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of C∗-valuedmetric spaces and show that a C∗-valued contractionmap is continuous with
respect to our notion of continuity. Then we introduce a C∗-valued contractive type con-
dition and establish a fixed point theorem analogous to the results presented in []. We
also show that a C∗-valued contractive type map need not be continuous in the context of
C∗-valued metric.
We now recollect some basic definitions, notations, and results that will be used sub-

sequently. For details, we refer to [, ]. An algebra A together with a conjugate lin-
ear involution map ∗ : A → A, defined by a �→ a∗ such that for all a,b ∈ A we have
(ab)∗ = b∗a∗ and (a∗)∗ = a, is called a ∗-algebra. Moreover, if A contains an identity ele-
ment A, then the pair (A,∗) is called a unital ∗-algebra. A unital ∗-algebra (A,∗) together
with a complete sub multiplicative norm satisfying ‖a∗‖ = ‖a‖ for all a ∈ A is called a
Banach ∗-algebra. A C∗-algebra is a Banach ∗-algebra (A,∗) such that ‖a∗a‖ = ‖a‖ for
all a ∈ A. An element a ∈ A is called a positive element if a = a∗ and � (a) ⊂ R+, where
� (a) = {� ∈ R : �I – a is non-invertible}. If a ∈ A is positive, we write it as a 
 A. Using
positive elements, one can define a partial ordering on A as follows: b 
 a if and only if
b – a 
 A. Each positive element a of a C∗-algebra A has a unique positive square root.
Subsequently, A will denote a unital C∗-algebra with the identity element A. Further, A+

is the set {a ∈A : a 
 A} of positive elements ofA and (a∗a)/ = |a|. Using the concept of
positive elements in A, a C∗-algebra-valued metric space is defined in the following way.

Definition . [] LetX be a nonempty set. AC∗-algebra-valuedmetric onX is amapping
d : X × X →A satisfying the following conditions:

(i) A � d(x, y) for all x, y ∈ X and d(x, y) = A ⇔ x = y,
(ii) d(x, y) = d(y,x) ∀x, y ∈ X ,

(iii) d(x, y) � d(x, z) + d(z, y) ∀x, y, z ∈ X .
The triplet (X,A,d) is called a C∗-algebra-valued metric space.

A sequence {xn} in (X,A,d) is said to converge to x ∈ X with respect to A if for any � > 
there exists N ∈ N such that ‖d(xn,x)‖ < � for all n > N . We write it as limn→∞ xn = x.
A sequence {xn} is called a Cauchy sequence with respect to A if for any � >  there exists
N ∈ N such that ‖d(xn,xm)‖ < � for all n,m > N . The triplet (X,A,d) is said to be a complete
C∗-valued metric space if every Cauchy sequence with respect to A is convergent. Now
we state the definition and result from [], for convenience.

Definition . [] Let (X,A,d) be a C∗-algebra-valued metric space. A mapping T : X →
X is said to be a C∗-algebra-valued contraction mapping on X if there exists a ∈ A with
‖a‖ <  such that

d(Tx,Ty) � a∗d(x, y)a for all x, y ∈ X. ()

Theorem . [] Let (X,A,d) be a C∗-algebra-valued complete metric space and T : X →
X satisfy (), then T has a unique fixed point in X.

From now on, we call a C∗-algebra-valued metric and a C∗-algebra-valued metric space
simply a C∗-valued metric and a C∗-valued metric space, respectively.
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2 Main results
We begin this section by introducing the notion of continuity in the context of C∗-valued
metric spaces.

Definition . Let (X,A,d) be a C∗-valued metric space. A mapping T : X → X is said
to be continuous at x with respect to A if given any � >  there exists � >  such that
‖d(Tx,Tx)‖ < � whenever ‖d(x,x)‖ < �. T is said to be continuous on X with respect to
A if it is continuous for every x ∈ X.

