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Abstract
In this paper, several order-theoretic fixed point theorems are proved on Banach
lattices. As applications of these fixed point theorems, we study the
order-preservation of solution correspondence for parametric generalized variational
inequalities. Furthermore, the existence of solutions to equilibrium problems is also
examined. Our approach is order-theoretic and all results obtained in this paper do
not require the considered mappings to be continuous or semi-continuous with
respect to any topology equipped on the underlying space.
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1 Introduction
Let X be a Banach space whose (topological) dual is denoted by X∗, let C be a nonempty
closed and convex subset of X, and let � : C → X∗ \ {∅} be a set-valued mapping. In this
paper, we consider the following generalized variational inequality problem, which is to
find x̂ ∈ C such that there exists φ ∈ �(x̂) with

〈φ, y – x̂〉 ≥  for every y ∈ C. (.)

Let us refer to this problem succinctly as GVI(C,�). If there is at least one solution to it,
then we say that GVI(C,�) is solvable.

For studying the solvability of GVI(C,�), Nishimura and Ok [] use the order-theoretic
methods to obtain several existence theorems of maximal solutions to GVI(C,�) on
Hilbert lattices. Along this line, Li and Ok [] explore the order-preserving of general-
ized metric projection operator and study the existence of maximum (minimum) solu-
tions to GVI(C,�) on Banach lattices, where the considered mappings are required to have
topped (bottomed) values. In contrast to many previous literature works, the approach of
Nishimura, Ok and Li is order-theoretic, and hence their results do not require � to be
continuous or semi-continuous with respect to any topology equipped on the underlying
space. For more details, see, for instance, [–] and the references therein.

Besides studying the solvability of GVI(C,�), it is also an important subject to exam-
ine the behavior of solutions to parametric GVI(C,�). In traditional research, the authors
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were often concerned about the continuity or semi-continuity of the solution correspon-
dence (see, e.g., [–]). However, in the order-theoretic setup, one would be concerned,
instead, with the order-preservation of this solution correspondence. To the best of our
knowledge, there are few papers on this subject except for the work of Nishimura and Ok
[]. However, Nishimura and Ok only consider one parameter in their research, where �

is disturbed by the parameter θ and the underlying sets are Hilbert lattices.
Motivated and inspired by Nishimura, Ok and Li, we have the principal objective in

this paper to explore the order-preservation of solution correspondence for parametric
GVI(C,�), where two parameters are considered and the underlying sets are Banach lat-
tices. The content of this paper can be summarized as follows. Section  is devoted to some
basic concepts related to posets as well as some useful lemmas. In Section , several order-
theoretic fixed point theorems are proved on Banach lattices. These fixed point theorems
are the main tools for the following analysis. In Section , we first examine the existence of
maximal and minimal solutions to GVI(C,�) without requiring the involved mapping to
have topped (bottomed) values. Then we explore the upper order-preservation and lower
order-preservation of solution correspondence for parametric GVI(C,�) on Banach lat-
tices. Section  is devoted to some further discussions on equilibrium problems, which
include variational inequalities as special cases. Since there are no (generalized) metric
projection operators in this case, some other techniques are introduced in this section.

2 Preliminaries
In this section, we recall some basic concepts in a poset as well as several useful lemmas.
For more details, please refer to [, –].

2.1 Some concepts in poset
A poset is an ordered pair (X,�), where X is a nonempty set and � a partial order on X.
For each x ∈ (X,�), we define x↑ = {y ∈ (X,�) : y � x} and x↓ = {y ∈ (X,�) : x � y}. In turn,
for any nonempty subset S, we define S↑ =

⋃{x↑ : x ∈ S} and S↓ =
⋃{x↓ : x ∈ S}. We say

that an element x of (X,�) is a �-upper bound for S if x � S, that is, x � y for each y ∈ S.
The notation S � x is similarly understood. We say that S is �-bounded from above if x � S
for some x ∈ (X,�), and �-bounded from below if S � x for some x ∈ (X,�). In turn, S is
said to be �-bounded if it is �-bounded from above and below. Particularly, if x ∈ S and
x is a �-upper bound for S, then we say that x is the �-maximum in S. The �-minimum
element of S is similarly defined. We say that x is �-maximal element of S if x ∈ S and
y � x does not hold for any y ∈ S \ {x}. Similarly, x is said to be the �-minimal element of
S if x ∈ S and x � y does not hold for any y ∈ S \ {x}. A nonempty subset S of X is said to
be a �-chain in X if either x � y or y � x holds for each x, y ∈ S.

The �-supremum of S is the �-minimum of the set of all �-upper bounds for S and is
denoted by

∨
X S. The �-infimum of S, which is denoted by

∧
X S, is defined similarly. As

is conventional, we denote
∨

X{x, y} as x ∨ y and
∧

X{x, y} as x ∧ y for any x, y in (X,�). If
x ∨ y and x ∧ y exist for every x and y in (X,�), then we say that (X,�) is a lattice, and if
∨

X S and
∧

X S exist for every nonempty (�-bounded) S ⊆ (X,�), we say that (X,�) is a
(Dedekind) complete lattice. If Y is a nonempty subset of (X,�) which contains

∨
X{x, y}

and
∧

X{x, y} for every x, y ∈ Y , then it is said to be a �-sublattice of (X,�). In turn, if Y
contains

∨
X S and

∧
X S for every nonempty S ⊆ Y , then it is said to be a subcomplete

�-sublattice of (X,�).
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2.2 Order-preservation for correspondences
For any lattices (X,�X) and (Y ,�Y ), we say that a map F : X → Y is order-preserving if
x �X y implies F(x) �Y F(y) for every x, y ∈ X. In turn, if � : X → Y is a set-valued cor-
respondence, we say that � is upper order-preserving if x �X y implies that �(y) = ∅, or
for every y′ ∈ �(y) there is x′ ∈ �(x) such that x′ �Y y′. Upper order-reversing maps are
defined dually. Similarly, � is lower order-preserving if x �X y implies that �(x) = ∅, or for
every x′ ∈ �(x) there is y′ ∈ �(y) such that x′ �Y y′. � is order-preserving if it is both upper
and lower order-preserving. If (X,�X) and (Y ,�Y ) are subposets of a given poset (Z,�),
then we use the phrase �-preserving instead of order-preserving.

