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Abstract

We study the existence and uniqueness of fixed points for self-operators defined in a
b-metric space and belonging to the class of (&, ¥)-type contraction mappings. The
obtained results generalize and unify several existing fixed point theorems in the
literature.
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1 Introduction and preliminaries

Very recently, we studied in [1] the existence and uniqueness of fixed points for self-
operators defined in a metric space and belonging to the class of (o, ¥)-type contraction
mappings (see [2—5] for some works in this direction). We proved that the class of a--
type contractions includes large classes of contraction-type operators, whose fixed points
can be obtained by means of the Picard iteration. The aim of this paper is to extend the
obtained results in [1] to self-operators defined in a b-metric space.

We start by recalling the following definition.

Definition 1.1 ([6]) Let X be a nonempty set. A mapping d : X x X — [0,00) is called
b-metric if there exists a real number b > 1 such that for every x, y,z € X, we have
(i) d(x,y) =0 ifand only if x = y;
(i) d(x,y) =d(y,%);
(iii) d(x,2) <bld(x,y) +d(y,2)].

In this case, the pair (X, d) is called a b-metric space.

There exist many examples in the literature (see [6—8]) showing that the class of b-
metrics is effectively larger than that of metric spaces.

The notions of convergence, compactness, closedness and completeness in b-metric
spaces are given in the same way as in metric spaces. For works on fixed point theory
in b-metric spaces, we refer to [9-12] and the references therein.

Definition 1.2 ([13]) Let ¢ : [0,00) — [0, 00) be a given function. We say that { is a com-
parison function if it is increasing and ¥”(¢) — 0, n — oo, for any ¢ > 0, where " is the
nth iterate of .
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In [13, 14], several results regarding comparison functions can be found. Among these
we recall the following.

Lemma 1.3 If ¢ : [0,00) — [0,00) is a comparison function, then
(i) each iterate y* of ¥, k > 1, is also a comparison function;
(ii) v is continuous at zero;
(ili) ¥ (t) <t foranyt>0;
(iv) ¥(0)=0.

The following concept was introduced in [15].

Definition 1.4 Let b > 1 be a real number. A mapping ¥ : [0,00) — [0,00) is called a
b-comparison function if
(i) ¢ is monotone increasing;
(i) there exist ko € N, a € (0,1) and a convergent series of nonnegative terms y_ -, vi
such that

PRy (e) < abfy(e) + vy
for k > ko and any ¢ > 0.
The following lemma has been proved.
Lemma 1.5 ([15, 16]) Let v : [0,00) — [0, 00) be a b-comparison function. Then

(i) the series Y g b* Yk (t) converges for any t > 0;
(ii) the function sy : [0,00) — [0, 00) defined by

s(t)= D UM, =0

k=0

is increasing and continuous at 0.
Lemma 1.6 ([17]) Any b-comparison function is a comparison function.
Throughout this paper, for b > 1, we denote by W, the set of b-comparison functions.

Definition 1.7 Let (X, d) be a b-metric space with constant » >1,andlet T: X — X be a
given mapping. We say that T is an «-1 contraction if there exist a b-comparison function
¥ € ¥, and a function « : X x X — R such that

alx, y)d(Tx, Ty) < l/f(d(x,y)) forall x,y € X. (1.1)
2 Main results
Let T: X — X be a given mapping. We denote by Fix(T) the set of its fixed points; that

is,

Fix(T) ={x € X : x = Tx}.
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For b > 1and ¢ € Wy, let Efb be the set defined by
%) = {0 €(0,00): 09 € W, }.
We have the following result.

