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Abstract
The iterative algorithms with Cesàro-type means for a nonexpansive mapping are
proposed in CAT(0) spaces. Under suitable conditions, some strong convergence
theorems for the sequence generated by the algorithms to a fixed point of the
nonexpansive mapping are proved. We also proved that this fixed point is also a
unique solution to some kind of variational inequality. The results presented in this
paper extend and improve the corresponding results of some others.
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1 Introduction
In , Baillon [] first proved the following nonlinear ergodic theorem.

Theorem . Suppose that C is a nonempty closed convex subset of a Hilbert space E and
T : C → C is a nonexpansive mapping such that F(T) �= ∅. Then, ∀x ∈ C, the Cesàro means

Tnx =


n + 

n∑

i=

Tix (.)

weakly converges to a fixed point of T .

In , Bruck [] generalized the Baillon Cesàro’s means theorem from Hilbert space
to uniformly convex Banach space with Fréchet differentiable norms.

In , Song and Chen [] defined the following viscosity iteration {xn} of the Cesàro
means for nonexpansive mapping T :

xn+ = αnf (xn) + ( – αn)


n + 

n∑

i=

Tix, (.)

and they proved that the sequence {xn} converged strongly to some point in F(T) in a
uniformly convex Banach space with weakly sequentially continuous duality mapping.

In , Yao et al. [] in a Banach space introduced the following process {xn}:

xn+ = αnu + βnxn + γnTxn, n ≥ . (.)
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They proved that the sequence {xn} converged strongly to a fixed point of T under suitable
control conditions of parameters.

In , Zhu and Chen [] proposed the following iterations with Cesàro’s means for
nonexpansive mappings:

xn+ = αnu + βnxn + γn


n + 

n∑

i=

Tixn, n ≥ , (.)

and viscosity iteration:

xn+ = αnf (xn) + βnxn + γn


n + 

n∑

i=

Tixn, n ≥ . (.)

They proved the sequences {xn} both converged strongly to a fixed point of F(T) in the
framework of a uniformly smooth Banach space.

As is well known, an extension of a linear version (usually in Banach spaces or Hilbert
spaces) of this well-known result to a metric space has its own importance. The above
iterative methods (.)-(.) involve general convex combinations. If we want to extend
these results from Hilbert spaces or Banach spaces to metric spaces, we need some convex
structure in a metric space to investigate their convergence on a nonlinear domain.

On the other hand, recently the theory and applications of CAT() space have been
studied extensively by many authors.

Recall that a metric space (X, d) is called a CAT() space, if it is geodesically connected
and if every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the
Euclidean plane. It is known that any complete, simply connected Riemannian manifold
having non-positive sectional curvature is a CAT() space. Other examples of CAT()
spaces include pre-Hilbert spaces (see []), R-trees (see []), Euclidean buildings (see []),
the complex Hilbert ball with a hyperbolic metric (see []), and many others. A complete
CAT() space is often called a Hadamard space. A subset K of a CAT() space X is con-
vex if, for any x, y ∈ K , we have [x, y] ⊂ K , where [x, y] is the uniquely geodesic joining x
and y. For a thorough discussion of CAT() spaces and of the fundamental role they play
in geometry, we refer the reader to Bridson and Haefliger [].

Fixed point theory in CAT() spaces has been first studied by Kirk (see [, ]). He
showed that every nonexpansive (single-valued) mapping defined on a bounded closed
convex subset of a complete CAT() space always has a fixed point.

Motivated and inspired by the research going on in this direction, it is naturally to put
forward the following.

Open question Can we extend the above Cesàro nonlinear ergodic theorems for nonex-
pansive mapping in [–] from a Hilbert space or Banach space to a CAT() space?

The purpose of this paper is to give an affirmative answer to this question. For solving
this problem we first propose the following new iterations with Cesàro’s means for non-
expansive mappings in the setting of CAT() spaces:

xn+ = αnu ⊕ βnxn ⊕ γn

( n⊕

i=


n + 

Tixn

)
, (.)
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and the viscosity iteration:

xn+ = αnf (xn) ⊕ βnxn ⊕ γn

( n⊕

i=


n + 

Tixn

)
, (.)

and then study the strong convergence of the iterative sequences (.) and (.). Under
suitable conditions, some strong converge theorems to a fixed point of the nonexpansive
mapping are proved. We also prove that this fixed point is a unique solution of some kind
of variational inequality in CAT() spaces. The results presented in this paper are new;
they extend and improve corresponding previous results.