2.3 Banach lattice
A Riesz space is a lattice (X,�) where X is a (real) linear space whose linear structure is
compatible with the partial order � in the sense that αidX + z is a �-preserving self-map
on X for every z ∈ X and real number α > . The positive cone of X is X+ := {x ∈ X : x � },
where  denotes the origin of X.

A Riesz space (X,�) is called a normed Riesz space if X is a normed linear space whose
norm ‖ · ‖ is a compatible with the partial order � in the sense that ‖x‖ ≥ ‖y‖ holds for
every x, y ∈ X with |x| � |y|, where |z| = (z ∨ ) + (–z ∨ ) for every z ∈ X.

We say (X,�) is a Banach lattice, that is, (X,�) is an ordered Riesz space with X being
a Banach space. If X is a Hilbert space here, then (X,�) is referred to as a Hilbert lattice.

Lemma . Let (X,�) be a Banach lattice, then the following results hold:
(i) The lattice operations ∨ and ∧ are continuous.

(ii) The positive cone X+ is closed.
(iii) For any y ∈ X , {z ∈ X : z � y} = y + X+, {z ∈ X : y � z} = y – X+ and

{z ∈ X : y � z � y} = (y + X+) ∩ (y – X+).

Definition . (see []) Let (X,�) be a Banach lattice. The dual of � is the partial order
�∗ on X∗ defined as follows:

φ �∗ ψ iff 〈φ – ψ , x〉 ≥  for every x ∈ X+. (.)

It is well known that (X∗,�∗) is a Banach lattice, which is called the dual of (X,�). As
usual, we denote the positive cone of (X∗,�∗) by X∗

+.

2.4 Some results related to generalized metric projection operator on Banach
space

In , Alber [] introduced the following generalized metric projection operator on a
Banach space. Let X be a Banach space whose dual is denoted by X∗. Denote the operator
norm on X∗ by ‖ · ‖∗, and consider the map V : X∗ × X → R defined by

V (φ, x) := ‖φ‖ – 〈φ, x〉 + ‖x‖. (.)

It is easy to check that this map is nonnegative-valued. For any nonempty, closed and con-
vex subset C of X, the generalized metric projection operator onto C is the correspondence
πC : X∗ → C \ {∅} defined by

πC(φ) :=
{

z ∈ C : V (φ, z) ≤ V (φ, x) for all x ∈ C
}

. (.)
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When X is a Hilbert space, we can regard any φ in X∗ as lying in X. In this case, V (φ, x) =
‖φ – x‖ for each (φ, x) ∈ X∗ × X, which, in turn, implies that πC is the standard metric
projection operator onto C. In [], Li derived many important properties of πC . Some of
them are listed as follows; for more details, see, for instance, [, ].

Lemma . (see []) Let X be a reflexive Banach space with dual space X∗ and C be a
nonempty, closed and convex subset of X. We have the following results.

(i) Define JX : X → X∗ which is called normalized duality mapping by

JX(x) =
{
φ(x) ∈ X∗ :

〈
φ(x), x

〉
=

∥
∥φ(x)

∥
∥∗‖x‖ = ‖x‖ =

∥
∥φ(x)

∥
∥

∗
}

. (.)

If X is also smooth and strictly convex, then JX is singled-valued and πC ◦ JX = idC .
(ii) If X is also smooth, then for any given φ ∈ X∗, x ∈ πC(φ) if and only if

〈φ – J(x), x – y〉 ≥  for every y ∈ C. This is the variational characterization of
generalized metric projection operator.

(iii) The operator πC : X∗ → C is single-valued if and only if X is strictly convex.
(iv) If X is also smooth and strictly convex, then the generalized projection operator

πC : X∗ → C is continuous.

Based on the result (ii) of Lemma ., we can establish the equivalence between
GVI(C,�) and a fixed point problem as follows.

Lemma . (see []) Let X be a reflexive and smooth Banach space and λ : X → R++ be
any function. Let C be a nonempty closed and convex subset of X, and let � : C → X∗ be
any correspondence. Then x∗ is a solution to GVI(C,�) if and only if x∗ is a fixed point of
the correspondence πC ◦ (JX – λ�), that is, x∗ ∈ πC(JX(x∗) – λ(x∗)�(x∗)).

In addition, we also need the following results.

Definition . (see []) Let X be a Banach lattice. A �-sublattice of S of X is said to be
regular if ‖·‖ is submodular on S with respect to �, that is, ‖x∨y‖ +‖x∧y‖ ≤ ‖x‖ +‖y‖

for every x, y ∈ S.

Lemma . (see []) Let X be a reflexive Banach lattice and C be a regular �-sublattice
of X. Then πC is order-preserving.

Lemma . (Zorn’s lemma) Let (P,�) be a poset, if every chain of P has an �-upper bound
in P, then P contains at least one maximal element.

Lemma . (Dual version of Zorn’s lemma) Let (P,�) be a poset, if every chain of P has a
�-lower bound in P, then P contains at least one minimal element.

3 Order-theoretic fixed point theorems on Banach lattices
In this section, we first use Zorn’s lemma to give an order-theoretic fixed point theorem,
which extends the result of Nishimura and Ok [] from Hilbert lattices to Banach lattices.

Theorem . Let (X,�) be a Banach lattice and C be a subcomplete �-sublattice of X. If
f : C → C \ {∅} is upper �-preserving and compact-valued, then f has a maximal fixed
point, which is the maximal element of the set of fixed points of f .
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Proof Let

A =
{

x ∈ C : u � x for some u ∈ f (x)
}

. (.)