Proposition 2.1 Let (X, d) be a b-metric space with constantb > 1,and let T : X — X bea
given mapping. Suppose that there exist ¢ : X x X — R and € Yy, such that T is an a-
contraction. Suppose that there exists o € Zf/’, and for some positive integer p, there exists
a finite sequence {S,»}’;zo C X such that

&y = %0, &, = Txo, ot(T”Ei, T"€i+1) >0, neN,i=0,...,p-Lx,eX. (21)
Then {T"xy} is a Cauchy sequence in (X, d).
Proof Let ¢ = 0. By the definition of Zf/’/, we have ¢ € W, Let {£;}7_, be a finite sequence

in X satisfying (2.1). Consider the sequence {x,},cn in X defined by x,,,1 = Tx,,, n € N. We
claim that

d(T7&, T"6m) < ¢ (d(En&in)), reN,i=0,...,p—1. (2.2)
Letie{0,1,...,p —1}. From (2.1), we have

o d(T&;, Téin) < (& &in)d(TE;, Téin) < ¥ (d(Ei §in1))s
which implies that

d(T&, Téi) < ¢(d(Ei6i1)).- (2.3)
Again, we have

o7 d(T26, T*6i1) < e(T6;, T&i)d(T(TE), T(T&in1)) < v (d(T8;, Téi1)),
which implies that

d(T°&, T*611) < @(d(TE;, TEi))- (2.4)
Since ¢ is an increasing function (from Lemma 1.6), from (2.3) and (2.4), we obtain

d(T?&, T*6in) < ¢* (d(Eir Ei1)).-

Continuing this process, by induction we obtain (2.2).
Now, using the property (iii) of a b-metric and (2.2), for every n € N, we have

d(xnr xn+1) = d(TnxOv T;Hlxo)

< bd(T"&0, T"E1) + D*d(T 6, T"8) + -+ + WP d(T"E,1, T"E,)
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p-1
= Z b”ld(TnSir Tn$i+1)

i=0

p-

Z Hl n sz: §t+1))

i=0

Thus we proved that

x,,,x,,+1 Zle n Sz:sﬁ—l)) ne N’

which implies that for g > 1,

n+q-1
d(xnyxrwq) = Z bj_ﬂ”d(Xj;?Cjﬂ)
j=n
n+q-1 p-1
< DBy Y (A En))
j=n i=0
1 p-1 . n+gq-1 o
= Zbul Z b/ (d(& &)
i=0 j=n
2o
= ot me ZHW(d(Ei,Sm)).
i=0 j=n

Since b > 1, using Lemma 1.5(i), we obtain

p-1
bn 1 Zle Zb]¢l %‘ns”l)) —0 asn— oo.
i=0 j=n
This proves that {x,} is a Cauchy sequence in the b-metric space (X, d). 0

Our first main result is the following fixed point theorem which requires the continuity
of the mapping T.

Theorem 2.2 Let (X, d) be a complete b-metric space with constant b > 1,and let T : X —
X be a given mapping. Suppose that there exist « : X x X — R and € Vy, such that T
is an o~y contraction. Suppose also that (2.1) is satisfied. Then {T"x} converges to some
x* € X. Moreover, if T is continuous, then x* € Fix(T).

Proof From Proposition 2.1, we know that {T”x} is a Cauchy sequence. Since (X,d) is a
complete b-metric space, there exists x* € X such that

hmd( "%0, X )—0.

n—00

The continuity of T yields

lim d(T””xo, Tx*) = 0.

n—00

By the uniqueness of the limit, we obtain x* = Tx*, that is, x* € Fix(T). O
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In the next theorem, we omit the continuity assumption of 7.

Theorem 2.3 Let (X, d) be a complete b-metric space with constantb > 1,and let T : X —
X be a given mapping. Suppose that there exist o : X x X — R and € V;, such that T
is an a-y contraction. Suppose also that (2.1) is satisfied. Then {T"x} converges to some
x* € X. Moreover, if there exists a subsequence {T" " x} of {T"xo} such that

max {o (TV x0,%%), (%%, TV(”)xo)} >€e(0,00), nlargeenough,
then x* € Fix(T).
Proof From Proposition 2.1 and the completeness of the b-metric space (X, d), we know
that {T"x0} converges to some x* € X.