Example . Let A = R
, then A is a C∗-algebra with pointwise operations of addition,

multiplication, and scaler multiplication. The norm on A is defined by

�
� (x, y)

�
� = max

� |x|, |y|� , ()

where ordering on A is given by

(a,b)� (c,d) ⇔ a ≤ c and b ≤ d. ()

Let X = [, ], define a C∗-valued metric d : X × X →A on X by

d(x, y) =
� |x – y|, �

. ()

Then T : X → X, given by T(x) = x
 , is continuous with respect to A since

�
� d(Tx,Ty)

�
� =

�
�
�
� d

�
x

,

y


� �
�
�
� =

�
�
�
�

x

–

y


�
�
�
� < � whenever ‖x – y‖ < � = �.

Remark . Note that every continuous self-map is continuous with respect A =R and a
C∗-valued contraction map is continuous with respect to the C∗-algebra A.

Definition . A function f : X → A is said to be T-orbitally lower semicontinuous at �
with respect to A if there exist a mapping T : X → X and a sequence {xn} in OT (x), for
some x ∈ X, such that limn→∞ xn = � with respect to A implies

�
� f (� )

�
� ≤ lim inf

�
� f (xn)

�
� . ()

Remark . IfA =R, then our definition coincideswith the usual definition ofT-orbitally
lower semicontinuous as defined by [].

Example . Consider the C∗-algebra A = R
 as defined in Example .. Let X = [–, ]

and define f : X →A by

f (x) =

�
�

	
( x
 , ) if x ≥ ,

(|x – |, ) if x < .

By taking T : X → X, Tx = x
 , we see that, for


 ∈ [–, ], we have

OT

�



�
=





,



,



,



, . . .
�
,
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and any sequence {xn} in X converges to . Further,

�
� f ()

�
� =

�
� (, )

�
� = lim inf

�
� f (xn)

�
� .

Thus f is T-orbitally lower semicontinuous at x = .

Definition . Let (X,A,d) be a C∗-valued metric space. A mapping T : X → X is said to
be a C∗-valued contractive type mapping if ∃x ∈ X and a ∈A such that

d
�
Ty,Ty

� � a∗d(y,Ty)a with ‖a‖ <  for every y ∈OT (x). ()

Remark . A C∗-valued contraction mapping is a C∗-valued contractive type mapping,
but the converse is not true as shown in the following example.

Example . Let X = [–, ] and A = M×(R) with ‖A‖ = max{|a|, |a|, |a|, |a|}, where
ai’s are the entries of thematrix A ∈ M×(R). Then (X,A,d) is a C∗-algebra-valuedmetric
space, where

d(x, y) =

�
|x – y| 
 |x – y|



,

and partial ordering on A is given as

�
a a

a a





�

b b

b b



⇔ ai ≥ bi for i = , , , .

Define a mapping T : X → X by

T(x) =

�
�

	

x
 if x ≥ ,

 if x < .

Then, for y ∈OT (x), x ≥ ,

d
�
Ty,Ty

�
=

�
| y
 –

y
 | 

 | y
 –

y
 |



=

�
√



 √



 �
| y
 | 
 | y

 |

 �
√



 √





= a∗d(y,Ty)a,

where a =

�
√



 √





and ‖a‖ = √

.

Thus T is a C∗-valued contractive type mapping. Note that T is not continuous with re-
spect to the C∗-algebra A and hence not a C∗-valued contraction mapping.

Before giving our main result, we prove the following lemma which is essentially ex-
tracted from the proof of Theorem ..
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Lemma . LetA be a C∗-algebra with the identity element A and x be a positive element
of A. If a ∈A is such that ‖a‖ < , then for m < n we have

lim
n→∞

n�

k=m

�
a∗� kxak = A

�
� (x)/

�
� 

� ‖a‖m

 – ‖a‖
�

()

and

n�

k=m

�
a∗� kxak −→ A as m −→ ∞. ()

Proof Since x is a positive element of A, we have

n�

k=m

�
a∗� kxak =

n�

k=m

�
a∗� k(x)/(x)/ak

=
n�

k=m

�
(x)/ak � ∗�

(x)/ak �

=
n�

k=m

�
�(x)/ak �

�

� A

�
�
�
�
�

n�

k=m

�
�(x)/ak �

�
�
�
�
�
�

� A
n�

k=m

�
� (x)/

�
� �� ak �

� 

= A
�
� (x)/

�
� 

n�

k=m

�
� a�� k .

