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Abstract

We have proved a generalized Presic-Hardy-Rogers contraction principle and
Ciric-Presic type contraction principle for two mappings in a b-metric space. As an
application, we derive some convergence results for a class of nonlinear matrix
equations. Numerical experiments are also presented to illustrate the convergence
algorithms.
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1 Introduction
There appears in literature several generalizations of the famous Banach contraction prin-
ciple. One such generalization was given by Presic [1, 2] as follows.

Theorem 1.1 [2] Let (X,d) be a metric space, k be a positive integer, T : X* — X be a
mapping satisfying the following condition:

d(T(xl,xg, ves i), T2, %3, ... ,xk+1))

<qi-dx,x) +qo - dx,%3) + -+ + g - AKXk K1), (1.1)

where x1,%, ..., Xk are arbitrary elements in X and q., qs, . . ., i are nonnegative constants
suchthatqi+qa+- - +qi < 1. Then there exists somex € X such thatx = T(x,x,...,x). More-
over, if x1,%y,...,xx are arbitrary points in X and for n € N, %1 = T (X, Xpi1s « - > X k1),
then the sequence (x,) is convergent and limx,, = T (limx,, limx,,...,limx,).

Note that for k = 1 the above theorem reduces to the well-known Banach contraction
principle. Ciric and Presic [3] generalizing the above theorem proved the following.

Theorem 1.2 [3] Let (X,d) be a metric space, k be a positive integer, T : X* — X be a
mapping satisfying the following condition:

A(T (1, %0, ..., %), T (%2, %3, . .., Xies1))

<Xi: max{d(xl)xZ)r d(xZ)xS)r ) d(xk;x/Hl) }» (1'2)
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where x1,%3,...,%k1 are arbitrary elements in X and ) € (0,1). Then there exists some
x € X such that x = T(x,x,...,x). Moreover, if x1,%,,...,%; are arbitrary points in X and
forn € N, 6 = T (% X415 - - -» Xnsk-1), then the sequence (x,) is convergent and limx, =
T(limx,, limx,,...,limx,). If in addition T satisfies D(T(u, u,...,u), T(v,v,...,v)) <d(u,v)
forallu,v € X, then x is the unique point satisfying x = T (x,%, ..., x).

In [4, 5] Pacurar gave a classic generalization of the above results. Later the above re-
sults were further extended and generalized by many authors (see [6—14]). Generalizing
the concept of metric space, Bakhtin [15] introduced the concept of b-metric space which
is not necessarily Hausdorff and proved the Banach contraction principle in the setting
of a b-metric space. Since then several papers have dealt with fixed point theory or the
variational principle for single-valued and multi-valued operators in b-metric spaces (see
[16—23] and the references therein). In this paper we have proved common fixed point
theorems for the generalized Presic-Hardy-Rogers contraction and Ciric-Presic contrac-
tion for two mappings in a b-metric space. Our results extend and generalize many well-
known results. As an application, we have derived some convergence results for a class
of nonlinear matrix equations. Numerical experiments are also presented to illustrate the
convergence algorithms.

2 Preliminaries
Definition 2.1 [15] Let X be a nonempty set and d : X x X — [0, 00) satisfy:

(bM1) d(x,y) = 0 if and only if x = y for all x,y € X;

(bM2) d(x,y) =d(y,x) for all x,y € X;

(bM3) there exists a real number s > 1 such that d(x,y) < s[d(x,z) + d(z,y)] for all

x,9,z € X.

Then d is called a b-metric on X and (X, d) is called a b-metric space (in short bMS) with
coefficient s.

Convergence, Cauchy sequence and completeness in b-metric space are defined as fol-
lows.

Definition 2.2 [15] Let (X,d) be a b-metric space, {x,} be a sequence in X and x € X.
Then:
(a) The sequence {x,} is said to be convergent in (X, d), and it converges to x if for every
& > 0 there exists ny € N such that d(x,, x) < ¢ for all n > ng, and this fact is
represented by lim,,_, o X, = X or %, — x as 1 — 00.
(b) The sequence {x,} is said to be Cauchy sequence in (X, d) if for every & > 0 there
exists o € N such that d(x,, x,.,) < € for all n > ny, p > 0 or, equivalently, if
limy,—, o0 d(%1, %) = 0 for all p > 0.
(c) (X,d) is said to be a complete b-metric space if every Cauchy sequence in X
converges to some x € X.

Definition 2.3 [9] Let (X,d) be a metric space, k be a positive integer, T : X¥ — X and
f: X — X be mappings.

(a) An element x € X is said to be a coincidence point of f and T if and only if
fx)=Tx,x,...,x). lfx=f(x) = T(x,%,...,x), then we say that x is a common fixed
pointof fand T. If w = f(x) = T(x,x,...,%), then w is called a point of coincidence of
fand T.
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(b) Mappings f and T are said to be commuting if and only if
f(Tx,x%,...,x) = T(fx,fx,...,fx) forall x € X.

(c) Mappings f and T are said to be weakly compatible if and only if they commute at
their coincidence points.

Remark 2.4 For k =1 the above definitions reduce to the usual definition of commuting
and weakly compatible mappings in a metric space.

The set of coincidence points of f and T is denoted by C(f, T).

Lemma 2.5 [24] Let X be a nonempty set, k be a positive integer and f : X* — X,g: X — X
be two weakly compatible mappings. If f and g have a unique point of coincidence y =
flx,x,...,x) = g(x), then y is the unique common fixed point of f and g.

Khan et al. [8] defined the set function 6 : [0, 00)* — [0, c0) as follows:
1. 6 is continuous,
2. forall t1, 6y, L3, 84 € [0, OO), Q(tl,tz,tg, t'4) =0 & fityt3ty = 0.