Next we give some examples of iteration (.) or (.) with Cesàro’s means for nonex-
pansive mappings to illustrate the generation of our new iterations.

Example  If X is a real Hilbert (or Banach space), and if αn = , βn = , ∀n ≥ , then
the iteration (.) with Cesàro’s means for nonexpansive mappings is reduced as the same
iteration of Baillon [] (or Bruck []).

Example  If X is a real Banach space and n = , then the iteration (.) with Cesàro’s
means for nonexpansive mappings is reduced to the same iteration of Yao et al. []. If
n ≥ , then the iteration (.) can be written

xn+ = αnu + βnxn + γn

( n∑

i=


n + 

Tixn

)
,

which is a generalization of results due to Yao et al. [].

Example  The iterations (.) and (.) are a generalization of the iterations of Zhu and
Chen [] from Banach space to CAT() spaces.

Example  Let E = R with the usual metric, T be a nonexpansive mapping defined by
Tx = sin x, and f be a contractive mapping defined by f (x) = x

 . Let αn = 
n , βn = (n–)

n , and
γn = 

n , ∀n ≥ . Then the iteration (.) and (.) with Cesàro’s means for nonexpansive
mappings Tx = sin x are reduced to the following iterations, respectively:

xn+ =


n
u +

n – 
n

xn +


n(n + )
(
xn + Txn + Txn + · · · + Tnxn

)
, (.)

xn+ =


n
· 


xn +

n – 
n

xn +


n(n + )
(
xn + Txn + Txn + · · · + Tnxn

)
. (.)

Example  If (X, d) is a CAT() space, n =  and βn = , then the iteration (.) with
Cesàro’s means for nonexpansive mappings is reduced to the following iteration, with
Cesàro’s means for nonexpansive mappings:

xn+ = αnf (xn) ⊕ γn


xn ⊕ γn


Txn, (.)

which is a generalization of the iterations in Wangkeeree and Preechasilp [] from a Ba-
nach space to CAT() spaces.
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2 Preliminaries and lemmas
In this paper, we write ( – t)x ⊕ ty for the unique point z in the geodesic segment joining
from x to y such that

d(x, z) = td(x, y), d(y, z) = ( – t)d(x, y). (.)

Lemma . [] A geodesic space (X, d) is a CAT() space, if and only if the inequality

d(( – t)x ⊕ ty, z
) ≤ ( – t)d(x, z) + td(y, z) – t( – t)d(x, y) (.)

is satisfied for all x, y, z ∈ X and t ∈ [, ]. In particular, if x, y, z are points in a CAT()
space and t ∈ [, ], then

d
(
( – t)x ⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z).

Lemma . [] Let (X, d) be a CAT() space, p, q, r, s ∈ X, and λ ∈ [, ]. Then

d
(
λp ⊕ ( – λ)q,λr ⊕ ( – λ)s

) ≤ λd(p, r) + ( – λ)d(q, s). (.)

By induction, we write

n⊕

m=

λmxm := ( – λn)
(

λ

 – λn
x ⊕ λ

 – λn
x ⊕ · · · ⊕ λn–

 – λn
xn–

)
⊕ λnxn. (.)

Lemma . [] Let (X, d) be a CAT() space, then for any sequence {λi}n
i= in [,] satis-

fying
∑n

i= λi =  and for any {xi}n
i= ⊂ X, the following conclusions hold:

d

( n⊕

i=

λixi, x

)
≤

n∑

i=

λid(xi, x), x ∈ X; (.)

and

d

( n⊕

i=

λixi, x

)
≤

n∑

i=

λid(xi, x) – λλd(x, x), x ∈ X.

