, v) ≤ rxn

(
T(xn)

)
.

This implies that diam(T(xn)) ≤ rxn (T(xn)) → .
Conversely, we suppose that dist(xn, T(xn)) →  and diam(T(xn)) → . Since T(xn) is

compact, for each n ∈N, there exist yn and un in T(xn) such that

d(xn, yn) = dist
(
xn, T(xn)

)
and d(xn, un) = rxn

(
T(xn)

)
.

Thus rxn (T(xn)) = d(xn, un) ≤ d(xn, yn) + d(yn, un) ≤ dist(xn, T(xn)) + diam(T(xn)) → . �

Recall that a multivalued mapping T : E → CB(E) is said to be an (SL)-type mapping on
E [] if the following statements hold:

() There exists an a.f.p.s. for T in each nonempty closed convex and T-invariant subset
D of E. Here, T-invariant means T(x) ⊆ D for all x ∈ D.

() For any a.f.p.s. {xn} of T in E and each x ∈ E, one has

lim sup
n→∞

H
({xn}, T(x)

) ≤ lim sup
n→∞

‖xn – x‖.

Remark . The mapping T in Example . is nonexpansive but is not (SL)-type.

Proof We first show that T is nonexpansive. Let x, y ∈ E. Then

H
(
T(x), T(y)

)
= H

(
[,  – x], [,  – y]

)

=
∣∣( – x) – ( – y)

∣∣

= |x – y|.

Next, we show that T is not (SL)-type. For each n ∈N, let xn = /n. Then dist(xn, T(xn)) →
, but

lim
n→∞|xn – | =  <  = lim

n→∞( – /n)

= lim
n→∞ H

({/n}, [, ]
)

= lim
n→∞ H

({xn}, T()
)
. �
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3 Main results
We begin this section by proving a result in uniformly convex Banach spaces.

Theorem . Let (X,‖ · ‖) be a uniformly convex Banach space, E be a nonempty bounded
closed convex subset of X, and T : E → K(E) be a nonexpansive mapping. Then T has an
endpoint if and only if T has the approximate endpoint property.

Proof It is clear that if T has an endpoint, then T has the approximate endpoint property.
Conversely, suppose that T has the approximate endpoint property. Then there exists a
sequence {xn} in E such that rxn (T(xn)) → . It follows from Proposition . that

dist
(
xn, T(xn)

) →  and diam
(
T(xn)

) → .

By passing through a subsequence, we may assume that {xn} is regular relative to E. Let
A(E, {xn}) = {x} and r = r(E, {xn}). For each n ∈N, select yn ∈ T(xn) and zn ∈ T(x) so that

‖xn – yn‖ = dist
(
xn, T(xn)

)
and ‖yn – zn‖ = dist

(
yn, T(x)

)
.

Since T(x) is compact, there exists a subsequence {znk } of {zn} such that znk → w ∈ T(x).
Thus

‖xnk – w‖ ≤ ‖xnk – ynk ‖ + ‖ynk – znk ‖ + ‖znk – w‖
≤ ‖xnk – ynk ‖ + H

(
T(xnk ), T(x)

)
+ ‖znk – w‖

≤ dist
(
xnk , T(xnk )

)
+ ‖xnk – x‖ + ‖znk – w‖.

This implies by the regularity of {xn} that lim supk→∞ ‖xnk –w‖ ≤ lim supk→∞ ‖xnk –x‖ = r.
Hence w ∈ A(E, {xnk }) = {x}. Therefore x = w ∈ T(x). Next, we show that T(x) = {x}. Take
any point v ∈ T(x) and choose un ∈ T(xn) so that ‖v – un‖ = dist(v, T(xn)). Thus

‖xn – v‖ ≤ ‖xn – yn‖ + ‖yn – un‖ + ‖un – v‖
≤ ‖xn – yn‖ + diam

(
T(xn)

)
+ H

(
T(x), T(xn)

)

≤ dist
(
xn, T(xn)

)
+ diam

(
T(xn)

)
+ ‖xn – x‖.