Suppose now that there exists a subsequence {T” ™y} of {T"x} such that

max{ (TV X0, X ) oc(x*, TV(”)xo)} > €(0,00), nlargeenough. (2.5)
Since T is an «-{ contraction, we have

ot(TV(”)xo,x*)d(TV(")“xo, Tx* ) 1/f( ( " 05 X )), neN
and

ot(x*, TV(”)xo)d(Ty(”)”xo, Tx* ) 1/f( ( " 0, X )), neN.
Thus we have

max{o (TV x0,%%), (%%, T”(”)xo)}d(TV<”)”xo, Tx") < w(d(TV(”)xo,x*)), neN.
From (2.5), we get

Kd(T”(”)”xo, Tx") <y (d(TV(”)xo,x*)), n large enough. (2.6)
On the other hand, using the property (iii) of a 5-metric, we get

d(T" " %, Tx*) > %d(x*,Tx*) —d(x*, T""*'x), meN. (2.7)

Now, (2.6) and (2.7) yield

Z(%d(x*,Tx*) —d(x*, Ty )> <y (d(T""x0,x*)), nlarge enough.

Letting n — oo in the above inequality, using Lemma 1.6 and Lemma 1.3(ii) and (iv), we
obtain

0< gd(x*, Tx*) </(0) =0,

which implies that d(x*, Tx*) = 0, that is, * € Fix(T). O

Page 5 of 17
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We provide now a sufficient condition for the uniqueness of the fixed point.

Theorem 2.4 Let (X,d) be a b-metric space with constant b>1,and let T : X — X be a
given mapping. Suppose that there exist o : X x X — R and € Vy, such that T is an a-y
contraction. Suppose also that
(i) Fix(T) #9;
(ii) for every pair (x,y) € Fix(T) x Fix(T) with x #y, if a(x,y) < 1, then there exists
ne ):f/’f and for some positive integer q, there is a finite sequence {¢;(x,y)}1, C X such
that

oy =x Gy =y a(T"awy), T"a(xy) > ™

forneNandi=0,...,q-1.
Then T has a unique fixed point.

Proof Let ¢ = ny € W,. Suppose that u,v € X are two fixed points of T such that

d(u,v) > 0. We consider two cases.
Case 1: a(u,v) > 1. Since T is an «- contraction, we have

d(u,v) < a(u,v)d(Tu, Tv) < w(d(u, v)).

On the other hand, from Lemma 1.6 and Lemma 1.3(iii), we have
v (d(u,v)) <d(u,v).

The two above inequalities yield a contradiction.

Case 2: a(u,v) < 1. By assumption, there exists a finite sequence {¢;(u,v)}Z, in X such
that

) =u G =y, (TG V), T v) = ™
forneNandi=0,...,qg—1. As in the proof of Proposition 2.1, we can establish that

d(T" 5, v), T i (w,v)) < @7 (d(8i(,v), S (w,v))), r€N,i=0,...,q -1 (2.8)
On the other hand, we have

d(u,v) = d(T"u, T")

-1

K

=

b d(T" 5w, v), T"Gi (4, v))

14

IA
)

b " (d(5i(w,v), L1, v))) = 0 as n— oo (by Lemma 1.6).

W
(=]

Then u = v, which is a contradiction. O
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3 Particular cases
In this section, we deduce from our main theorems several fixed point theorems in

b-metric spaces.

3.1 The class of ¥-type contractions in b-metric spaces
Definition 3.1 Let (X,d) be a b-metric space with constant b > 1. A mapping T: X — X
is said to be a ¥ -contraction if there exists ¥ € W, such that

d(Tx, Ty) < 1//(d(x,y)) forall x,y € X. (3.1)

Theorem 3.2 Let (X,d) be a b-metric space with constant b > 1, and let T : X — X be
a given mapping. Suppose that there exists v € Wy, such that T is a \-contraction. Then
there exists o : X x X — R such that T is an -y contraction.

Proof Consider the function « : X x X — R defined by
alx,y)=1 forallx,yeX. (3.2)
Clearly, from (3.1), T is an @-y contraction. O

Corollary 3.3 ([17]) Let (X, d) be a complete b-metric space with constant b > 1, and let
T :X — X be a given mapping. If T is a -contraction for some € Wy, then T has a
unique fixed point. Moreover, for any xo € X, the Picard sequence {T"xy} converges to this
fixed point.