Lemma . Let {xi} and {yi} be any sequences of a CAT() space X, then for any sequence
{λi}k

i= in [, ] satisfying
∑k

i= λi =  and for any {xi}k
i= ⊂ X, the following inequality holds:

d

( k⊕

i=

λixi,
k⊕

i=

λiyi

)
≤

k∑

i=

λid(xi, yi). (.)

Proof It is obvious that (.) holds for k = . Suppose that (.) holds for some k ≥ . Next
we prove that (.) is also true for k + . From (.) and (.) we have
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d

( k+⊕

i=

λixi,
k+⊕

i=

λiyi

)

= d

(
( – λk+)

( k⊕

i=

λi

 – λk+
xi

)
⊕ λk+xk+, ( – λk+)

( k⊕

i=

λi

 – λk+
yi

)
⊕ λk+yk+

)

≤ ( – λk+)d

( k⊕

i=

λi

 – λk+
xi,

k⊕

i=

λi

 – λk+
yi

)
+ λk+d(xk+, yk+)

≤ ( – λk+)
k∑

i=

λi

 – λk+
d(xi, yi) + λk+d(xk+, yk+)

=
k+∑

i=

λid(xi, yi).

This implies that (.) holds. �

Berg and Nikolaev [] introduced the concept of quasilinearization as follows. Let us
denote a pair (a, b) ∈ X × X by

–→
ab and call it a vector. Then quasilinearization is defined

as a map 〈·, ·〉 : (X × X) × (X × X) →R defined by

〈–→ab,
–→
cd〉 =



(
d(a, d) + d(b, c) – d(a, c) – d(b, d)

)
(a, b, c, d ∈ X). (.)

It is easy to seen that 〈–→ab,
–→
cd〉 = 〈–→cd,

–→
ab〉, 〈–→ab,

–→
cd〉 = –〈–→ba,

–→
cd〉, and 〈–→ax,

–→
cd〉 + 〈–→xb,

–→
cd〉 =

〈–→ab,
–→
cd〉 for all a, b, c, d ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

〈–→ab,
–→
cd〉 ≤ d(a, b)d(c, d) (.)

for all a, b, c, d ∈ X. It is well known [] that a geodesically connected metric space is a
CAT() space if and only if it satisfies the Cauchy-Schwarz inequality.

Let C be a nonempty closed convex subset of a complete CAT() space X. The metric
projection PC : X → C is defined by

u = PC(x) ⇔ d(u, x) = inf
{

d(y, x) : y ∈ C
}

, ∀x ∈ X.

Lemma . [] Let C be a nonempty convex subset of a complete CAT() space X, x ∈ X,
and u ∈ C. Then u = PC(x) if and only if

〈–→yu, –→ux〉 ≥ , ∀y ∈ C.

Lemma . ([]) Let C be a closed convex subset of a complete CAT() space X, and let
T : C → C be a nonexpansive mapping with F(T) �= ∅. Let f be a contraction on C with
coefficient α < . For each t ∈ [, ], let {xt} be the net defined by

xt = tf (xt) ⊕ ( – t)Txt . (.)
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Then limt→ xt = x̃, some point F(T) which is the unique solution of the following variational
inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , ∀x ∈ F(T). (.)

Lemma . [] Let X be a complete CAT() space. Then, for any u, x, y ∈ X, the following
inequality holds:

d(x, u) ≤ d(y, u) + 〈–→xy, –→xu〉.

Lemma . [] Let X be a complete CAT() space. For any t ∈ [, ] and u, v ∈ X, let
ut = tu ⊕ ( – t)v. Then, for any x, y ∈ X,

(i) 〈––→utx, ––→uty〉 ≤ t〈–→ux, ––→uty〉 + ( – t)〈–→vx, ––→uty〉;
(ii) 〈––→utx, –→uy〉 ≤ t〈–→ux, –→uy〉 + ( – t)〈–→vx, –→uy〉, and 〈––→utx, –→vy〉 ≤ t〈–→ux, –→vy〉 + ( – t)〈–→vx, –→vy〉.

Lemma . [] Let {an} be a sequence of non-negative real numbers satisfying the prop-
erty an+ ≤ ( – αn)an + αnβn, n ≥ , where {αn} ⊂ (, ) and {βn} ⊂R such that

(i)
∑∞

n= αn = ∞;
(ii) lim supn→∞ βn ≤  or

∑∞
n= |αnβn| < ∞.