This implies that lim supn→∞ ‖xn – v‖ ≤ lim supn→∞ ‖xn – x‖ = r. Hence v ∈ A(E, {xn}) =
{x}, and so v = x for all v ∈ T(x). That is, T(x) = {x}. Therefore x ∈ End(T). �

We observe that if X has the Opial property, then the assumption that T : E → K(E) in
Theorem . can be weakened to T : E →K(X). For this, we need the following fact which
is known as the demiclosed principle.

Proposition . Let (X,‖ · ‖) be a Banach space having the Opial property, E be a
nonempty closed convex subset of X, and T : E → K(X) be a nonexpansive mapping. If
{xn} is a sequence in E and x ∈ E, then the conditions xn ⇀ x, dist(xn, T(xn)) → , and
diam(T(xn)) →  imply x ∈ End(T).
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Proof Since E is weakly closed, x ∈ E. For each n ∈ N, we can choose yn ∈ T(xn) and zn ∈
T(x) so that

‖xn – yn‖ = dist
(
xn, T(xn)

)
and ‖yn – zn‖ = dist

(
yn, T(x)

)
.

Since T(x) is compact, there exists a subsequence {znk } of {zn} such that znk → w ∈ T(x).
As in the proof of Theorem ., we can obtain

lim sup
k→∞

‖xnk – w‖ ≤ lim sup
k→∞

‖xnk – x‖.

The Opial property of X implies that x = w ∈ T(x). Next, we show that T(x) = {x}. Take
any point v ∈ T(x) and choose un ∈ T(xn) so that ‖v – un‖ = dist(v, T(xn)). As in the proof
of Theorem ., we can obtain

lim sup
n→∞

‖xn – v‖ ≤ lim sup
n→∞

‖xn – x‖.

The Opial property of X implies that v = x and hence T(x) = {x}. Therefore x ∈ End(T).
�

The following fact is an immediate consequence of Propositions . and ..

Proposition . Let (X,‖ · ‖) be a Banach space having the Opial property, E be a
nonempty closed convex subset of X, and T : E → K(X) be a nonexpansive mapping. If
{xn} is a sequence in E such that xn ⇀ x ∈ E and rxn (T(xn)) → , then x ∈ End(T).

Theorem . Let (X,‖ · ‖) be a reflexive Banach space having the Opial property, E be a
nonempty bounded closed convex subset of X, and T : E → K(X) be a nonexpansive map-
ping. Then T has an endpoint if and only if T has the approximate endpoint property.

Proof The necessity is clear. For the sufficiency, we suppose that T has the approximate
endpoint property. Then there exists a sequence {xn} in E such that rxn (T(xn)) → . Since
{xn} is bounded, by the reflexivity of X, there exists a subsequence {xnk } of {xn} such that
xnk ⇀ x ∈ E. The conclusion follows from Proposition .. �

As an immediate consequence of Theorem . and Proposition ., we can obtain the
following.

Corollary . Let (X,‖ · ‖) be a reflexive Banach space having the Opial property, E be
a nonempty bounded closed convex subset of X, and f : E → X be a single-valued nonex-
pansive mapping. Then f has a fixed point if and only if f has the approximate fixed point
property.

4 CAT(0) spaces
Let [, l] be a closed interval in R and x, y be two points in a metric space (X, d). A geodesic
joining x to y is a map ξ : [, l] → X such that ξ () = x, ξ (l) = y, and d(ξ (s), ξ (t)) = |s – t|
for all s, t ∈ [, l]. The image of ξ is called a geodesic segment joining x and y which when
unique is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two points
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in X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X. A subset E of X is said to be convex if every pair
of points x, y ∈ E can be joined by a geodesic in X and the image of every such geodesic is
contained in E.

A geodesic triangle �(p, q, r) in a geodesic space (X, d) consists of three points p, q, r in
X and a choice of three geodesic segments [p, q], [q, r], [r, p] joining them. A comparison
triangle for geodesic triangle �(p, q, r) in X is a triangle �(p̄, q̄, r̄) in the Euclidean plane
R

 such that dR (p̄, q̄) = d(p, q), dR (q̄, r̄) = d(q, r), and dR (r̄, p̄) = d(r, p). A point ū ∈ [p̄, q̄]
is called a comparison point for u ∈ [p, q] if d(p, u) = dR (p̄, ū). Comparison points on [q̄, r̄]
and [r̄, p̄] are defined in the same way.