Since C is a subcomplete �-sublattice, we have
∧

X C ∈ C, from which we get
∧

X C ∈ A,
that is, A is nonempty. Next, we show that A is inductive, that is, every chain in A has its
upper bound in A.

To this end, take an arbitrary chain S ⊆ A. Then, for any x ∈ S, there is ω(x) ∈ f (x) such
that ω(x) � x. Since for every x ∈ S,

∨
X S � x and f is upper �-preserving, it follows that

for each x ∈ S, there is μ(x) ∈ f (
∨

X S) such that μ(x) � ω(x) � x. Hence, S ⊆ f (
∨

X S)↓.
We claim that {x↑ ∩ f (

∨
X S) : x ∈ S} has the finite intersection property. Indeed, let T be

a nonempty finite subset of S. Since S is a �-chain, T is also a �-chain. Hence there is
x̄ ∈ T such that x̄ � T . Since x̄ ∈ T ⊆ S ⊆ f (

∨
X S)↓, we have y � x̄ for some y ∈ f (

∨
X S).

By transitivity of �, then, y ∈ ⋂{x↑ ∩ f (
∨

X S) : x ∈ T}.
From Lemma ., it follows that the positive cone X+ of a Banach lattice is closed and

x↑ = x + X+. Thus, {x↑ ∩ f (
∨

X S) : x ∈ S} is a collection of closed subsets of f (
∨

X S). Again,
since f is compact-valued, f (

∨
X S) is a compact subset of C. By the above analysis, we get

{x↑ ∩ f (
∨

X S) : x ∈ S} �= ∅, which implies that there is a �-upper bound for S in f (
∨

X S).
Denote this �-upper bound by ω, then ω �

∨
X S. On the other hand, since ω ∈ f (

∨
X S),

we have
∨

X S ∈ A. Therefore, A is inductive.
From Zorn’s lemma, there is a � maximal element x̂ in A. By the definition of A, there

is ŷ ∈ f (x̂) such that ŷ � x̂. In addition, since f is upper �-preserving and ŷ ∈ f (x̂), there is
ẑ ∈ f (ŷ) such that ẑ � ŷ. It follows that ŷ ∈ A. As ŷ � x̂ and x̂ is a maximal element in A,
thus x̂ = ŷ. Therefore, x̂ ∈ f (x̂). Denote by Fix(f ) the set of fixed points of f , then it is easy
to check that Fix(f ) ⊆ A. Hence, f has a maximal fixed point. �

In [], Nishimura and Ok prove that if C is a closed and �-bounded �-sublattice of a
separable Hilbert lattice, then C is a subcomplete �-sublattice of X. Observing that the
above result also holds in a Banach lattice, we get the following corollary from Theorem .
immediately.

Corollary . Let (X,�) be a separable Banach lattice and C be a closed and �-bound
�-sublattice of X. If f : C → C \ {∅} is upper �-preserving and compact-valued, then f
has a maximal fixed point.

Employing the idea of Fujimoto [] and applying the dual version of Zorn’s lemma
(Lemma .), we can derive the following order-theoretic fixed point theorem for lower
order-preserving set-valued mappings.

Theorem . Let (X,�) be a Banach lattice and C be a subcomplete �-sublattice of X.
If f : C → C \ {∅} is lower �-preserving and compact-valued, then f has a minimal fixed
point.

By a similar argument to that in Corollary ., we have the following result for Theo-
rem ..

Corollary . Let (X,�) be a separable Banach lattice and C be a closed and �-bound
�-sublattice of X. If f : C → C \ {∅} is lower �-preserving and compact-valued, then f has
a minimal fixed point.
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Remark . If (X,�) is a Hilbert lattice, then Theorem . is reduced to a similar result
introduced by Nishimura and Ok []. However, our results are more general. Firstly, the
underlying set that we considered is a Banach lattice; secondly, besides the case of upper
�-preserving set-valued mappings, we also examine the fixed point theorems for lower
�-preserving set-valued mappings; finally, our results do not require the domain C to be
convex, and it is easy to construct this kind of examples. Take C = [, ] ∪ [, ] and define
a set-valued mapping f : C → C \ {∅} by

f (x) =

⎧
⎨

⎩

[, ] if x ∈ [, ],

[, ] if x ∈ [, ].
(.)

Obviously, C is not convex, but f has infinitely many fixed points.

4 Order-preservation of solution correspondence for parametric generalized
variational inequalities

Throughout this section, let (X,�) be a Banach lattice, and let 
, � be posets, whose
partial order relations are denoted by �
 and ��, respectively. In addition, we can define
the product of (�,��) and (
,�
) as follows. Let � × 
 be the product of � and 
, and
the partial order on � × 
 is defined by

(ω, θ) ��×
 (ω, θ) iff ω �� ω and θ �
 θ, (.)

where (ω, θ), (ω, θ) belong to � × 
.
Let C : � → X \ {∅} and � : X × 
 → X∗ \ {∅} be set-valued mappings. For given

(ω, θ ) ∈ � × 
, the parametric generalized variational inequality considered here is to
find x∗ ∈ C(ω) such that there exists ϕ∗ ∈ �(x∗, θ ) with

〈
ϕ∗, y – x∗〉 ≥  for every y ∈ C(ω). (.)

Denote this problem by GVI(C(ω),�(·, θ )). Generally speaking, the set of solutions to
GVI(C(ω),�(·, θ )) is perturbed by parameters ω and θ , that is, the set of solutions to
GVI(C(ω),�(·, θ )) may vary with these parameters. Therefore, we can define a solution
correspondence 
 : � × 
 → X by


(ω, θ ) =
{

x∗ ∈ C(ω) : x∗ is a solution to GVI
(
C(ω),�(·, θ )

)}
. (.)