Then {an} converges to zero as n → ∞.

3 Approximative iterative algorithms
Throughout this section, we assume that C is a nonempty and closed convex subset of a
complete CAT() space X, and T : C → C is a nonexpansive mappings with F(T) �= ∅. Let
f be a contraction on C with coefficient k ∈ (, ). Suppose {αn}, {βn}, and {γn} are three
real sequences in (, ) satisfying

(i) αn + βn + γn = , for all n ≥ ;
(ii) limn→∞ αn =  and

∑∞
n= αn = ∞;

(iii) limn→∞ γn = .
In the following, we first present two important results.
The first one is to prove the mapping S :=

⊕n
i=


n+ Ti : C → C is nonexpansive:

In fact, for any x, y ∈ C, from Lemma . we get

d(Sx, Sy) = d

( n⊕

i=


n + 

Tix,
n⊕

i=


n + 

Tiy

)

≤
n∑

i=


n + 

d
(
Tix, Tiy

)

≤ d(x, y),

i.e., S is nonexpansive.
The second one is to prove the following mapping Tt,n : C → C is contractive:

Tt,nx =
( – αn)t
γn + tβn

f (x) ⊕ ( – t)γn

γn + tβn

( n⊕

i=


n + 

Tix

)
.
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In fact, the mapping Tt,n can be written as

Tt,nx = λnf (x) ⊕ ( – λn)

( n⊕

i=


n + 

Tix

)
, x ∈ C,

where λn = (–αn)t
γn+tβn

. Therefore this kind of mappings has just a similar form to (.). Hence
for any x, y ∈ C, from Lemma ., we have

d
(
Tt,n(x), Tt,n(y)

)

= d

(
λnf (x) ⊕ ( – λn)

n⊕

i=


n + 

Tix,λnf (y) ⊕ ( – λn)
n⊕

i=


n + 

Tiy

)

≤ λnd
(
f (x), f (y)

)
+ ( – λn)d

( n⊕

i=


n + 

Tix,
n⊕

i=


n + 

Tiy

)

≤ λnkd(x, y) +
 – λn

n + 

n∑

i=

d
(
Tix, Tiy

)

≤ λnkd(x, y) + ( – λn)d(x, y)

=
(
 – λn( – k)

)
d(x, y),

i.e., Tt,n is a contractive mapping. Hence, it has a unique fixed point (denote by zt,n), i.e.,

zt,n = λnf (zt,n) ⊕ ( – λn)

( n⊕

i=


n + 

Ti(zt,n)

)
.

From Lemma ., for each given n ≥ , we have

lim
t→

zt,n = xn ∈ F

( n⊕

i=


n + 

Ti

)
, (.)

and it is the unique solution of the following variational inequality:

〈––––––→
xnf (xn), ––→xxn

〉 ≥ , ∀x ∈ F

( n⊕

i=


n + 

Ti

)
. (.)

Next we prove that for each n ≥ 

F(T) = F

( n⊕

i=


n + 

Ti

)
. (.)

If fact, if x ∈ F(T), it is obvious that x ∈ F(
⊕n

i=


n+ Ti), for each n ≥ . This implies that
F(T) ⊂ F(

⊕n
i=


n+ Ti) for each n ≥ .

By using induction, now we prove that

F

( n⊕

i=


n + 

Ti

)
⊂ F(T) for each n ≥ . (.)
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Indeed, if n = , and x ∈ F(
⊕

i=

 Ti), i.e., x = 

 x ⊕ 
 Tx, then we have




x ⊕ 


x =



x ⊕ 


Tx. (.)

Since the geodesic segment joining any two points in CAT() space is unique, it follows
from (.) that x = Tx, i.e., x ∈ F(T).

If (.) is true for some n ≥ , now we prove that (.) is also true for n + .
Indeed, if x ∈ F(

⊕n+
i=


n+ Ti), i.e.,

x =
n+⊕

i=


n + 

Tix. (.)