3 Main results
Throughout this paper we assume that the b-metric d : X x X — [0,00) is continuous
on X2,

Theorem 3.1 Let (X,d) be a b-metric space with coefficient s > 1. For any positive integer
k,letf: X* — X and g : X — X be mappings satisfying the following conditions:

f(X*) cex), 3.1)
A(f (1, %0, .0, f (%2, %35+ ., Xis1)

k k+1 k+1
< Zaid(gxi,gxm) + Z Z ﬂi,jd(gxi,f(x;,xj, e ;xj))
i=1 i=l j=1

+L- 9(d(gxl)f(xk+l:xk+bxk+1x oo :xk+1))’ d(gxk+17f(x1:x11x1: cee rxl)))
d(gxl,f(xl:xl» oo ,xl))r d(gxku,f(kaka oo rkarl)))) (32)

where x1,%3,..., %1 are arbitrary elements in X and a;, Bj, L are nonnegative constants

such that Y°X_ s [a, + YK ]/<=+11 Bijl <1land

g(X) is complete. (3.3)

Then f and g have a unique coincidence point, i.e., C(f,g) # 0. In addition, if f and g are
weakly compatible, then f and g have a unique common fixed point. Moreover, for any
x1 € X, the sequence {y,} defined by y, = g(x,) = f(Xy_1,%4-1, ..., %4-1) = Fx,_1 converges to
the common fixed point of f and g.

Proof Let x; € X, then f(x1,x1,...,%1) € f(XX) C g(X). So there exists x, € X such that
fen, 0.0, x1) = g(x2). Now f (%, %,...,%2) € f(X¥) C g(X) and so there exists x3 € X such
that f(x2,x2,...,%2) = g(x3). Continuing this process we define the sequence (y,) in g(X) as
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Y =8xy) = fXp1,%0-1, .- -»%p1) = Fxy1, n=1,2,...,k + 1, where F is the associate opera-
tor for f. Let dy, = d(yn, Yni1) = A(@%n, g%ne1) and Dy = d(go;, f (%), %), . .., %5)).
Then we have

dpt = d(g(ni1),&(Xns2))
= d(Fxu, Fxu.1)
= d(f s X - %) f Koty Kty -+ K1)
< Sd(f(xy,,xn,...,x,,),f(x,,,x,,, . ..,x,,+1))
+ S (f Ky %> s %) Fois Xors 5 X1 Fine1))
+ S3d(f(xn»xm ce s X1y K1), f (Es - H:xn+1’xn+1;xn+1)) L

+ Skd(f(xm Kpals e 3 Xn+ls xn+1):f(xn+1; <o Xnils Xntls xn+1))'

Using (3.2) we get

K K K
dn1 < S{Otkdn + |:Z Bii+ Y Bojte+ Z,Bkj:|Dn,n
= jo1

j=1

k k
+ |:Z ﬂi,k+1:|Dn,n+l + |:Z ﬁk+1,j:|Dn+l,n + ,3k+1,k+1Dn+1,n+1}
i=1 j=1
k-1 k-1 k-1
2
+ S Olk_ld,, + Zﬁl‘j + Zﬂz,j + -+ ZlBk—l:/ Dn,n
j-1 j-1 j-1
k-1 k-1 k-1 k-1
+ Zﬂi,k + Z,Bi,kﬂ Dn,n+1 + Zﬂk,j + Z ﬂkﬂ,j Dn+1,n
i=1 i=1 j=1 1
k+1 k+1
+ Z Brj + Z Bis1j [Dnsnet
Jj=k j=k
k+1 k+1
k
teer+S aldn + ﬁl,an,n + Z,Bl,j Dn,n+1 + Z,Bi,l Dn+1,r1
i=2

j=2

k+1 k+1 k+1
+ Z Baj + Z Baj+ -+ Z,Bkﬂ,j Dyi1nn
j=2 =2 =2

+L- e(d(gxm (fxn+1¢xn+1rxn+1) e ¢xn+1))7 d(gxn+11f(xn1xnrxny .. .,x,,)),

d(gxnrf(xnrxn’ v rxn)): d(gxnﬂrf(xnﬂ: Kptls oo :xn+1))),

ko k
dpy < [sak + 820 + 85U e+ sk(xl]d,, +5 Z Zﬂi,j D,,

i=1 j=1

k k
+ |:Z ﬁi,k+1:|Dn,n+1 + |:Z ,Bk+1,j:|Dr1+1,n + ,Bk+1,k+1Dn+1,n+1}
i=1 j=1
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k-1 k-1 k=1 k+1 k+1 k-1
+ szi |:Z Z ,Bi,ji|Dn,n + |:Z Z ﬁl‘,,‘]Dn,nJrl + |:Z Z 'Bi’lz|Dn+l’n

i=1 j=1 =1 j=k ik j=1

k+1 k+1 k+1
+ |:Z Z ,Bz',j:| Dn+1,n+1} L Sk{ﬂl,an,n + |:Z ﬂl,j:|Dn,n+1

i=k j=k j=2

k+1 k+1 k+1
+ |:Z ﬁi,1:|Dn+1,n + [Z Z,Bi,j:|Dn+1,n+1} +L-0,
i=2

i=2 j=2

dpy < [sak + 820 + 85U e+ sk(xl]d,,

k-1 k-1 2 2
+ SZZ/S,,+S ZZﬁ” . +sk‘122ﬁ,’,}-+skﬁ1,1:|D

L i=1 j=1 =1 j=1 i=1 j=1

k-1 k+1 2 k+l k+1
+ Zﬂzkﬂ"’szzz,‘gu : ZZ'B”+S Zﬂ11i| nn+1

i=1 j=k i=1 j=3

k+1 k-1 k+1 2 k+1
kl
+ SE ,Bk+11+5 E E ﬁz} : E E ﬁl}+s E ﬁzli| n+l,n

L j=1 i=k j=1 i=3 j=1
[ k+l k+l k+1 k+1 k+1 k+1
k k-1 2
YD BTN B+ DY Bij+ SPistiet [Duitnet
L =2 j=2 i=3 j=3 i=k j=k