Next, we examine the order-preservation properties of this solution correspondence 
.

Theorem . Let (X,�X) be a reflexive, smooth and strictly convex Banach lattice, and let
(�,��), (
,�
) be posets. Let C : � → X \ {∅} and � : X × 
 → X∗ \ {∅} be set-valued
correspondences that satisfy the following conditions:

(i) C(ω) is a regular, closed and convex subcomplete �X-sublattice of X for any ω ∈ �,
and there exists a regular, closed and convex subcomplete �X -sublattice Y of X such
that C(ω) ∈ Y for any ω ∈ �;

(ii) �(x, ·) is upper order-reversing for each x ∈ X , and there exists a map λ : X → R++

such that JX – λ�(·, θ ) is upper order-preserving and compact-valued for each θ ∈ 
;
(iii) πC(·)(x) : X∗ × � → X is order-preserving for any x ∈ X .
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Then
(a) for each (ω, θ ) ∈ � × 
, 
(ω, θ ) �= ∅;
(b) the solution correspondence 
 is upper order-preserving.

Proof (a) Define a set-valued mapping f : X × � × 
 → X by setting

f (x,ω, θ ) = πC(ω) ◦ (
JX(x) – λ�(x, θ )

)
. (.)

From Lemma ., we know that the set of solutions to GVI(C(ω),�(·, θ )) coincide with the
set of fixed points of f (·,ω, θ ) for each (ω, θ ) ∈ �×
. Therefore, we only need to prove that
f (·,ω, θ ) has a fixed point for each (ω, θ ) ∈ �×
. To this end, we first show that f (·,ω, θ ) is
upper �X-preserving for any given (ω, θ ). In fact, since X is a reflexive Banach lattice and
C(ω) is a regular �-sublattice for each ω ∈ � by assumption (i), πC(ω) is order-preserving
for every ω ∈ � by Lemma .. Again, as JX – λ�(·, θ ) is upper order-preserving for each
θ ∈ 
, it follows that f (·,ω, θ ) is upper �X -preserving for any (ω, θ ) ∈ �×
. On the other
hand, since JX – λ�(·, θ ) is compact-valued for each θ ∈ 
 by assumption (ii) and πC(ω)

is continuous for any ω ∈ � by Lemma ., we conclude that f (·,ω, θ ) is compact-valued
for any (ω, θ ) ∈ � × 
. Since C(ω) is a subcomplete �-sublattice of X, it follows from
Theorem . that f (·,ω, θ ) has a fixed point for any (ω, θ ) ∈ � × 
, that is, 
(ω, θ ) �= ∅ for
each (ω, θ ) ∈ � × 
.

(b) In this part, we examine the upper order-preservation of 
. Firstly, note the follow-
ing facts. Recalling the proof of (a), we know that f (·,ω, θ ) is upper �X -preserving for each
(ω, θ ) ∈ � × 
. In fact, f (x, ·, ·) is also upper order-preserving for each x ∈ X. To see this,
take arbitrary x ∈ X and any (ω, θ), (ω, θ) ∈ � × 
 with (ω, θ) ��×
 (ω, θ). Pick-
ing any x(ω, θ) ∈ f (x,ω, θ), from the definition of f , there exists y(θ) ∈ �(x, θ) such
that x(ω, θ) = πC(ω)(JX(x) – λ(x)y(θ)). Note that (ω, θ) ��×
 (ω, θ) implies θ �
 θ

and that �(x, ·) is upper order-reversing for each x ∈ X, there exists y(θ) ∈ �(x, θ) such
that y(θ) �X∗ y(θ), which implies that JX(x) – λ(x)y(θ) �X∗ JX(x) – λ(x)y(θ). Again, since
(ω, θ) ��×
 (ω, θ) implies ω �� ω and πC(·)(x) is order-preserving by condition (iii),
we have

πC(ω)
(
JXx – λ(x)y(θ)

)
�X πC(ω)

(
JX(x) – λ(x)y(θ)

)
. (.)

Denote πC(ω)(JX(x) – λ(x)y(θ)) by x(ω, θ), then (.) is reduced to x(ω, θ) �X x(ω, θ).
It is obvious that x(ω, θ) ∈ f (x,ω, θ). Therefore, f (x, ·, ·) is upper order-preserving for
any x ∈ X.

For proving the upper order-preservation of 
, take any (ω, θ), (ω, θ) ∈ � × 
 with
(ω, θ) ��×
 (ω, θ), and pick any x(ω, θ) ∈ 
(ω, θ). Our aim is to find an x(ω, θ) ∈

(ω, θ) such that x(ω, θ) �X x(ω, θ). The rest of this proof is divided into four steps.

Step . Construct a correspondence as follows.
Since x(ω, θ) ∈ C(ω) and C(ω) ⊆ Y by condition (i), we have x(ω, θ) ∈ Y ∩x(ω, θ)↑,

which implies that Y ∩ x(ω, θ)↑ �= ∅. Hence, we can define a set-valued correspondence
g : Y ∩ x(ω, θ)↑ → Y∩x(ω,θ)↑ by

g(x) = f (x,ω, θ) ∩ C(ω) ∩ x(ω, θ)↑. (.)
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Step . Show that g is well defined, that is, f (x,ω, θ) ∩ C(ω) ∩ x(ω, θ)↑ �= ∅ for any
x ∈ x(ω, θ)↑.

Since x(ω, θ) ∈ 
(ω, θ), we have x(ω, θ) ∈ f (x(ω, θ),ω, θ). As (ω, θ) ��×


(ω, θ) and f (x(ω, θ), ·, ·) is upper order-preserving, there exists y ∈ f (x(ω, θ),ω, θ)
such that y �X x(ω, θ). Again, since f (·,ω, θ) is upper �X -preserving, and hence for
any x �X x(ω, θ), there exists z ∈ f (x,ω, θ) such that z �X y. From the transitivity of
�X , we have z �X x(ω, θ). Hence, z ∈ f (x,ω, θ) ∩ C(ω) ∩ x(ω, θ)↑, which implies that
f (x,ω, θ) ∩ C(ω) ∩ x(ω, θ)↑ �= ∅ for any x �X x(ω, θ).