Since ‖a‖ <  and m < n, therefore m −→ ∞ implies that n −→ ∞. The proof of () follows
from the fact that

� n
k=m ‖a‖k is a geometric series. Moreover, m −→ ∞ ⇒ ‖a‖m −→ 

and hence () follows from (). �

We are now ready to state and prove our main result.

Theorem . Let (X,A,d) be a complete C∗-valued metric space and T : X → X be a
C∗-valued contractive type mapping. Then

(A) ∃x ∈ X such that the sequence Tnx converges to x,
(A) d(Tnx,x) � ‖a‖n

–‖a‖‖d(x,Tx)  ‖A,
(A) x is a fixed point of T if and only if G(x) = d(x,Tx) is T-orbitally lower

semicontinuous at x with respect to A.

Proof If A = {A}, then there is nothing to prove. Assume that A �= {A}.
(A): Let x ∈ X and consider the orbitOT (x). Since condition () holds for each element

of OT (x) and ‖a‖ < , it follows that
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d
�
Tx,Tx

�
= d

�
T(Tx),T(Tx)

�

� a∗d
�
Tx,T(Tx)

�
a

= a∗d
�
Tx,Tx

�
a

� a∗a∗d(x,Tx)aa

=
�
a∗� d(x,Tx)a.

Continuing in this way, one can show that

d
�
Tnx,Tn+x

� � �
a∗� nd(x,Tx)an. ()

Let {Tnx} be a sequence in OT (x). Then, for m < n, from the triangle inequality and ()
we have

d
�
Tn+x,Tmx

� � d
�
Tmx,Tm+x

�
+ d

�
Tm+x,Tm+x

�
+ · · · + d

�
Tnx,Tn+x

�

� �
a∗� md(x,Tx)am +

�
a∗� m+d(x,Tx)am+ + · · · + �

a∗� nd(x,Tx)an

=
n�

k=m

�
a∗� kd(x,Tx)ak −→ A as m −→ ∞

using () of Lemma .. This shows that {Tnx} is a Cauchy sequence inOT (x)⊂ X with
respect toA. Since (X,A,d) is a complete C∗-valuedmetric space, there exists x ∈ X such
that Tnx −→ x. This completes the proof of (A).
(A): It follows again from the triangle inequality and () that

d
�
Tnx,Tn+mx

� � d
�
Tnx,Tn+x

�
+ d

�
Tn+x,Tn+x

�
+ · · · + d

�
Tn+m–x,Tn+mx

�

� �
a∗� nd(x,Tx)an +

�
a∗� n+d(x,Tx)an+ + · · ·

+
�
a∗� n+m–d(x,Tx)an+m–

=
n+m–�

k=n

�
a∗� kd(x,Tx)ak .

Since d(x,Tx) is a positive element of A, using () of Lemma . and letting m −→ ∞, we
conclude (A).
(A): To prove (A), if Tx = x and {xn} is a sequence in OT (x) with xn −→ x with

respect to A, then ‖G(x)‖ = ‖d(Tx,x)‖ =  ≤ lim inf‖G(xn)‖. Conversely, if G is T-
orbitally lower semicontinuous at x, then

�
� G(x)

�
� =

�
� d(x,Tx)

�
� ≤ lim inf

�
� G

�
Tnx

� ��

= lim inf
�
� d

�
Tnx,Tn+x

� ��

≤ lim inf
‖a‖n

 – ‖a‖
�
� d(x,Tx)



�
�  = .

This implies that d(x,Tx) = A, i.e., x = Tx. �
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Remark . Note that:
() By taking A =R, we see that the main result of [] follows immediately from

Theorem ..
() Theorem . is a special case of Theorem . except for the uniqueness of a fixed

point of the mapping involved.

The following example shows that our result properly generalizes Theorem ..