Proof From Lemma 1.6, we have
d(Tx, Ty) <d(x,y) forallx,ye X,

which implies that T is a continuous mapping. From Theorem 3.2, T is an «-y contrac-
tion, where « is defined by (3.2). Clearly, for any x¢ € X, (2.1) is satisfied with p =1 and
o =1. By Theorem 2.2, {T"xy} converges to a fixed point of 7. The uniqueness follows
immediately from (3.2) and Theorem 2.4. O

Corollary 3.4 Let (X,d) be a complete b-metric space with constantb > 1,and let T : X —
X be a given mapping. Suppose that

d(Tx, Ty) < kd(x,y) forallx,ye X

for some constant k € (0,1/b). Then T has a unique fixed point. Moreover, for any x¢ € X,
the Picard sequence {T"xy} converges to this fixed point.

Proof Tt is an immediate consequence of Corollary 3.3 with v (¢) = kt. g

3.2 The class of rational-type contractions in b-metric spaces

3.2.1 Dass-Gupta-type contraction in b-metric spaces

Definition 3.5 Let (X, d) be a b-metric space with constant » > 1. A mapping T: X — X
is said to be a Dass-Gupta contraction if there exist constants A, u > 0 with Ab + u < 1 such
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that

1+d(x, Tx)

d(Tx, T dly, T
(Tx, Ty) < pd(y y)1+d(x,y)

+Ad(x,y) forallx,yeX. (3.3)

Theorem 3.6 Let (X,d) be a b-metric space with constant b> 1, and let T : X — X be a
given mapping. Suppose that T is a Dass-Gupta contraction. Then there exist W € V;, and
o: X X X — Rsuch that T is an a-y contraction.

Proof From (3.3), for all x,y € X, we have

1+d(x, Tx) <3d(x)

d(Tx, Ty) - pud(y, Ty) Trdy) =

which yields

(1 d(y, Ty)(1 + d(x, Tx))

- (L + d(o,y)d(Ts, Ty))d(Tx, Ty) < Ad(x,y), xy€X,Tx#Ty. (3.4)

Consider the functions v : [0,00) — [0,00) and « : X x X — R defined by

Y(t)=at, t>0 (3.5)
and
axy) = 1= R dtarny 167 1) 6

0, otherwise.
Since 0 < Ab < 1, then ¢ € W,,. On the other hand, from (3.4) we have
alx, y)d(Tx, Ty) < lp(d(x,y)) forall x,y € X.
Then T is an «-1 contraction. O

Corollary 3.7 Let (X, d) be a complete b-metric space with constantb > 1,and let T : X —
X be a given mapping. If T is a Dass-Gupta contraction with parameters ., ;v > 0 such that
Ab + <1, then T has a unique fixed point. Moreover, for any xo € X, the Picard sequence
{T"x0} converges to this fixed point.

Proof Let xo be an arbitrary point in X. If for some r € N, T"xo = T"*1x, then T"x, will be
a fixed point of T. So we can suppose that 77x, # T"*'x, for all r € N. From (3.6), for all
n €N, we have

d(T" %0, T"*x0) (1 + d(T"x0, T"'x0))
M+ (T, TH o) (T g, T 2x0)

a (T %0, T" ' %0) = 1
=1-pu>0.

On the other hand, from (3.5) we have

Q=) v = ——1, t=0.
1-u
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From the condition Ab + 1 < 1, clearly we have (1 — u)™'y € W, which is equivalent to
1-w)'e Zf],. Then (2.1) is satisfied with p =1 and o = (1 — 1)"!. From the first part of
Theorem 2.3, the sequence {T"x,} converges to some x* € X.

Suppose that x* is not a fixed point of 7, that is, d(x*, Tx*) > 0. Then

T"'xy # Tx*, nlarge enough.

From (3.6), we have

d(T"xo, T %0) (1 + d(x*, Tx*))
M+ d(Trxg, ) d(T %y, Ti)’

a(x*, T"x%) =1 n large enough.