Definition . A geodesic triangle �(p, q, r) in (X, d) is said to satisfy the CAT() inequal-
ity if for any u, v ∈ �(p, q, r) and for their comparison points ū, v̄ ∈ �(p̄, q̄, r̄), one has

d(u, v) ≤ dR (ū, v̄).

A geodesic space X is said to be a CAT() space if all of its geodesic triangles satisfy the
CAT() inequality. For other equivalent definitions and basic properties of CAT() spaces,
we refer the reader to standard texts such as [, ]. It is well known that every CAT()
space is uniquely geodesic. Notice also that pre-Hilbert spaces, R-trees, and Euclidean
buildings are examples of CAT() spaces (see [, ]).

It is known from Proposition  of [] that if {xn} is a bounded sequence in a complete
CAT() space X, then its asymptotic center A({xn}) consists of exactly one point.

We now give the concept of �-convergence and collect some of its basic properties.

Definition . ([]) A sequence {xn} in a CAT() space X is said to �-converge to x ∈ X
if x is the unique asymptotic center of {xnk } for every subsequence {xnk } of {xn}. In this
case we write xn

�−→ x and call x the �-limit of {xn}.

Lemma . ([]) Every bounded sequence in a complete CAT() space always has a �-
convergent subsequence.

Lemma . ([]) If E is a closed convex subset of a complete CAT() space and if {xn} is
a bounded sequence in E, then the asymptotic center of {xn} is in E.

Let x, y ∈ X, by Lemma . of [] for each t ∈ [, ], there exists a unique point z ∈ [x, y]
such that

d(x, z) = ( – t)d(x, y) and d(y, z) = td(x, y). ()

We use the notation tx ⊕ ( – t)y for the unique point z satisfying ().

Lemma . ([]) If (X, d) is a CAT() space, then

d
(
z, tx ⊕ ( – t)y

) ≤ td(z, x) + ( – t)d(z, y) – t( – t)d(x, y) ()

for all t ∈ [, ] and x, y, z ∈ X.
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Inequality () is known as the (CN) inequality of Bruhat and Tits []. The following
lemma is an analog of Proposition .. It can be viewed as an extension of Proposition .
in [].

Lemma . Let E be a nonempty closed convex subset of a complete CAT() space (X, d)
and T : E → K(X) be a nonexpansive mapping. If {xn} is a sequence in E and x ∈ E, then
the conditions xn

�−→ x, dist(xn, T(xn)) → , and diam(T(xn)) →  imply x ∈ End(T).

Proof By Lemma ., x ∈ E. For each n ∈ N, we can choose yn ∈ T(xn) and zn ∈ T(x) such
that

d(xn, yn) = dist
(
xn, T(xn)

)
and d(yn, zn) = dist

(
yn, T(x)

)
.

Since T(x) is compact, there exists a subsequence {znk } of {zn} such that znk → w ∈ T(x). As
in the proof of Theorem ., we can obtain that lim supk→∞ d(xnk , w) ≤ lim supk→∞ d(xnk ,
x). Therefore, w ∈ A({xnk }) = {x} and hence x = w ∈ T(x). Next, we show that T(x) = {x}.
Take any point v ∈ T(x) and choose un ∈ T(xn) so that d(v, un) = dist(v, T(xn)). Again, as
in the proof of Theorem ., we can obtain lim supn→∞ d(xn, v) ≤ lim supn→∞ d(xn, x). This
implies that v ∈ A({xn}) = {x} and hence T(x) = {x}. Therefore, x ∈ End(T). �

Theorem . Let E be a nonempty bounded closed convex subset of a complete CAT()
space (X, d) and T : E →K(X) be a nonexpansive mapping. Then T has an endpoint if and
only if T has the approximate endpoint property.