It is easy to see that (.) can be rewritten as

n + 
n + 

x ⊕ 
n + 

x =
n + 
n + 

{
x

n + 
⊕ Tx

n + 
⊕ · · · ⊕ Tnx

n + 

}
⊕ 

n + 
Tn+x. (.)

By the same reasoning showing that the geodesic segment joining any two points in
CAT() space is unique, from (.) we have

n + 
n + 

x =
n + 
n + 

{
x

n + 
⊕ Tx

n + 
⊕ · · · ⊕ Tnx

n + 

}
and


n + 

x =


n + 
Tn+x.

This implies that

x =
x

n + 
⊕ Tx

n + 
⊕ · · · ⊕ Tnx

n + 
and x = Tn+x. (.)

By the assumption of induction, from (.) we have x = Tx. The conclusion (.) is proved.
Therefore the conclusion (.) is also proved.

By using (.), (.) can be written as

lim
t→

zt,n = xn ∈ F(T), (.)

and xn is the unique solution of the following variational inequality:

〈––––––→
xnf (xn), ––→xxn

〉 ≥ , ∀x ∈ F(T). (.)

Next we prove that for any positive integers m, n, xn = xm (where xn is the limit in (.)).
Therefore (.) can be written as

lim
t→

zt,n = xn = x̃ ∈ F(T), (.)

where x̃ is some point, and it is the unique solution of the following variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , ∀x ∈ F(T). (.)



Tang et al. Fixed Point Theory and Applications  (2015) 2015:100 Page 9 of 13

In fact, it follows from (.) that

〈––––––→
xnf (xn), ––→xxn

〉 ≥ , ∀x ∈ F(T),
〈–––––––→
xmf (xm), ––→yxm

〉 ≥ , ∀y ∈ F(T).

Taking x = xm in the first inequality and y = xn in the second inequality and then adding
up the resultant two inequalities, we have

 ≤ 〈––––––→
xnf (xn), –––→xmxn

〉
–

〈–––––––→
xmf (xm), –––→xmxn

〉

≤ 〈––––––→
xnf (xm), –––→xmxn

〉
+

〈–––––––––→
f (xm)f (xn), –––→xmxn

〉

– 〈–––→xmxn, –––→xmxn〉 –
〈––––––→
xnf (xm), –––→xmxn

〉

=
〈–––––––––→
f (xm)f (xn), –––→xmxn

〉
– 〈–––→xmxn, –––→xmxn〉

≤ d
(
f (xm), f (xn)

)
d(xm, xn) – d(xm, xn)

≤ kd(xm, xn) – d(xm, xn) = (k – )d(xm, xn).

Since k ∈ (, ), this implies that d(xm, xn) = , i.e., xm = xn, ∀m, n ≥ .
The conclusion is proved.
We are now in a position to propose the iterative algorithms with Cesàro’s means for a

nonexpansive mapping in a complete CAT() space X, and prove that the sequence gen-
erated by the algorithms converges strongly to a fixed point of the nonexpansive mapping
which is also a unique solution of some kind of variational inequality.

Theorem . Let C be a closed convex subset of a complete CAT() space X, and T : C → C
be a nonexpansive mapping with F(T) �= ∅. Let f be a contraction on C with coefficient
k ∈ (, 

 ). Suppose x ∈ C and the sequence {xn} is given by

xn+ = αnf (xn) ⊕ βnxn ⊕ γn

( n⊕

i=


n + 

Tixn

)
, (.)

where T = I , {αn}, {βn}, and {γn} are three real sequences in (,) satisfying conditions (i)-
(iii). Then {xn} converges strongly to x̃ such that x̃ = PF(T)f (x̃), which is equivalent to the
following variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , ∀x ∈ F(T). (.)

Proof We first show that the sequence {xn} is bounded. For any p ∈ F(T), we have

d(xn+, p) = d

(
αnf (xn) ⊕ βnxn ⊕ γn

( n⊕

i=


n + 

Tixn

)
, p

)

≤ αnd
(
f (xn), p

)
+ βnd(xn, p) + γnd

( n⊕

i=


n + 

Tixn, p

)

≤ αn
(
d
(
f (xn), f (p)

)
+ d

(
f (p), p

))
+ βnd(xn, p) + γn

n∑

i=


n + 

d
(
Tixn, Tip

)
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≤ αnkd(xn, p) + αnd
(
f (p), p

)
+ βnd(xn, p) + γnd(xn, p)

=
(
 – αn( – k)

)
d(xn, p) + αn( – k) · 

 – k
d
(
f (p), p

)

≤ max

{
d(xn, p),


 – k

d
(
f (p), p

)}
.