= Adn + BDn,n + CDn,n+1 + EDn+1,n + FDn+1,n+l;

where A, B, C, E and F are the coefficients of d,;, D, 1, Dy 111, Dins1,n and D41 441 respectively
in the above inequality. By the definition, D, , = d(gx,, f (X, %u, . .., %)) = A(@Xy, GXn41) =
Ay, D,y = d(gxmf(xwrl:xnﬂ: ) d(gxmgxmz), Dy = d(gxwrl:f(xmxn; cXy)) =

d(gxnﬂ;gxnﬂ) =0, Dys1ns1 = d(gxnﬂ»f(xnﬂyxnﬂw~~;xn+1)) = d(gxn+l»gxn+2) = dy.1; there-
fore,

dn+1 = Adn + Bdn + Cd(gxnrgxn+2) + Fdn+1

< Ad,, + Bd, + Csd(gx, g%n.1) + Csd(gxni1,§%ns2) + Fdyin
= (A+B+Cs)d, +(Cs + F)d,.1,

i.e.,, 1 - Cs—F)dy1 < (A + B+ Cs)d,. Again, interchanging the role of x, and x,,; and
repeating the above process, we obtain (1 — Es — B)d,,,1 < (A + F + Es)d,,. It follows that

(2-(C+E)s—F—B)dy1 < (2A+B+F +s(C + E))d,

2A+B+F+s(C+E)
dn+1§ n

2-B-F—-(C+E)s
dn+1§}\dm

2A+B+F+s(C+E)
where A = SR ES(CiDs - Thus we have

dy <V, foralln> 0. (3.4)
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We will show that A <1 and sA <1. We have

A+B+F+s(C+E)
sS[A+B+C+E+F]

= s[sak + 820y + Sy e+ skal]

k-1 k-1 2 2
k-1 k
+5s|s ﬂl,, + 5 Bijt+-+s Bij + s Bi1
i=1 j=1 i=l j=1 i=l j=1
k-1 k+1 2 k+l k+1
k—l
+s SZﬂzmH DD Byt ST By Zﬂu
i=1 j=k i=1 j=3
k+1 k-1 k+l 2 k+1
t+S5|S Z ﬂk+1,] + S ﬂl,} . ,Bz,j + S ,311
i=k j=1 i=3 j=1
k+1 k+1 k+1 k+1 k+1 k+1
k-1 k
+5| Bk +52 ) Y Bt +STY N B+ Y N By
i=k j=k i=3 j=3 =2 j=2
k+1 k+1 k+1 k+1
= [Szak + SBOI/(_l + 54061(_2 4o 4 sk+10(1] + S2 Z Z ﬁi,j + 53 E E ,3,‘,1‘
=1 j=1 i=1 j=1
k+1 k+1 k+1 k+1
4 k+1
+s ZZﬂi,j+"'+S E E Bij
i=1 j=1 i=1 j=1
= [sPou + SPor + sty + -+ 550y |
k+1 k+1
+ [s2+53+s4+---+sk+l]ZZﬁM
i=1 j=1
< [s3ak +srop + Sy et Sk+2(11]
k+1 k+2
+ [ss+s4+s5 4o +sk+2]ZZﬁM
i=1 j=1
k k+1 k+1
:Z Ke3=n oy + E E Bij| <L,
n=1 i=1 j=1

Page 6 of 17

and so A < 1. We also have sA + sB+sF +s(C+E) =s(A+B+F + C + E) <1 (proved above)

and

sA+B+F +s*(C+E)
<s*)[A+B+C+E+F]

= S2 [SOlk + 82()[/(_1 + SSOlk_z + -0+ SkOll]
k k k-1 k-1 2 2
§ : 2 2 § : k-1 2 2 k
S ,31',]‘ + S ,Bi,j + -+ S ﬁi,j + S ,31,1
i=1 j=1 i=1 j=1 i=1 j=1
k-1 k+1 2 k+l k+1

Zﬁlk+1+s ZZﬁl,} ZZﬁl,}"‘S Zﬂl,}

i=1 j=k i=1 j=3
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k k+1 k-1 k+1 2 k+1
2 2 k-1 k
#5)sD By st YD Bt + ST D Byrs) pu
j-1

i=k j=1 =3 j=1 i=2

k+1 k+1 k+1 k+1 k+1 k+1
2 2 k-1 k
+ S Sﬁk+1,k+1 +S ,BZ'J' +--+S ﬂi,j +S ,31‘,]‘

i=k j=k i=3 j=3 =2 j=2
k+1 k+1 k+1 k+1
= [s3ak + sty +Papiy + - +sk+2a1] +s3 E E Bij + st E E Bi;
=1 j=1 =1 j=1
k+1 k+1 k+1 k+1
5 k+2
+s E E Bij+---+s E E Bij
=1 j=1 =1 j=1

=[S + st + Sty + -+ 55y

k+1 k+1

+[53+s4+s5+~~~+sk+2]ZZﬁM

i=1 j=1

k k+1 k+1
=S et 0D By | <L
n=1

i=1 j=1

and so sA < 1.
Thus, forall n,p € N,

d(gxmgxn+p) = Sd(gxnrgxm—l) + Szd(gxn+1ygxn+2) L spild(gxnﬂp—l):gxnﬂz)
=sd,+sdyq + -+ s"_ldm(p_])