On the other hand, using the property (iii) of a b-metric, we have

d(T" %0, Tx") > %d(x*, Tx*) —d(x*, T""'x0) >0, nlarge enough.
Thus we have

d(T"xo, T"x0) (1 + d(x*, Tx*))
Ha d(T"x0, %)) (3d(x*, Tx*) — d(x*, T"1x0))’

a(x*, T"x) > 1 n large enough.

Since

. AT, T ) (1 + d(x*, T&))
e M d(Tx0,20) (Ed(, Tn) — d(x, T™xg)

)

we have
1
a(x*, T"x) > 3 large enough.

By Theorem 2.3, we deduce that x* € Fix(T'), which is a contradiction. Thus Fix(T) # @.
For the uniqueness, observe that for every pair (x,y) € Fix(T) x Fix(T) with x # y, we
have «(x,y) = 1. By Theorem 2.4, x* is the unique fixed point of T d

If b =1, Corollary 3.7 recovers the Dass-Gupta fixed point theorem [18].

3.2.2 Jaggi-type contraction in b-metric spaces
Definition 3.8 Let (X, d) be a b-metric space with constant » > 1. A mapping 7: X — X
is said to be a Jaggi contraction if there exist constants A, & > 0 with A6 + u < 1 such that

d(x, Tx)d(y, Ty)

d(Tx, Ty) < d05y)

+Ad(x,y) forallx,ye X,x#y. (3.7)
Theorem 3.9 Let (X,d) be a b-metric space with constant b > 1, and let T : X — X be
a given mapping. Suppose that T is a Jaggi contraction. Then there exist W € WV, and o :
X X X — R such that T is an a-y contraction.

Proof From (3.7), for all x,y € X with x # y, we have

d(x, Tx)d(y, Ty)

< rd(x,y),
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which yields

(1 ~ d(x, Tx)d(y, Ty)

d(Tx, Ty) < Ad(x,y), x,ye€X,Tx#Ty. 38
Md(x,y)d(Tx,Ty)) (Tx, Ty) < Ad(x,y), x%y€X,Tx#Ty (3.8)

Consider the functions v : [0,00) — [0,00) and @ : X x X — R defined by

v@E)=rt, t>0 (3.9)
and
_,, dx,Tx)d(y, Ty) s
axy) = L= anparny W17 T, (3.10)

0, otherwise.
Since Ab < 1, we have y € ¥;,. From (3.8), we have
a(x,y)d(Tx, Ty) < I/I(d(x,y)) forall x,y € X.
Then T is an «- contraction. (|

Corollary 3.10 Let (X,d) be a complete b-metric space with constant b > 1, and let T :
X — X be a continuous mapping. If T is a Jaggi contraction with parameters X, i > 0 such
that A\b + . < 1, then T has a unique fixed point. Moreover, for any xy € X, the Picard
sequence {T"xy} converges to this fixed point.

Proof Let xy be an arbitrary point in X. Without loss of generality, we can suppose that
T"xo # T x, for all r € N. From (3.10), for all # € N, we have

d(T”xo, T”*lxo)d(T’”lxo, Tn+2x0) ~
Md(T”xo, T x0)d (T xg, T 2x0) -

a(T”xo, T””xo) =1 1-u>0.

On the other hand, from (3.9), for all £ > 0, we have

Q- = .

-
Since Ab + i < 1, we have (1 — )"y € Wy, thatis, 1 - pu) ! e Zf]j. Then (2.1) is satisfied
with p =1 and o = (1 — ). By the first part of Theorem 2.2, {T"x,} converges to some
x* € X. Since T is continuous, by the second part of Theorem 2.2, x* is a fixed point of 7.
Moreover, for every pair (x,y) € Fix(T) x Fix(T) with x # y, we have a(x,y) = 1. Then, by
Theorem 2.4, x* is the unique fixed point of T O

If b =1, Corollary 3.10 recovers the Jaggi fixed point theorem [19].