Step . Show that Y ∩ x(ω, θ)↑ is a subcomplete �X -sublattice of X.
Take any a, b ∈ Y ∩ x(ω, θ)↑, then we have a, b ∈ Y and a, b ∈ x(ω, θ)↑, which im-

plies that a � x(ω, θ) and b � x(ω, θ). Thus, we get a ∨ b � a ∧ b � x(ω, θ), that
is, a ∨ b, a ∧ b ∈ x(ω, θ)↑. Since Y is a sublattice of X, we have a ∨ b, a ∧ b ∈ Y . So
a ∨ b, a ∧ b ∈ x(ω, θ)↑ ∩ Y , which implies that Y ∩ x(ω, θ)↑ is a sublattice of X. In a
similar manner, take any nonempty subset V of Y ∩ x(ω, θ)↑, and then we can prove
∨

X V ,
∧

X V ∈ Y ∩ x(ω, θ)↑. From the definition of subcomplete �X -sublattice, we con-
clude that Y ∩ x(ω, θ)↑ is a subcomplete �X-sublattice of X.

Step . Prove that g is compact-valued and upper �X -preserving.
Recalling the proof of (a), we know that f (·,ω, θ) is compact-valued for each (ω, θ) ∈

�×
. Since the positive cone X+ of X is closed and noting that x(ω, θ)↑ = x(ω, θ) + X+,
we have x(ω, θ)↑ is closed. Moreover, C(ω) is also closed by assumption (i). Hence, we
claim that g is compact-valued.

Next, we prove that g is upper �X -preserving. Actually, take any x, x′ ∈ x(ω, θ)↑ with
x �X x′, and pick any y′ ∈ g(x′). By definition of g , we have y′ ∈ f (x′,ω, θ). Since f (·,ω, θ)
is upper �X -preserving, there exists y ∈ f (x,ω, θ) such that y �X y′. Noting that y′ ∈ g(x′)
implies y′ �X x(ω, θ), which leads to y �X x(ω, θ). That is, there exists y ∈ g(x) such that
y �X y′. Hence, g is upper �X -preserving.

Applying Theorem ., g has a fixed point, that is, there exists x(ω, θ) ∈ x(ω, θ)↑ such
that x(ω, θ) ∈ f (x(ω, θ),ω, θ), that is, x(ω, θ) ∈ 
(ω, θ). Therefore, 
 is upper order-
preserving. �

By a similar argument to that in Theorem . and applying Corollary ., we obtain the
following result.

Corollary . Let (X,�X) be a reflexive, smooth, strictly convex and separable Banach
lattice, and let (�,��), (
,�
) be posets. Let C : � → X \ {∅} and � : X × 
 → X∗ \ {∅}
be set-valued correspondences that satisfy the following conditions:

(i) C(ω) is a regular, closed, convex and �-bounded �-sublattice of X for any ω ∈ �,
and there exists a regular, closed, convex and �-bounded �-sublattice Y of X such
that C(ω) ∈ Y for any ω ∈ �;

(ii) �(x, ·) is upper order-reversing for each x ∈ X , and there exists a map λ : X → R++

such that JX – λ�(·, θ ) is upper order-preserving and compact-valued for each θ ∈ 
;
(iii) πC(·)(x) : X∗ × � → X is order-preserving for any x ∈ X .

Then
(a) for each (ω, θ ) ∈ � × 
, 
(ω, θ ) �= ∅;
(b) the solution correspondence 
 is upper order-preserving.
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When C(ω) = C for each ω ∈ � but � is perturbed by θ , we deduce the following result
from Theorem ..

Corollary . Let (X,�X) be a reflexive, smooth and strictly convex Banach lattice, and
let (
,�
) be a poset. Let � : X × 
 → X∗ \ {∅} be a set-valued correspondence. Assume
that the following conditions hold:

(i) C is a regular, closed and convex subcomplete �-sublattice of X ;
(ii) �(x, ·) is upper order-reversing for each x ∈ X , and there exists a map λ : X → R++

such that JX – λ�(·, θ ) is upper order-preserving and compact-valued for each θ ∈ 
.
Then

(a) for each θ ∈ 
, 
(θ ) �= ∅;
(b) the solution correspondence 
 is upper order-preserving.

When � is fixed but C is perturbed by ω, we can obtain the following result from The-
orem ..

Corollary . Let (X,�X) be a reflexive, smooth and strictly convex Banach lattice, and
let (�,��) be a poset. Let C : � → X \ {∅} and � : X → X∗ \ {∅} be a set-valued corre-
spondences. Assume that the following conditions hold:

(i) C(ω) is a regular, closed and convex subcomplete �-sublattice of X for any ω ∈ �,
and there exists a regular, closed and convex subcomplete �-sublattice Y of X such
that C(ω) ∈ Y for any ω ∈ �;

(ii) there exists a map λ : X → R++ such that JX – λ� is upper order-preserving and
compact-valued;

(iii) πC(·)(x) : X∗ × � → X is order-preserving for any x ∈ X .
Then

(a) for each ω ∈ �, 
(ω) �= ∅;
(b) the solution correspondence 
 is upper order-preserving.

When � is a single-valued mapping, then we have the following result.