Example . Consider the C∗-algebra A = R
 with component-wise operations where

norm and ordering are given by () and (), respectively. Let X = [–, ]× [–, ] and define
the C∗-valued metric d : X × X → R

 by d(x, y) = (|x – y|, |x – y|) for all x = (x,x), y =
(y, y) ∈ X. Define T : X → X by

T(x,x) =

�
�

	
( x
 ,

x
 ) if x,x ≥ ,

(, ) otherwise.

Taking (u,u) ∈ X such that  < u,u < , we have

OT
�
(u,u)

�
=



(u,u),

�
u


,

u



�
,
�

u


,

u



�
, . . .

�
.

For any un = ( u
n– ,

u
n– ) ∈OT ((u,u)), we have

d
�
Tun,Tun

�
= a∗d(un,Tun)a,

where a = ( √

, √


). Note that un → (, ). Further, G : X →A defined by G(x) = d(x,Tx) is

T-orbitally lower semicontinuous at (, ). Therefore, all conditions of Theorem . are
satisfied and (, ) is the fixed point of T . Note that Theorem . is not applicable here
since T is not continuous at (, ) with respect to A.

3 Application
In this section we provide the existence result for an integral equation as an application
of C∗-valued contractive type mappings on complete C∗-valued metric spaces. Let E be
a Lebesgue measurable set, X = L∞(E), and H = L(E). We denote the set of all bounded
linear operators on aHilbert space H by L(H).With the usual operator norm, L(H) is a C∗-
algebra. For S,T ∈ X, define d : X ×X → L(H) by d(T ,S) = �|T–S|, where �h : H → H is the
multiplication operator given by �h(	) = h · 	 for 	 ∈ H . Then (X,L(H),d) is a complete
C∗-valued metric space [].

Example . Let E, X, H , and the metric d be as above. Suppose that
() K : E × E ×R →R, and let T be a self-mapping on X ,
() there exists a continuous function 	 : E × E →R and � ∈ (, ) such that for every

x ∈ X , y ∈OT (x), and t, s ∈ E, we have

�
�K

�
t, s,x(s)

�
– K

�
t, s, y(s)

� �� ≤ �
�
�	(t, s)

�
x(s) – y(s)

� �� . ()

() supt∈E
�

E |	(t, s)|ds ≤ .
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Then the integral equation

x(t) =
�

E
K

�
t, s,x(s)

�
ds, t ∈ E

has a solution.

Proof Here (X,L(H),d) is a complete C∗-valued metric space with respect to L(H).
Let T : X → X be

Tx(t) =
�

E
K

�
t, s,x(s)

�
ds, t ∈ E.

Let Tx = y, then

�
� d

�
Tx,Tx

� �� =
�
� d(Tx,Ty)

�
�

= ‖�|Tx–Ty|‖
= sup

‖h‖=
〈�|Tx–Ty|h,h〉 for any h ∈ H

= sup
‖h‖=

�

E

� �
�
�
�

�

E

�
K

�
t, s,x(s)

�
– K

�
t, s, y(s)

��
ds

�
�
�
�

�
h(t)h(t)dt

≤ sup
‖h‖=

�

E

� �
�
�
�

�

E

�
K

�
t, s,x(s)

�
– K

�
t, s, y(s)

��
ds

�
�
�
�

� �
�h(t)

�
� dt

≤ sup
‖h‖=

�

E

� �

E
|k	(t, s)

�
x(s) – y(s)

� |ds
� �
�h(t)

�
� dt

≤ k sup
‖h‖=

�

E

� �

E

�
�	(t, s)

�
� ds

� �
�h(t)

�
� dt · ‖x – y‖∞

≤ k sup
t∈E

�

E

�
�	(t, s)

�
� ds · sup

‖h‖=

�

E

�
�h(t)

�
� dt · ‖x – y‖∞

≤ k‖x – y‖∞

= ‖a‖�
� d(x, y)

�
� = ‖a‖�

� d(x,Tx)
�
� .

Setting a = kI , we have a ∈ L(H)+ and ‖a‖ = k. Thus all the conditions of Theorem .
hold and hence the conclusion. �
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