By induction, we have

d(xn, p) ≤ max

{
d(x, p),


 – k

d
(
f (p), p

)}

for all n ≥ . Hence {xn} is bounded, and so are {f (xn)} and {Ti(xn)}.
Let {zt,n} be a sequence in C such that

zt,n =
( – αn)t
γn + tβn

f (zt,n) ⊕ ( – t)γn

γn + tβn

( n⊕

i=


n + 

Tizt,n

)
.

It follows from (.) that {zt,n} converges strongly to a fixed point x̃ ∈ F(T), which is also
a unique solution of the variational inequality (.).

Now we claim that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉 ≤ . (.)

It follows from Lemma . and Lemma . that

d(zt,n, xn+)

= 〈––––––→zt,nxn+, ––––––→zt,nxn+〉

≤ ( – αn)t
γn + tβn

〈–––––––––→
f (zt,n)xn+, ––––––→zt,nxn+

〉
+

( – t)γn

γn + tβn

〈––––––––––––––––––→n⊕

i=


n + 

Tizt,nxn+, ––––––→zt,nxn+

〉

=
( – αn)t
γn + tβn

[〈––––––––→
f (zt,n)f (x̃), ––––––→zt,nxn+

〉
+

〈––––→
f (x̃)x̃, ––––––→zt,nxn+

〉

+ 〈–––→
x̃zt,n, ––––––→zt,nxn+〉 + 〈––––––→zt,nxn+, ––––––→zt,nxn+〉

]

+
( – t)γn

γn + tβn

[〈–––––––––––––––––––––––––––––––→n⊕

i=


n + 

Tizt,n

n⊕

i=


n + 

Tixn+, ––––––→zt,nxn+

〉

+

〈–––––––––––––––––––→n⊕

i=


n + 

Tixn+xn+, ––––––→zt,nxn+

〉]

≤ ( – αn)t
γn + tβn

[
kd(zt,n, x̃)d(zt,n, xn+) +

〈––––→
f (x̃)x̃, ––––––→zt,nxn+

〉

+ d(x̃, zt,n)d(zt,n, xn+) + d(zt,n, xn+)
]

+
( – t)γn

γn + tβn

[
d

( n⊕

i=


n + 

Tizt,n,
n⊕

i=


n + 

Tixn+

)
d(zt,n, xn+)
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+ d

( n⊕

i=


n + 

Tixn+, xn+

)
d(zt,n, xn+)

]

≤ ( – αn)t
γn + tβn

[
kd(zt,n, x̃)d(zt,n, xn+) +

〈––––→
f (x̃)x̃, ––––––→zt,nxn+

〉

+ d(x̃, zt,n)d(zt,n, xn+) + d(zt,n, xn+)
]

+
( – t)γn

γn + tβn

[
d(zt,n, xn+) +


n + 

n∑

i=

d
(
Tixn+, xn+

)
d(zt,n, xn+)

]

≤ ( – αn)t
γn + tβn

[
Mkd(zt,n, x̃) +

〈––––→
f (x̃)x̃, ––––––→zt,nxn+

〉
+ Md(x̃, zt,n)

]

+ d(zt,n, xn+) +
( – t)γnMN

γn + tβn
,

where

M ≥ sup
{

d(zt,n, xn+), n ≥ ,  < t < 
}

, N ≥ sup
{

d
(
Tixn+, xn+

)
, n ≥ , i ≥ 

}
.

This implies that

〈––––→
f (x̃)x̃, ––––––→xn+zt,n

〉 ≤ ( + k)Md(zt,n, x̃) +
( – t)γnMN

( – αn)t
. (.)