Corollary . Let (X,�X) be a reflexive, smooth and strictly convex Banach lattice, and let
(�,��), (
,�
) be posets. Let C : � → X \ {∅} be a set-valued mapping and � : X ×
 →
X∗ be a single-valued correspondence. Assume that the following conditions hold:

(i) C(ω) is a regular, closed and convex subcomplete �-sublattice of X for any ω ∈ �,
and there exists a regular, closed and convex subcomplete �-sublattice Y of X such
that C(ω) ∈ Y for any ω ∈ �;

(ii) �(x, ·) is order-reversing for each x ∈ X , and there exists a map λ : X → R++ such
that JX – λ�(·, θ ) is order-preserving for each θ ∈ 
;

(iii) πC(·)(x) : X∗ × � → X is order-preserving for any x ∈ X .
Then

(a) for each (ω, θ ) ∈ � × 
, 
(ω, θ ) �= ∅;
(b) the solution correspondence 
 is upper order-preserving.

Next, we consider the lower order-preservation of 
. To this end, the order-theoretic
fixed point theorems for lower �-preserving correspondence are applied, for instance,
Theorem . and Corollary ..
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Theorem . Let (X,�X) be a reflexive, smooth and strictly convex Banach lattice, and let
(�,��), (
,�
) be posets. Let C : � → X \ {∅} and � : X × 
 → X∗ \ {∅} be set-valued
correspondences that satisfy the following conditions:

(i) C(ω) is a regular, closed and convex subcomplete �-sublattice of X for any ω ∈ �,
and there exists a regular, closed and convex subcomplete �-sublattice Y of X such
that C(ω) ∈ Y for any ω ∈ �;

(ii) �(x, ·) is lower order-reversing for each x ∈ X , and there exists a map λ : X → R++

such that JX – λ�(·, θ ) is lower order-preserving and compact-valued for each θ ∈ 
;
(iii) πC(·)(x) : X∗ × � → X is order-preserving for any x ∈ X .

Then
(a) for each (ω, θ ) ∈ � × 
, 
(ω, θ ) �= ∅;
(b) the solution correspondence 
 is lower order-preserving.

Proof (a) In a similar way to the proof of Theorem ., define a set-valued mapping f :
X × � × 
 → X by setting

f (x,ω, θ ) = πC(ω) ◦ (
JX(x) – λ�(x, θ )

)
. (.)

From Lemma ., we only need to prove that f (·,ω, θ ) has a fixed point for each (ω, θ ) ∈
� × 
. In contrast to Theorem ., we need to show that f (·,ω, θ ) is lower �X -preserving
for any given (ω, θ ) ∈ � × 
. In the proof of Theorem ., we have showed that πC(ω)

is order-preserving for every ω ∈ �. Again, since JX – λ�(·, θ ) is lower order-preserving
for each θ ∈ 
, it follows that f (·,ω, θ ) is lower �X -preserving for any (ω, θ ) ∈ � × 
. By
the same argument as that in Theorem ., we conclude that f (·,ω, θ ) is compact-valued
for any (ω, θ ) ∈ � × 
 and C(ω) is a subcomplete �-sublattice of X. From Theorem .,
f (·,ω, θ ) has a fixed point for any (ω, θ ) ∈ � × 
, which implies that 
(ω, θ ) �= ∅ for each
(ω, θ ) ∈ � × 
.

(b) For proving the lower order-preservation of 
, we first prove that f (x, ·, ·) is lower
order-preserving for each x ∈ X. To see this, take arbitrary x ∈ X and any (ω, θ), (ω, θ) ∈
� × 
 with (ω, θ) ��×
 (ω, θ). Picking any x(ω, θ) ∈ f (x,ω, θ), from the defini-
tion of f , there exists y(θ) ∈ �(x, θ) such that x(ω, θ) = πC(ω)(JX(x) – λ(x)y(θ)). Note
that (ω, θ) ��×
 (ω, θ) implies θ �
 θ and �(x, ·) is lower order-reversing for each
x ∈ X, there exists y(θ) ∈ �(x, θ) such that y(θ) �X∗ y(θ), which implies that JX(x) –
λ(x)y(θ) �X∗ JX(x) – λ(x)y(θ). Again, since (ω, θ) ��×
 (ω, θ) implies ω �� ω and
πC(·)(x) is order-preserving by condition (iii), we have

πC(ω)
(
JXx – λ(x)y(θ)

)
�X πC(ω)

(
JX(x) – λ(x)y(θ)

)
. (.)

Denote πC(ω)(JX(x) – λ(x)y(θ)) by x(ω, θ), then (.) is reduced to x(ω, θ) �X x(ω, θ).
It is obvious that x(ω, θ) ∈ f (x,ω, θ). Therefore, f (x, ·, ·) is lower order-preserving for
every x ∈ X.

Based on the above analysis, let us prove the lower order-preservation of 
, take any
(ω, θ), (ω, θ) ∈ � × 
 with (ω, θ) ��×
 (ω, θ), and pick any x(ω, θ) ∈ 
(ω, θ). Our
aim is to find x(ω, θ) ∈ 
(ω, θ) such that x(ω, θ) �X x(ω, θ). Similar to the proof of
Theorem ., we break the rest of proof into four steps.

Step . Construct a correspondence as follows.
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Since x(ω, θ) ∈ C(ω) and C(ω) ⊆ Y , by condition (i), we have x(ω, θ) ∈ Y ∩x(ω, θ)↓,
which implies that Y ∩ x(ω, θ)↓ �= ∅. Hence, we can define a set-valued correspondence
g : Y ∩ x(ω, θ)↓ → Y∩x(ω,θ)↓ by

g(x) = f (x,ω, θ) ∩ C(ω) ∩ x(ω, θ)↓. (.)

Step . Show that g is well defined, that is, f (x,ω, θ) ∩ C(ω) ∩ x(ω, θ)↓ �= ∅ for any
x ∈ x(ω, θ)↓.