< sA'do + 2N dy + - 4 s D g

sA
< dy—> 0 asn— oo.
1-sA

Thus {gx,} is a Cauchy sequence. By completeness of g(X), there exists u € X such that

lim gx, = u and there exists p € X such that g(p) = u. (3.5)
n—0oQ

We shall show that u is the fixed point of f and g. Using a similar process as the one used
in the calculation of d,,,;, we obtain

s d(g(p)xynﬂ) + d()’nu,f(p,p, . ,p))]

d(g®).f(p,....p)) <]
< s[d(g(p), ynn1) + d(Fxn, Ep)]
[

IA

N d(g(p):ynﬂ) +Ad(gx,, gp) + Bd(gx,,,f(xn,xm e :xn))
+ Cd(gxnf (P, . P))

+ Ed(gp, f %ns %ns ..., %)) + Fd(gp,f (0: ;... D)) ]-

It follows from (3.5) that

d(gp).f®...,p)) <s(C+Fd(gp.f p:p,--..P))- (3.6)
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As s(C + F) <1, we obtain F(p) = g(p) =f(»,p,...,p) = u Thus, u is a point of coincidence
of f and g. If #' is another point of coincidence of f and g, then there exists p’ € X such

that F(p') =g(p') =f (P, p’>....P)) = .
Then we have
d(u,u') = d(Fp,Fp')
< Ad(gp,gv') + Bd(gp.f (0. p, -, ))
+Cd(gp.f (PP, P))
+ Ed(gp’,f(p,p, .. ,p)) +Fd(gp'.f (PP ,p/))
= Ad(u,u') + Bd(u,u) + Cd(u,u’) + Ed(u', u) + Fd(u', u)

=(A+C+E+F)d(uu).

As A+ C+ E + F <1, we obtain from the above inequality that d(u, ') = 0, that is, u = '
Thus the point of coincidence u is unique. Further, if f and g are weakly compatible, then

by Lemma 2.5, u is the unique common fixed point of f and g. d

Remark 3.2 Taking s =1, g =1 and 6(t;, 3, £3,t4) = 0 in Theorem 3.1, we get Theorem 4
of Shukla et al. [13].

Remark 3.3 Fors=1,g=1,i=}, Bj = 61, Vi, L =1, we obtain Theorem 2.1 of Khan et al.
[8].

Remark 3.4 Fors=1,g=1, 8; =0, Vi,j e {1,2,...,k + 1} and 6(4y, t3, £3, £ta) = min{(¢y, £,
t3,t4)}, we obtain the result of Pacurar [5].

Remark 3.5 Fors=1,g=1,a;=0,i=j, Bjj=a, L =0, we obtain the result of Pacurar [4].

Remark 3.6 Fors=1,g=1, 8; =0, Vi,j € {1,2,...,k + 1}, L = 0, we obtain the result of
Presic [2].

Next we prove a generalized Ciric-Presic type fixed point theorem in a b-metric space.
Consider a function ¢ : R¥ — R such that
1. ¢ is an increasing function, i.e., x1 < y1,%2 < ¥2,..., %k < yx implies

¢(x1,x2»-u,xk) < ¢(Y1,y2,~-«,yk);
2. ¢t t,t...) <tforallt € X;

3. ¢ is continuous in all variables.

Theorem 3.7 Let (X,d) be a b-metric space with s > 1. For any positive integer k, let f
XK — X and g : X — X be mappings satisfying the following conditions:
F(x9) c g0, (3.7)
A(f (61,525, %), f (%2, %3, .5 Ks1))
< Ao (d(gx1,gx2), d(gx, gxs), A(gx3, gXa), - .., (ks g5ks1)) (3.8)
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where x1,%3, . .., %41 are arbitrary elements in X, A € (0, Sik),
g(X) is complete 3.9)
and

d(f(u, u,...,u),f(v,v,...,v)) < d(gu,gv) (3.10)

forallu,v e X. Then f and g have a coincidence point, i.e., C(f,g) # 9. In addition, if f and
g are weakly compatible, then f and g have a unique common fixed point. Moreover, for
any x1 € X, the sequence {y,} defined by y, = g(x,) = f (%, X115 - - . Xyrk-1) COnverges to the
common fixed point of f and g.

Proof For arbitrary x1,%,,...,% in X, let

(3.11)

R d(gxlygxz) d(ng)gx3) d(gxk)f(xlerruorxk))
= max 5 yeees )
0 02 ok

where 8 = A%. By (3.7) we define the sequence (y,) in g(X) as y, = gx, forn=1,2,...,k and
Yn+k = g(xn+k) :f(xn; KXptls oo ’xn+k—1)! n=12,....
Let oy, = d(¥, Yus1)- By the method of mathematical induction, we will prove that

o, <RO" forall n. (3.12)

Clearly, by the definition of R, (3.12) is true for n =1,2,...,k. Let the k inequalities o, <
RO", yq < RO™, ... 0tpei < RO™*1 be the induction hypothesis. Then we have
sk = AWnikor Yrker1)
= d(f K X1 Xrke1)of Bty K2y s Xnik))
< (g% §%ns1), A(QXns1, &Xns2)s - - A sk 1, Gns),
A(@%ns f Fos X -1 %0) ) (@i f Fnskor Enstes - - » %nik)) )
= A (0t Ay - o5 Arik1)
< A¢(RO",RO™, ..., RO™ )
<1¢p(RO",R0",...,R0")
< ARO"