3.3 The class of Berinde-type mappings in b-metric spaces
Definition 3.11 Let (X, d) be a b-metric space with constant » > 1. A mapping 7 : X — X
is said to be a Berinde-type contraction if there exist A € (0,1/b) and L > 0 such that

d(Tx, Ty) < Md(x,y) + Ld(y, Tx) forallx,y € X. (3.11)
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Theorem 3.12 Let (X,d) be a b-metric space with constant b > 1, and let T : X — X be
a given mapping. If T is a Berinde-type contraction, then there exist o : X x X — R and
W € Uy, such that T is an a-r contraction.

Proof From (3.11), we have
d(Tx, Ty) — Ld(y, Tx) < Ad(x,y) forallx,y € X,

which yields

(1 —L d(y, Tx)

d(Tx, Ty) < Ad(x,y), xyeX, Tx+Ty. 3.12
d(Tx,Ty)>(x y) < Adx,y), xyeX,Tx#Ty (3.12)

Consider the functions ¥ : [0,00) — [0,00) and @ : X x X — R defined by
V(t)=xrt, t>0
and

dy,Tx) .
1-L72, if Tx 4Ty,

a(x,y) = AT ) 7D (313)
0, otherwise.

Since Ab < 1, then ¥ € W,,. From (3.12), we have
a(x,y)d(Tx, Ty) < w(d(x,y)) forall x,y € X.
Then T is an «- contraction. (]

Corollary 3.13 Let (X,d) be a complete b-metric space with constant b > 1, and let T :
X — X be a given mapping. If T is a Berinde-type contraction with parameters A,L > 0
such that 0 < Ab < 1, then for any xo € X, the Picard sequence {T"xy} converges to a fixed
point of T

Proof Let x( be an arbitrary point in X. Without loss of generality, we can suppose that
T"x¢ # T x, for all r € N. From (3.13), for all # € N, we have

d( Tn+1x0’ Tn+1x0) ~

n n+l _
Ol(T x0, T’ xo) =1- —d(T””xo, Trvgg) =1.

Then (2.1) holds with o =1 and p = 1. From the first part of Theorem 2.3, the sequence
{T"x0} converges to some x* € X.
Suppose now that x* is not a fixed point of T, that is, d(x*, Tx*) > 0. Then

T"'x # Tx*, nlarge enough.

From (3.13), we have

d(x*, Tn+1x0)

™" , ) =1— o7 0
a( o, ) d(Tr1xg, Tx*)

n large enough.
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Using the property (iii) of a b-metric, we have

d(T" %0, Tx") > %d(x*, Tx*) —d(x*, T""'x0) >0, n large enough.

Thus we have

a’(x*, Tn+1x0)
%d(x*, Tx*) — d(x*, T"1xo)

a(T"x0,x") >1-L n large enough.

Since

. d(x*, T x,)
lim1-L T =
n—>00 5a*, T*) — d(x*, T™ o)

)

then
1
a(T"x0,x") > 3 large enough.

By Theorem 2.3, we deduce that x* € Fix(T'), which is a contradiction.
Thus x* is a fixed point of 7. O

If b =1, Corollary 3.13 recovers the Berinde fixed point theorem [20].
Note that a Berinde mapping need not have a unique fixed point (see [21], Exam-
ple 2.11).

Corollary 3.14 Let (X,d) be a complete b-metric space with constant b > 1, and let T :
X — X be a given mapping. Suppose that there exists a constant k € (0,1/b(b + 1)) such
that

d(Tx, Ty) < k(d(x, Tx) + d(y, Ty)) forallx,y € X. (3.14)

Then, for any xo € X, the Picard sequence {T"xy} converges to a fixed point of T.