Since x(ω, θ) ∈ 
(ω, θ), we have x(ω, θ) ∈ f (x(ω, θ),ω, θ). As (ω, θ) ��×
 (ω, θ)
and f (x(ω, θ), ·, ·) is lower order-preserving, there exists y ∈ f (x(ω, θ),ω, θ) such
that x(ω, θ) �X y. Again, since f (·,ω, θ) is lower �X -preserving, and hence for any
x(ω, θ) �X x, there exists z ∈ f (x,ω, θ) such that y �X z. From the transitivity of �X ,
we have x(ω, θ) �X z. Hence, z ∈ f (x,ω, θ) ∩ C(ω) ∩ x(ω, θ)↓, which implies that
f (x,ω, θ) ∩ C(ω) ∩ x(ω, θ)↓ �= ∅ for any x(ω, θ) �X x.

Step . In the same way as Theorem ., one can show that Y ∩x(ω, θ)↓ is a subcomplete
�X -sublattice of X.

Step . Prove that g is compact-valued and lower �X -preserving.
Note that the positive cone X+ of X is closed and x(ω, θ)↓ = x(ω, θ) – X+, then by a

similar argument to that of Theorem ., we claim that g is compact-valued.
For proving that g is lower �X -preserving, take any x, x′ ∈ x(ω, θ)↓ with x �X x′, and

pick any y ∈ g(x). By definition of g , we have y ∈ f (x,ω, θ). Since f (·,ω, θ) is lower
�X -preserving, there exists y′ ∈ f (x′,ω, θ) such that y �X y′. Note that y ∈ g(x) implies
x(ω, θ) �X y, which leads to x(ω, θ) �X y′. That is, there exists y′ ∈ g(x′) such that y �X y′.
Hence, g is lower �X -preserving.

Applying Theorem ., g has a fixed point, that is, there exists x(ω, θ) ∈ x(ω, θ)↓ such
that x(ω, θ) ∈ f (x(ω, θ),ω, θ), that is, x(ω, θ) ∈ 
(ω, θ). That is, 
 is lower order-
preserving. �

From Corollary ., we can deduce the following result from Theorem ..

Corollary . Let (X,�X) be a reflexive, smooth, strictly convex and separable Banach
lattice, and let (�,��), (
,�
) be posets. Let C : � → X \ {∅} and � : X × 
 → X∗ \ {∅}
be set-valued correspondences that satisfy the following conditions:

(i) C(ω) is a regular, closed, convex and �-bounded �-sublattice of X for any ω ∈ �,
and there exists a regular, closed, convex and �-bounded �-sublattice Y of X such
that C(ω) ∈ Y for any ω ∈ �;

(ii) �(x, ·) is lower order-reversing for each x ∈ X , and there exists a map λ : X → R++

such that JX – λ�(·, θ ) is lower order-preserving and compact-valued for each θ ∈ 
;
(iii) πC(·)(x) : X∗ × � → X is order-preserving for any x ∈ X .

Then
(a) for each (ω, θ ) ∈ � × 
, 
(ω, θ ) �= ∅;
(b) the solution correspondence 
 is lower order-preserving.

When C(ω) = C for each ω ∈ � but � is perturbed by θ , then we get the following result.

Corollary . Let (X,�X) be a reflexive, smooth and strictly convex Banach lattice, and
let (
,�
) be a poset. Let � : X × 
 → X∗ \ {∅} be a set-valued correspondence. Assume
that the following conditions hold:
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(i) C is a regular, closed and convex subcomplete �-sublattice of X ;
(ii) �(x, ·) is lower order-reversing for each x ∈ X , and there exists a map λ : X → R++

such that JX – λ�(·, θ ) is lower order-preserving and compact-valued for each θ ∈ 
.
Then

(a) for each θ ∈ 
, 
(θ ) �= ∅;
(b) the solution correspondence 
 is lower order-preserving.

When � is fixed but C is perturbed by ω, then we can get the following result.

Corollary . Let (X,�X) be a reflexive, smooth and strictly convex Banach lattice, and
let (�,��) be a poset. Let C : � → X \ {∅} and � : X → X∗ \ {∅} be set-valued correspon-
dences that satisfy the following conditions:

(i) C(ω) is a regular, closed and convex subcomplete �-sublattice of X for any ω ∈ �,
and there exists a regular, closed and convex subcomplete �-sublattice Y of X such
that C(ω) ∈ Y for any ω ∈ �;

(ii) there exists a map λ : X → R++ such that JX – λ� is lower order-preserving and
compact-valued for each θ ∈ 
;

(iii) πC(·)(x) : X∗ × � → X is order-preserving for any x ∈ X .
Then

(a) for each ω ∈ �, 
(ω) �= ∅;
(b) the solution correspondence 
 is lower order-preserving.

When � is a single-valued mapping, then we have the following result.

Corollary . Let (X,�X) be a reflexive, smooth and strictly convex Banach lattice, and
let (�,��), (
,�
) be posets. Let C : � → X \ {∅} and � : X × 
 → X∗ be set-valued
correspondences that satisfy the following conditions:

(i) C(ω) is a regular, closed and convex subcomplete �-sublattice of X for any ω ∈ �,
and there exists a regular, closed and convex subcomplete �-sublattice Y of X such
that C(ω) ∈ Y for any ω ∈ �;

(ii) �(x, ·) is order-reversing for each x ∈ X , and there exists a map λ : X → R++ such
that JX – λ�(·, θ ) is order-preserving and compact-valued for each θ ∈ 
;

(iii) πC(·)(x) : X∗ × � → X is order-preserving for any x ∈ X .
Then

(a) for each (ω, θ ) ∈ � × 
, 
(ω, θ ) �= ∅;
(b) the solution correspondence 
 is lower order-preserving.

Remark . Since a Hilbert lattice is reflexive, smooth and strictly convex, all of the above
results also hold on a Hilbert lattice.

Remark . Our approach is order-theoretic and all results obtained in this section do
not require the involved mapping � to be continuous or semi-continuous.