Taking the upper limit as n → ∞ first, and then taking the upper limit as t → , we get

lim sup
t→

lim sup
n→∞

〈––––→
f (x̃)x̃, ––––––→xn+zt,n

〉 ≤ . (.)

Since

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
=

〈––––→
f (x̃)x̃, ––––––→xn+zt,n

〉
+

〈––––→
f (x̃)x̃,

–––→
zt,nx̃

〉

≤ 〈––––→
f (x̃)x̃, ––––––→xn+zt,n

〉
+ d

(
f (x̃), x̃

)
d(zt,n, x̃).

Thus, by taking the upper limit as n → ∞ first, and then taking the upper limit as t → ,
it follows from zt,n → x̃ and (.) that

lim sup
t→

lim sup
n→∞

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉 ≤ .

Hence

lim sup
n→∞

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉 ≤ .

Finally, we prove that xn → x̃ as n → ∞. In fact, for any n ≥ , let

{
un := αnx̃ ⊕ ( – αn)yn,
yn := βn

–αn
xn ⊕ γn

–αn
(
⊕n

i=


n+ Tixn).
(.)
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From Lemma . and Lemma . we have

d(xn+, x̃)

≤ d(un, x̃) + 〈–––––→xn+un,
––––→
xn+x̃〉

≤ ( – αn)d(yn, x̃) + 
[
αn

〈––––––→
f (xn)un,

––––→
xn+x̃

〉
+ ( – αn)〈–––→ynun,

––––→
xn+x̃〉]

≤ ( – αn)d(xn, x̃) + 
[
α

n
〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉

+ αn( – αn)
〈––––––→
f (xn)yn,

––––→
xn+x̃

〉
+ αn( – αn)〈––→ynx̃,

––––→
xn+x̃〉 + ( – αn)〈–––→ynyn,

––––→
xn+x̃〉]

= ( – αn)d(xn, x̃) + 
[
α

n
〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αn( – αn)

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉]

= ( – αn)d(xn, x̃) + αn
〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉

= ( – αn)d(xn, x̃) + αn
〈––––––––→
f (xn)f (x̃),

––––→
xn+x̃

〉
+ αn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

≤ ( – αn)d(xn, x̃) + αnkd(xn, x̃)d(xn+, x̃) + αn
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

≤ ( – αn)d(xn, x̃) + αnk
(
d(xn, x̃) + d(xn+, x̃)

)
+ αn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
.

This implies that

d(xn+, x̃) ≤  – ( – k)αn + α
n

 – αnk
d(xn, x̃) +

αn

 – αnk
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

=
(

 –
αn( – k – αn)

 – αnk

)
d(xn, x̃) +

αn

 – αnk
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
.

Then it follows that

d(xn+, x̃) ≤ (
 – α′

n
)
d(xn, x̃) + α′

nβ
′
n,

where

α′
n =

αn( – k – αn)
 – αnk

, β ′
n =


 – k – αn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
.

Applying Lemma ., we can conclude that xn → x̃ as n → ∞. This completes the proof.
�

Letting f (xn) ≡ u for all n ∈N, the following theorem can be obtained from Theorem .
immediately.

Theorem . Let C be a closed convex subset of a complete CAT() space X, and let T :
C → C be a nonexpansive mapping satisfying F(T) �= ∅. For given x ∈ C arbitrarily and
fixed point u ∈ C, the sequence {xn} is given by

xn+ = αnu ⊕ βnxn ⊕ γn

( n⊕

i=


n + 

Tixn

)
, (.)
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where T = I , {αn}, {βn}, and {γn} are three real sequences in (,) satisfying conditions
(i)-(iii). Then {xn} converges strongly to x̃ such that x̃ = PF(T)u, which is equivalent to the
following variational inequality:

〈–→̃xu,
–→
xx̃〉 ≥ , ∀x ∈ F(T). (.)

Remark . Theorem . and Theorem . are two new results. The proofs are simple
and different from many others which extend the Cesàro nonlinear ergodic theorems for
nonexpansive mappings in Baillon [], Bruck [], Song and Chen [], Zhu and Chen [],
Yao et al. [] from Hilbert space or Banach space to CAT() spaces. Theorem . is also a
generalization of the results by Wangkeeree and Preechasilp [].
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