— R0n+k.
Thus the inductive proof of (3.12) is complete. Now, for n,p € N, we have

AW Ynip) < SA0m Y1) + AWnst, Yus2) + -+ + L AWap-1, Yusp),
<SsRO" +s°RO™ 4 ... 4 PRV
<SsRO"(1+s0 +5°0% +---)
sRO™

1-s6°
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Hence the sequence (y,) is a Cauchy sequence in g(X) and since g(X) is complete, there

exist v,u € X such that lim,_, o y, = v = g(u),

d(gu,f(u, U..., u)) < s[d(gu,yn+k) + d(ymk,f(u, U..., u))]
= s[d(gu, yuii) + A(f s Xni1s - Xnikr)of (W thy .., 1)) ]
= sd(gu, Yusrk) + sd(f(xn,xml, v Xk ) f W, u))
< sd(gut, Yuur) + SA(f oty 1), f (s 4y ..., %))
+ sBd(f(u, Uy...,xp),f (U, u,...,x,,,x,,+1))
oot sk_ld(f(u,xn, coor Xk ) f Ko X+« Xmakc1))
< sd(gu, yusk) + S Ap{d(gu, gu), d(gu, gu), ..., d(gu, gx,) |
+ s%q){d(gu,gu), d(gu,gu),...,d(gu, gx,), d(gxn;gxn+l)} e
+ sk‘lw{d(gu,gxn), A(gxn, 8Xns1)s .-+ d(gxmk—z»gxmk—l)}
= sd(gu, Yuix) + S° A (0, o0,... ,d(gu,gxn))
+ s3k¢(0, 0,...,d(gu, gxn), d(gxn, gxni1)) + - -+
+ sk’lf\qb(d(gu,gxn), A(G%n §5ni)s - - - » A @nik—2: Ponii-1))-
Taking the limit when # tends to infinity, we obtain d(gu,f(u,u,...,u)) < 0. Thus gu =
fu,u,u,...,u),ie, Clgf) # 9. Thus there exist v,u € X such that lim,_, .y, =v=gu) =

f(u,u,u,...,u). Since g and f are weakly compatible, g(f (&, u, ..., u)) =f(gu,gu, gu, ..., gu).
By (3.10) we have that

d(ggu, gu) = d(gf(u, u,...,u),f(u, u,...,u))
= d(f (gu,gu, gu, ..., gu),f u, u,...,u))
< d(ggu, gu)
implies d(ggu, gu) = 0 and so ggu = gu. Hence we have gu = ggu = g(f(u, u, ..., u)) = f(gu, gu,

gu,...,gu), i.e., gu is a common fixed point of g and f, and lim,,—, o ¥, = g(). Now suppose
that x, y are two fixed points of g and f. Then

dx,y) = d(f (% %,%,..., %), f 5,9, 95 .-,7))
< d(gx,gy)
=d(x,y).

This implies x = y. Hence the common fixed point is unique. d

Remark 3.8 Taking s =1, g = I and ¢(x1,%5,...,%x) = max{x1,xy,...,%¢} in Theorem 3.7,
we obtain Theorem 1.2, i.e., the result of Ciric and Presic [3].

Remark 3.9 For A € (0, sk%), we can drop the condition (3.10) of Theorem 3.7. In fact we

have the following.
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Theorem 3.10 Let (X,d) be a b-metric space with s > 2. For any positive integer k, let
f: XX — X and g : X — X be mappings satisfying conditions (3.7), (3.8) and (3.9) with
A€ (0, S,%). Then all conclusions of Theorem 3.7 hold.

Proof As proved in Theorem 3.7, there exist v,u € X such that lim, oy, = v = g(u) =
f,u,...,u), ie, C(gf) # . Since g and f are weakly compatible, g(f(u, u,...,u)) =
f(gu,gu,gu,...,gu). By (3.8) we have

d(ggu,gu) = d(gf (u, u,...,u),f(, 1, ..., u))
= d(f(gu, gu,gu, ..., gu), f (u, u, .., 1))
< sd(f(gu,gu, gu, ..., gu),f (gu, g, ..., gu, u))
+8d(f (gu,gu,...,gu, u),f(gu, gu, ..., u, 1))
e +sk_1d(f(gu,gu,...,u,u),f(u,u,...,u))
+Sk_ld(f(gu,u,...,u,u),f(u,u,...,u))
<si¢ (d(ggu,ggu), ..., d(ggu, ggu), d(ggu,gu))
+ s* 7 (d(ggu, ggu), ..., d(ggu, gu), d(gu, gu))
+o 4 sk_l)»¢>(d(ggu,gu), . ..,d(gu,gu),d(gu,gu))
= s2$(0,0,0,...,d(ggu, gu)) + s°1¢(0,0,...,0,d(ggu, gu),0)
et sk_l)»¢(d(ggu,gu),0, 0,...,0)
=sA[L+s+s?+8°+- -+ 5% + 5] d(ggu, gu)

< sk[l ts+st+8 4452y sk’l]d(ggu,gu)

k

-1
= sASS . d(ggu, gu).