Proof At first, observe that from (3.14), for all x,y € X, we have
d(Tx, Ty) < Md(x,y) + Ld(y, Tx),

where

N kb d L 2kb
=—— an =—

1-kb 1-kb
With the condition k € (0,1/b(b + 1)), we have 0 < A <1/band L > 0. Then T is a Berinde-
type contraction. From Corollary 3.13, if xy € X, then {T"x(} converges to a fixed point
of T. d

If b =1, Corollary 3.14 recovers the Kannan fixed point theorem [22].
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Corollary 3.15 Let (X,d) be a complete b-metric space with constant b > 1, and let T :
X — X be a given mapping. Suppose that there exists a constant k € (0,1/2b%) such that

d(Tx, Ty) < k(d(x, Ty) + d(y, Tx)) forall x,y € X. (3.15)
Then, for any xo € X, the Picard sequence {T"x} converges to a fixed point of T
Proof From (3.15), we have

d(Tx, Ty) < Ad(x,y) + Ld(y, Tx),

where

kb k(B* +1)
e ™ e

With the condition k € (0,1/2b%), we have 0 < A <1/band L > 0. Then T is a Berinde-type
contraction. From Corollary 3.13, if xy € X, then {T"x,} converges to a fixed point of T
O

If b =1, Corollary 3.15 recovers the Chatterjee fixed point theorem [23].
34 Cirié-type mappings in b-metric spaces
Definition 3.16 Let (X, d) be a b-metric space with constant » > 1. A mapping T': X — X

is said to be a Ciri¢-type mapping if there exists A € (0,1/b) such that for all x,y € X, we
have

min{d(Tx, Ty),d(x, Tx), d(y, Ty)} - min{d(x, Ty), d(y, Tx)} < Ad(x,y). (3.16)
Theorem 3.17 Let (X, d) be a b-metric space with constant b > 1, and let T : X — X be a
given mapping. If T is a Cirié-type mapping with parameter ). € (0,1/b), then there exist

o: X x X — Randy € Yy, such that T is an a- contraction.

Proof Consider the functions v : [0,00) — [0,00) and & : X x X — R defined by

Y)=xrt, t=>0 (3.17)
and
a(x,y) = min{l, ;(%L,T;y))’ di(Ty;?;)} — min{ ;i(;ﬁ*y))’ ;f%% b Tx# Ty, (3.18)
0, otherwise.
From (3.16), we have
alx, y)d(Tx, Ty) < 1//(d(x,y)) forallx,y € X, (3.19)

which implies that T is an «-y contraction. O
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Corollary 3.18 Let (X,d) be a complete b-metric space with constant b > 1, and let T :
X — X be a continuous mapping. If T is a Cirié-type mapping with parameter ) € (0,1/b),
then for any xy € X, the Picard sequence {T"x,} converges to a fixed point of T .

Proof Let xy € X be an arbitrary point. Without loss of generality, we can suppose that
T"xy # T™1x, for all r € N. From (3.18), for all # € N, we have

d(T"xy, T d(T™x,, T2
a (T %0, T '%0) = min{l (T"%0 x0)  d(T" %o xo)}

’ d(TnJrle’ Tn+2x0)’ d(TonO’ Tn+2x0)
| d(T"x0, T"?x0)  d(T"x9, T"* x0)
— min )
d(TVH—le’ Tn+2x0) d(TrHle, Tn+2x0)
. d(T"xo, T" ' x0)
=min\Ly, — 7.
d(Tn+1x0’ Tn+2x0)

Suppose that for some # € N, we have

d( T”xo, T”*lxo)

n n+l _
Ol(T .?C(),T xo) = m

In this case, from (3.17) and (3.19), we have
d(T”xo, T”*lxo) < Ad(T”xo, T”*lxo).

This implies (from the assumption T"xy # T"*1x, for all r € N) that A > 1, which is a con-

tradiction. Then
a(T"x, T"*'x9) =1 forallnmeN.

Then (2.1) is satisfied with p =1 and o = 1. By Theorem 2.3, we deduce that the sequence
{T"x0} converges to a fixed point of T O

If b = 1, Corollary 3.18 recovers Ciri¢’s fixed point theorem [24].

3.5 Edelstein fixed point theorem in b-metric spaces
Another consequence of our main results is the following generalized version of Edelstein

fixed point theorem [25] in b-metric spaces.