5 Further discussions on discontinuous equilibrium problems
Let (X,�) be a Banach lattice and C be a subset of X. Let f : C × C → R be a bifunction. In
this section, we consider the following equilibrium problem, which is to find x̂ ∈ C such
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that

f (x̂, y) ≥  for every y ∈ C.

Denote this problem by EP(C, f ). It is well known that EP(C, f ) include variational inequal-
ity problems, complementary problems and Nash equilibrium problems etc. as special
cases (see, e.g., [, ]). For instance, if T is a single-valued mapping from C to X∗ and
let f (x, y) = 〈T(x), y – x〉, then EP(C, f ) is reduced to the following variational inequality
problem, which is to find x̂ ∈ C such that

〈
T(x̂), y – x̂

〉 ≥  for every y ∈ C.

For studying the solvability of EP(C, f ), various methods have been developed, for in-
stance, topological fixed point theorems, KKM theorems, Ekeland’s variational principle
and so on (see, e.g., [–]). For applying these methods, the involved mappings are al-
ways required to be continuous or semi-continuous. However, if the continuity of involved
mappings is unknown, these methods may fail. Therefore, it is necessary to explore some
other techniques to overcome this burdensome issue. In the sequel, we use order-theoretic
fixed point theorems to study the discontinuous equilibrium problems.

Theorem . Let (X,�) be a Banach lattice and let C be a subcomplete �-sublattice of X.
Let f : C × C → R be a bifunction. Assume that the following conditions hold:

(i) f (x, x) ≥  for any (x, x) ∈ C × C;
(ii) the set-valued mapping � : C → C defined by setting

�(x) =
{

y ∈ C : f (x, y) < 
}

is upper �-preserving and compact-valued.
Then EP(C, f ) is solvable.

Proof We claim that there exists x̂ ∈ E such that �(x̂) = ∅. Arguing by contradiction, as-
sume that �(x) �= ∅ for all x ∈ E, then � is a set-valued mapping from C to C \ {∅}. Since
� is upper �-preserving and compact-valued and C is a subcomplete �-sublattice of X,
it follows from Theorem . that � has a fixed point. Denote this fixed point by x̄, then
x̄ ∈ �(x̄), which implies that f (x̄, x̄) < . Contradiction! Hence, there exists x̂ ∈ C such that
�(x̂) = ∅, that is, f (x̂, y) ≥  for every y ∈ C. �

Observing that assumption (ii) in Theorem . is not convenient for applications, we
introduce some original conditions on f as follows.

Theorem . Let (X,�) be a Banach lattice and let C be a subcomplete �-sublattice of X.
Let f : C × C → R be a bifunction. Assume that the following conditions hold:

(i) f (x, x) ≥  for any (x, x) ∈ C × C;
(ii) f (·, y) is �-reversing for each y ∈ C and the set {y ∈ C : f (x, y) < } is compact for each

x ∈ C.
Then EP(C, f ) is solvable.

Proof We claim that there exists x̂ ∈ C such that {y ∈ C : f (x̂, y) < } = ∅. Arguing by con-
tradiction, assume that {y ∈ C : f (x, y) < } �= ∅ for all x ∈ C, then we can define a set-valued
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mapping � : C → C \ {∅} by setting

�(x) =
{

y ∈ C : f (x, y) < 
}

.

Next, we show that � is upper �-preserving. To see this, take any x, x ∈ C with x � x

and pick any y ∈ �(x), then f (x, y) < . Since f (·, y) is �-reversing for each y ∈ C, we
have f (x, y) ≥ f (x, y). Choose y = y, then y ∈ C and f (x, y) < , which implies that
y ∈ �(x) with y � y. Hence, � is upper �-preserving. Again, as C is a subcomplete
�-sublattice of X, it follows from Theorem . that � has a fixed point. Denote this fixed
point by x̄, then x̄ ∈ �(x̄), which implies that f (x̄, x̄) < . Contradiction! Hence, there exists
x̂ ∈ C such that �(x̂) = ∅, that is, f (x̂, y) ≥  for every y ∈ C. �

Applying Theorem . and Corollary ., we can also consider the case when � is lower
�-preserving and f (·, y) is �-preserving, respectively.

Theorem . Let (X,�) be a Banach lattice and let C be a subcomplete �-sublattice of X.
Let f : C × C → R be a bifunction. Assume that the following conditions hold:

(i) f (x, x) ≥  for any (x, x) ∈ C × C;
(ii) the set-valued mapping � : C → C defined by setting

�(x) =
{

y ∈ C : f (x, y) < 
}

is lower �-preserving and compact-valued.
Then EP(C, f ) is solvable.

Theorem . Let (X,�) be a Banach lattice and let C be a subcomplete �-sublattice of X.
Let f : C × C → R be a bifunction. Assume that the following conditions hold:

(i) f (x, x) ≥  for any (x, x) ∈ C × C;
(ii) f (·, y) is �-preserving for each y ∈ C and the set {y ∈ C : f (x, y) < } is compact for

each x ∈ C.
Then EP(C, f ) is solvable.

At the end of this paper, we give an example, which shows that the conditions of Theo-
rem . can be satisfied easily. Of course, the examples for Theorem . can be analogously
considered.

Example . Let (X,�) = (R,≥) and C = [, ] ⊆ R. Denote by E the set {(x, y) ∈ [, ] ×
[, ] : x – y ≥ }. Define a mapping f : [, ] × [, ] → R by

f (x, y) =

⎧
⎨

⎩

y – x + , (x, y) ∈ [, ] × [, ] \ E,

y – x, (x, y) ∈ E.

It is easy to check that f satisfies all the condition of Theorem ., and hence we conclude
that there must exists a solution to EP([, ], f ). In fact, taking x̂ = 

 , we have

f
(




, y
)

≥  for all y ∈ [, ].

Moreover, observing the above example, we can see that f is discontinuous.
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