skssk_—‘ll < 1 implies d(ggu,gu) = 0 and so ggu = gu. Hence we have gu = ggu = g(f(u, u,
..,u) =f(gu,gu,gu,...,gu), i.e., gu is a common fixed point of g and f, and lim,_, 0o ¥, =
g(u). Now suppose that x, y are two fixed points of g and f. Then

d(x,y) = d(fxx% ..., %), 0 9.9,....9))
<sd(f(x,%,...,%),f(%%...,%,) +s2d(f(x,%...,%),
Fox%..,09,9) + -+ d([f 000,950 f B0 0)
+57d(f x2S 0335 7))
< sap{d(fx,fx), d(fx, fx), ..., d(fx, fy)} + s>ad{d(fx, fx),
d(fx, fx), ..., d(fx, fy), d(fy, )}
+ -+ 8 apld (e ), A ), A 1))
= s2$(0,0,...,d(fx,fy)) +s°A$(0,0,...,d(fx,f7),0) + - - -
+ g (d(fx.f7),0,0,0,...,0)
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= k[s +2 44 st +sk_1]d(fx,fy)
= s)\[l +5+82 455+ +5F2 4 sk’z]d(fx,fy)
< sk[l +s+st 4+ 4552y sk_l]d(fx,fy)

s
=SA

k_1

d(fx, 7).
Ay
k-1
1d(x,y)'

= sA

This implies x = y. Hence the common fixed point is unique. O

Example3.11 Let X = Randd: X x X — X such that d(x,y) = |x—y|3. Then d is a b-metric
on X with s =4. Let f: X> — X and g : X — X be defined as follows:

2 2 18
Ty +— if(x,y) €R,

+
S =353

gx=x*-2 ifxeR
We will prove that f and g satisfy condition (3.8):

d(fx9).f3,2) = |y -f3,2)]°

X223 xz—y2+y2—z23
NIt 13
2 _ .23 2,213
<4 X7 =y N Yy -z
13 13

4
e
81
- e -2

23 y2_22‘3}

8
T max{ |x2 -y

8
= @max{d(gx,gy),d(gy,gz)}.

IA

’

Thus, f and g satisfy condition (3.8) with A = 13% e (0, 4%). Clearly C(f,g) =2, f and g
commute at 2. Finally, 2 is the unique common fixed point of f and g. But f and g do
not satisfy condition (3.10) as at x = -1 and y = 1, d(f(x,x),f(,¥)) = d(f(-1,-1),f(1,1)) =
A+ 155 +13) = 0=d(-1,-1) = d(g(-1),g(1)) = d(gx, gy)-

4 Application to matrix equation
In this section we have applied Theorem 3.7 to study the existence of solutions of the
nonlinear matrix equation

X=Q+Y AX'A}, 0<|8|<], (4.1)
i=1

where Q is an n x n positive semidefinite matrix and A;’s are nonsingular # x n matrices,

or Q isan # x n positive definite matrix and A;’s are arbitrary # x n matrices, and a positive
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definite solution X is sought. Here A} denotes the conjugate transpose of the matrix A;.
The existence and uniqueness of positive definite solutions and numerical methods for
finding a solution of (4.1) have recently been studied by many authors (see [25-30]). The
Thompson metric on the open convex cone P(N) (N > 2), the set of all N x N Hermitian
positive definite matrices, is defined by

d(A,B) = max{logM(A/B),logM(B/A)}, (4.2)

where M(A/B) = inf{A > 0 : A < AB} = Amax(B"V2AB7Y/?), the maximal eigenvalue of
BY2AB7Y2, Here X < Y means that ¥ — X is positive semidefinite and X < Y means
that Y — X is positive definite. Thompson [31] has proved that P(N) is a complete met-
ric space with respect to the Thompson metric d and d(A4, B) = || log(A~Y2BA~Y2)||, where
I - || stands for the spectral norm. The Thompson metric exists on any open normal convex
cone of real Banach spaces [31, 32]; in particular, the open convex cone of positive definite
operators of a Hilbert space. It is invariant under the matrix inversion and congruence

transformations:
d(A,B)=d(A™",B™") = d(MAM*, MBM*) (4.3)

for any nonsingular matrix M. One remarkable and useful result is the nonpositive curva-
ture property of the Thompson metric:

d(X,Y") <rd(X,Y), rel0,1]. (4.4)
By the invariant properties of the metric, we then have
d(MX"M*, MY'M*) = |rld(X,Y), re[-11] (4.5)

for any X, Y € P(N) and a nonsingular matrix M. Proceeding as in [30] we prove the fol-

lowing lemma.

Lemma 4.1 Forany Ay,A,...,Ax € P(N), B;,By,...,Bx € P(N), d(A; + Ay + - - + A, By +
By + -+ + By) <max{d(A1,B1),d(As, By), ..., d(Ax, Br)}.

Proof Without loss of generality we can assume that d(A4;,B1) < d(A3,B;) < --- <
d(Ay, By) = logr. Then By < rA1,By <rA,,...,Bx <rAr and A; <rBy,Ay <rB,,..., A <
7Bk, and thus B; + A; < r(A; + B1),By + Ay < r(Ay + By),...,Br + Ax < r(Ax + By).
Hence A; + Ay + -+ + Ay <r[Bi+By +---+Bi] and By + By + -+ + By < r[A; +
Ay + --- + Ay]. Hence d(A1 + Ay + -+ + A, By + By + --+ + By) < logr = d(Ax, By) =

max{d(Al;Bl)) d(AZ»BZ)wuyd(Ak;Bk)}' g

For arbitrarily chosen positive definite matrices X,,_,, X,,_¢_1), ..., Xy, consider the itera-
tive sequence of matrices, given by

Xui = Q+ ATXIL AL+ ASX2 Ay + oo + AL XS Ay, (4.6)

— r+1“*n

01,03, ...,0,,1 are real numbers.
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Theorem 4.2 Suppose that ) = max{|o], |a3],...,|a]} € (0,1).
(i) Equation (4.6) has a unique equilibrium point in P(N), that is, there exists unique
U € P(N) such that