Corollary 3.19 Let (X,d) be a complete b-metric space with constant b > 1, and
e-chainable for some ¢ > 0; i.e., given x,y € X, there exist a positive integer N and a se-
quence {x;}, C X such that

X0 = X, XN =Y, dx;xi1)<e fori=0,...,N -1 (3.20)
Let T : X — X be a given mapping such that

xyeX, dxy)<e = d(Ix,Ty) < 1/f(d(x,y)) (3.21)

for some y € V. Then T has a unique fixed point.
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Proof ltis clear from (3.21) that the mapping T is continuous. Now, consider the function
a: X x X — R defined by

1, ifd(xy)<s,
alx,y) = (3.22)
0, otherwise.

From (3.21), we have
a(x,y)d(Tx, Ty) < 1//(d(x,y)) forall x,y € X.

Letxo € X. For x = xo and y = Txo, from (3.20) and (3.22), for some positive integer p, there
exists a finite sequence {§; ’;0 C X such that

xo0 = &o, &, = Txo, alt,&,1)>1 fori=0,...,p—1.

Now, let i € {0,...,p — 1} be fixed. From (3.22) and (3.21), we have

alpén)>1 = dE &) <e
= d(T&, T&n) < ¥ (d(En i) <d(En&in) <e
=  a(T§,TE0) > 1

Again,

a(T&, TEm) 21 = d(T§,T& ) <e
= d(T%;, T*&in) < ¥ (d(T&;, Téin)) < d(T&;, Téi) <e
= oT%;, T%n) > 1.
By induction, we obtain
a(T"Ei, T"+1§,-+1) >1 forallmeN.
Then (2.1) is satisfied with o = 1. From Theorem 2.2, the sequence {7"x,} converges to a
fixed point of T'. Using a similar argument, we can see that condition (ii) of Theorem 2.4
is satisfied, which implies that T has a unique fixed point. O
3.6 Contractive mapping theorems in b-metric spaces with a partial order
Let (X, d) be a b-metric space with constant » > 1, and let < be a partial order on X. We
denote

A:{(x,y)eXxX:xjyoryﬁx}.

Corollary 3.20 Let T : X — X be a given mapping. Suppose that there exists € Wy, such
that

d(Tx, Ty) < Ip(d(x,y)) forall (x,5) € A. (3.23)
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Suppose also that
(i) T is continuous;

(ii) for some positive integer p, there exists a finite sequence {é,»}fzo C X such that
& = %o, &, = Txo, (T"&;, T"6m) €A, neN,i=0,..,p-1.  (3.24)
Then {T"xo} converges to a fixed point of T .
Proof Consider the function o : X x X — R defined by

1, if(xy) €A,
alx,y) = (3.25)
0, otherwise.

From (3.23), we have
a(x,y)d(Tx, Ty) < w(d(x,y)) forall x,y € X.
Then the result follows from Theorem 2.2 with o = 1. O

Corollary 3.21 Let T : X — X be a given mapping. Suppose that
(i) there exists W € Wy, such that (3.23) holds;
(ii) condition (3.24) holds.
Then {T"xq} converges to some x* € X. Moreover, if
(iii) there exist a subsequence {T""xo} of {T"xo} and N € N such that

(T”(”)xo,x*) €A, n>N,
then x* is a fixed point of T .

Proof We continue to use the same function « defined by (3.25). From the first part of
Theorem 2.3, the sequence {T"x,} converges to some x* € X. From (iii) and (3.25), we
have

a(T”(”)xo,x*) =1, n>N.

By the second part of Theorem 2.3 (with £ = 1), we deduce that x* is a fixed point
of T. O

The next result follows from Theorem 2.4 with n = 1.

Corollary 3.22 Let T : X — X be a given mapping. Suppose that
(i) there exists € Wy, such that (3.23) holds;
(ii) Fix(T) # 0;
(ili) for every pair (x,y) € Fix(T) x Fix(T) with x # y, if (x,y) ¢ A, there exist a positive
integer q and a finite sequence {{;(x,y)}L, C X such that

oY) =% x=y  (T"xy), T"axy) €A

forneNandi=0,...,q-1.
Then T has a unique fixed point.
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Observe that in our results we do not suppose that T is monotone or T preserves order
as it is supposed in many papers (see [26—28] and others).
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