Proof The necessity is clear. For the sufficiency, we suppose that T has the approximate
endpoint property. Then there exists a sequence {xn} in E such that rxn (T(xn)) →  and
hence dist(xn, T(xn)) →  and diam(T(xn)) →  by Proposition .. Since {xn} is bounded,
by Lemmas . and ., there exists a subsequence {xnk } of {xn} such that xnk

�−→ x ∈ E. By
Lemma ., x is an endpoint of T . �

As a consequence of Theorem ., we can obtain the following.

Corollary . ([], Theorem ) Let E be a nonempty bounded closed convex subset of
a complete CAT() space (X, d) and f : E → X be a single-valued nonexpansive mapping.
Then f has a fixed point if and only if inf{d(x, f (x)) : x ∈ E} = .

If T is a single-valued nonexpansive mapping on a closed convex subset of a complete
CAT() space, then Fix(T) is closed and convex (see, e.g., Kirk []). The closedness of
Fix(T) can be easily extended to the multivalued case. But the convexity of Fix(T) cannot
be extended (see, e.g., [, ]). However, if T is a multivalued nonexpansive mapping,
then End(T) is always closed and convex as the following result.

Theorem . Let E be a nonempty closed convex subset of a complete CAT() space (X, d)
and T : E → CB(X) be a nonexpansive mapping with End(T) �= ∅. Then End(T) is closed
and convex.
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Proof Let {xn} be a sequence in End(T) such that xn → x ∈ E. We will show that x ∈
End(T). Since T is nonexpansive, we have

dist
(
x, T(x)

) ≤ d(x, xn) + dist
(
xn, T(x)

)

≤ d(x, xn) + H
(
T(xn), T(x)

)

≤ d(x, xn) →  as n → ∞.

This implies that x ∈ T(x). Next, we show that T(x) = {x}. Take any point v ∈ T(x). Since
xn ∈ End(T), we have

d(v, x) ≤ d(v, xn) + d(xn, x)

= dist
(
v, T(xn)

)
+ d(xn, x)

≤ H
(
T(x), T(xn)

)
+ d(x, xn)

≤ d(x, xn) →  as n → ∞.

Hence v = x. Since v ∈ T(x) is arbitrary, T(x) = {x}. Therefore, End(T) is closed. Next, we
show that End(T) is convex. Let p, q ∈ End(T) and w = tp ⊕ ( – t)q for some t ∈ (, ). We
will show that T(w) = {w}. Take any point v ∈ T(w). By the (CN) inequality, we have

d(v, w) ≤ td(v, p) + ( – t)d(v, q) – t( – t)d(p, q)

≤ tH(T(w), T(p)
)

+ ( – t)H(T(w), T(q)
)

– t( – t)d(p, q)

≤ td(w, p) + ( – t)d(w, q) – t( – t)d(p, q)

= t( – t)d(p, q) + ( – t)td(p, q) – t( – t)d(p, q)

= .

This implies that v = w. Since v ∈ T(w) is arbitrary, we have T(w) = {w}. Therefore, End(T)
is convex. �

5 Concluding remarks and open questions
Remark . As we have observed from Proposition ., every Hilbert space is a uniformly
convex Banach space and is a reflexive Banach space having the Opial property and is even
a CAT() space. Thus, all results in this article also hold in Hilbert spaces.

In view of Theorems . and ., we do not know if Theorem . can be extended to
nonself-mappings. Therefore, the following question remains open.

Question . Let X be a uniformly convex Banach space, E be a nonempty bounded
closed convex subset of X, and T : E → K(X) be a nonexpansive mapping. If T has the
approximate endpoint property, then does T have an endpoint?

In view of Theorems . and ., along with Proposition ., the following question
should be of interest.
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Question . Let X be a reflexive Banach space with normal structure, E be a nonempty
bounded closed convex subset of X, and T : E → K(E) be a nonexpansive mapping. If T
has the approximate endpoint property, then does T have an endpoint?

One may observe that the (CN) inequality is a key tool in the proof of Theorem . and
there is an inequality in uniformly convex Banach spaces similar to it (see [], p.).
However, Theorem . for uniformly convex Banach spaces is unknown. Therefore, the
following question remains open.

Question . Let X be a uniformly convex Banach space, E be a nonempty closed convex
subset of X, and T : E → CB(X) be a nonexpansive mapping. Is End(T) convex?
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