U=Q+ATU"A1 + AU Ay + -+ + AF U A, . (4.7)
(i) The iterative sequence {X,} defined by (4.6) converges to a unique solution of (4.1).
Proof Define the mapping f : P(N) x P(N) x P(N) x --- x P(N) — P(N) by

f(Xl,Xz,Xn,(r,z),...,Xk) = Q+ATX;¥1A1 +A§X§2A2 ++ AT Xa Ar+1’ (48)

r+l

where X7, X5, ..., X € P(N).
For all Xn—r:Xn—(r—l);Xn—(r—Z)r ces an+1 (S] P(N), we have

d(f(Xn—rr Xn—(r—l)’Xn—(r—2); oo ;Xn)’f(Xn—(r—l); Xn—(r—Z))Xn—(r—Z): oo :Xn+1))
=d(Q+ AJXIL AL+ ASX2 Ag 4o+ AT XA,

r+1

r+2“ n+l

Q+ASX)L Ay + ASX)2 Azt + AL X Ara)

<d(A[X;L, A +ASXZ At AT X A,

r+l
a o X+
A;Xni(r—l)AQ + AanE(r—z)A “+ AL n+12AV+2)

= max{d( 1XLALA *XZ” (r-1 AZ) ( *XZZ pAa, A *X:E(r-z)AB)’
o (AL X AL, AL X Arn) )
<maX{|0l1|d(Xn s Xne(r=1) )5 102 | A (X (r-1)s X (r=2) s
ol |d(X, Xni) }
= max{|ot1|,|oc2|, r|ar+1|}max{d(Xn 7 X)), A X (-1, Xu—r-2))»
o A(X, Xi1) }

= )‘max{d(Xn er (r— 1)) d( n—(r-1)» n—(r—Z)); .. ')d(Xn,Xn+1)} (4‘9)
for all X,—r, Xy— -1y Xu—(r—2), - - - » X1 € P(N). X, Y € P(N), we have

d(f X, X,...X),f(Y,Y,....Y))
=d(Q+A[ XA + A5X Ay + -+ + AL, X A,
Q+AJY I Ay + A5Y B Az + -+ + Af,, Y2 A,,)
<A(A[XM A + AN Ay + -+ AL X Ay,
AJY Ay + ALY Az + - + AL, Y2 A,,)
<max{d(A] X" A, ALY A,), d(A5X*2 Ay, ALY 3 As),

L d(AF XA, A

r+2

Yar+2Ar+2) }

< max{lon|d(X, Y), le2|d(X, Y), .., | |d(X, Y))
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< max{|ayl, [eal,..., o]} max{d(X, Y),d(X,Y),...,d(X,Y)}
<imax{d(X,Y),d(X,Y),...,d(X,Y)}
<dX,Y).

Since X € (0,1), (i) and (ii) follow immediately from Theorem 3.7 withs=1andg=1. O

Numerical experiment illustrating the above convergence algorithm

Consider the nonlinear matrix equation

1 1 1
X=Q+A*X2A +B*X3B+ C*X1C, (4.10)
where
14/3 1/3 1/4 2/5 3/2 4/6
A=12/15 1712 1/23], B=110/4 6/13 7/46 |,
3/10 9/20 11/4 5/2  4/7 6/13
1/3  19/24 22/55 1 2 3
C=|17/10 27/15 4517 |, Q=12 6 4
13/8 1/3 1/4 1 2 7
We define the iterative sequence {X,} by
1 1 1
Xp1 = Q+A*X2 ,A+B*X? B+ C*X,; C. (4.11)

1
Let R,, (m > 2) be the residual error at the iteration m, that s, R, = || X1 — (Q+A*X) A+

1 1
B*X3 1B+ C*X,..;C)|, where | - || is the spectral norm. For initial values

1 00 110

Xo=10 1 0]}, Xi=|1 1 o],
0 01 1 01
1 1 -1

Xo=1-11 11,
-1 1 1

we computed the successive iterations and the error R,, using MATLAB and found that
after thirty five iterations the sequence given by (4.11) converges to

639.1810 54.1681 107.3574
U=Xz3s=| 541285 44.7768 44.1469 |,
104.3977 421095 112.5509

which is clearly a solution of (4.10). The convergence history of algorithm (4.11) is given
in Figure 1.
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Figure 1 Convergence history for Equation (4.11).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally in this work. All authors read and approved the final manuscript.

Author details

'School of Studies in Mathematics, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India. ?Department of
Mathematics, College of Science, Salman bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia. *Department of
Mathematics and Computer Science, St. Thomas College, Bhilai, Chhattisgarh, India. *Department of Engineering Basic
Sciences, Faculty of Engineering, Menofia University, Menofia, Egypt. °Department of Mathematics, Faculty of Commerce,
Alazhar University, Menofia, Egypt. ®Department of Mathematics, Government VYT PG Autonomous College, Durg,
Chhattisgarh, India. ’Department of Mathematics, Rungta College of Engineering and Technology, Bhilai, Chhattisgarh,
India.

Acknowledgements

The authors are thankful to the learned referees for their valuable comments which helped in bringing this paper to its
present form. The second, third and fourth authors would like to thank the Deanship of Scientific Research, Salman bin
Abdulaziz University, Al Kharj, Kingdom of Saudi Arabia for the financial assistance provided. The research of second, third
and fourth authors is supported by the Deanship of Scientific Research, Salman bin Abdulaziz University, Alkharj,
Kingdom of Saudi Arabia, Research Grant No. 2014/01/2046.

Received: 30 December 2014 Accepted: 29 May 2015 Published online: 01 July 2015

References
1. Presic, SB: Sur la convergence des suites. C. R. Acad. Sci. Paris 260, 3828-3830 (1965)
2. Presic, SB: Sur une classe d'inequations aux differences finite et sur la convergence de certaines suites. Publ. Inst.
Math. (Belgr) 5(19), 75-78 (1965)
3. Ciric, LB, Presic, SB: On Presic type generalisation of Banach contraction principle. Acta Math. Univ. Comen. LXXVI(2),
143-147 (2007)
4. Pacurar, M: Approximating common fixed points of Presic-Kannan type operators by a multi-step iterative method.
An. Stiint. Univ. ‘Ovidius’ Constanta 17(1), 153-168 (2009)
5. Pacurar, M: Fixed points of almost Presic operators by a k-step iterative method. An. Stiint. Univ. ‘ALl Cuza’ lasi, Mat.
LVII, 199-210 (2011)
6. Rao, KPR, Mustaq Ali, M, Fisher, B: Some Presic type generalizations of the Banach contraction principle. Math. Morav.
15(1),41-47 (2011)
7. Pacurar, M: Common fixed points for almost Presic type operators. Carpath. J. Math. 28(1), 117-126 (2012)
8. Khan, MS, Berzig, M, Samet, B: Some convergence results for iterative sequences of Presic type and applications. Adv.
Differ. Equ. (2012). doi:10.1186/1687-1847-2012-38
9. George, R, Reshma, KP, Rajagopalan, R: A generalised fixed point theorem of Presic type in cone metric spaces and
application to Markov process. Fixed Point Theory Appl. (2011). doi:10.1186/1687-1812-2011-85
10. Shukla, S: Presic type results in 2-Banach spaces. Afr. Math. (2013). doi:10.1007/513370-013-0174-2
11. Shukla, S, Fisher, B: A generalization of Presic type mappings in metric-like spaces. J. Oper. 2013, Article ID 368501
(2013)


http://dx.doi.org/10.1186/1687-1847-2012-38
http://dx.doi.org/10.1186/1687-1812-2011-85
http://dx.doi.org/10.1007/s13370-013-0174-2

Pathak et al. Fixed Point Theory and Applications (2015) 2015:101

17.
18.
19.

20.
AR

22.
23.
24.

25.
26.

27.
28.

29.
30.
31

32.

. Shukla, S, Sen, R: Set-valued Presic-Reich type mappings in metric spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat,, Ser. A

Mat. (2012). doi:10.1007/513398-012-0114-2
Shukla, S, Radenovic, S, Pantelic, S: Some fixed point theorems for Presic-Hardy-Rogers type contractions in metric
spaces. J. Math. 2013, Article ID 295093 (2013). doi:10.1155/2013/295093

. Chen, YZ: A Presic type contractive condition and its applications. Nonlinear Anal. (2009).

doi:10.1016/j.na.2009.03.006

. Bakhtin, IA: The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Pedagog. Inst. 30,

26-37 (1989)

Boriceanu, M: Strict fixed point theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math. 4(3), 285-301
(2009)

Boriceanu, M, Bota, M, Petrusel, A: Multivalued fractals in b-metric spaces. Cent. Eur. J. Math. 8(2), 367-377 (2010)
Bota, M, Molnar, A, Csaba, V: On Ekeland's variational principle in b-metric spaces. Fixed Point Theory 12,21-28 (2011)
Plebaniak, R: New generalized pseudodistance and coincidence point theorem in a b-metric space. Fixed Point
Theory Appl. 2013, 270 (2013)

Czerwik, S: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5-11 (1993)

Czerwik, S: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46,
263-276 (1998)

Czerwik, S, Dlutek, K, Singh, SL: Round-off stability of iteration procedures for operators in b-metric spaces. J. Natur.
Phys. Sci. 11, 87-94 (1997)

Czerwik, S, Dlutek, K, Singh, SL: Round-off stability of iteration procedures for set valued operators in b-metric spaces.
J.Natur. Phys. Sci. 15, 1-8 (2001)

Pacurar, M: A multi-step iterative method for approximating common fixed points of Presic-Rus type operators on
metric spaces. Stud. Univ. Babes-Bolyai, Math. LV(1), 149-162 (2010)

Ferrante, A, Levy, B: Hermitian solution of the equation X = Q + N*X~"N. Linear Algebra Appl. 247, 359-373 (1996)
Huang, M, Huang, C, Tsai, T: Application of Hilbert's projective metric to a class of positive nonlinear operators. Linear
Algebra Appl. 413,202-211 (2006)

Hasanov, VI: Positive definite solutions of matrix equations X & AX"9A = Q. Linear Algebra Appl. 404, 166-182 (2005)
Duan, X, Liao, A, Tang, B: On the nonlinear matrix equation X — 221 A,*X‘S'A,* = Q. Linear Algebra Appl. 429, 110-121
(2008)

Liu, XG, Gao, H: On the positive definite solutions of the matrix equation X* = £A" XA =, . Linear Algebra Appl. 368,
83-97 (2003)

Lim, Y: Solving the nonlinear matrix equation X = Q + Y, M:X% M?, via a contraction principle. Linear Algebra Appl.
430, 1380-1383 (2009)

Thompson, AC: On certain contraction mappings in a partially ordered vector space. Proc. Am. Math. Soc. 14, 438-443
(1963)

Nussbaum, RD: Hilbert's projective metric and iterated nonlinear maps. Mem. Am. Math. Soc. 14, 438-443 (1963)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 17 of 17


http://dx.doi.org/10.1007/s13398-012-0114-2
http://dx.doi.org/10.1155/2013/295093
http://dx.doi.org/10.1016/j.na.2009.03.006

	Some generalized ﬁxed point results in a b-metric space and application to matrix equations
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Application to matrix equation
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


