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Abstract
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1 Introduction
Let E denote a real reflexive Banach space with the norm ‖ · ‖, E∗ stand for the dual space
of E. The normalized duality mapping from E to E∗ denoted by J is defined by

Jx =
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E, (.)

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. Let C be a nonempty,
closed, and convex subset of E, F(T) = {x ∈ C : Tx = x} denote the set of fixed points of an
operator T . R and N stand for the set of real numbers and positive integers, respectively.

Given a nonempty, closed, and convex subset C of a Hilbert space H , an operator T :
C → C is said to be a strict pseudo-contraction [] if there exists a constant k ∈ [, ) such
that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C, (.)

and an operator T : C → C is said to be a nonexpansive mapping if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)

It is obvious that the class of strict pseudo-contractions includes the class of nonexpansive
mappings.
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Since nonexpansive fixed point theory can be applied to the solution of diverse problems
such that solving variational inequality problems, equilibrium problems, and convex fea-
sibility problems, strict pseudo-contractions have more powerful applications than non-
expansive mappings in solving inverse problems []. In recent years, construction of an
iterative algorithm for seeking fixed points of nonexpansive mappings and strict pseudo-
contractions has extensively been investigated; see [, –] and the references therein. It
is well known that, in an infinite-dimensional Hilbert space, the normal Mann iterative
algorithm has only weak convergence, in general, even for nonexpansive mappings. So, in
order to get strong convergence for nonexpansive mappings and strict pseudo-contractive
mappings, one has to modify the normal Mann’s iterative algorithm such as the so-called
hybrid projection iteration method.

When one tries to extend this theory to general Banach spaces, some difficulties must be
encountered because many of the useful examples of nonexpansive mappings in Hilbert
spaces are no longer nonexpansive in Banach spaces, for example, the resolvent RA :=
(I + A)– of a maximal monotone mapping A : H → H and the metric projection PC .
In this connection, Alber [] introduced a generalized projection operator �C in Ba-
nach spaces which is an analogue of the metric projection in Hilbert spaces. Recently,
applying the generalized projection operator in reflexive, strictly convex and smooth Ba-
nach spaces with some property, Zhou and Gao [] introduced a modified hybrid pro-
jection iterative algorithm and proved a strong convergence theorem for a closed quasi-
strict pseudo-contraction which is an extension of strict pseudo-contractive mappings
and relatively nonexpansive mappings [–]. In fact, there are several ways to overcome
these difficulties. Another way is to use the Bregman distance instead of the norm, Breg-
man (quasi-)nonexpansive mappings instead of the (quasi-)nonexpansive mappings and
the Bregman projection instead of the metric projection.

In recent years, many authors focused attention on constructing the fixed point of Breg-
man nonlinear operators by utilizing the Bregman distance and the Bregman projection,
see [–] and the references therein. In , Zegeye and Shahzad [] investigated an
iterative scheme for a Bregman relatively nonexpansive mapping. Very recently, Ugwun-
nadi et al. [] introduced the concept of Bregman quasi-strict pseudo-contraction and
proved the strong convergence by using hybrid Bregman projection iterative algorithm for
Bregman quasi-strict pseudo-contractions.

Motivated and inspired by the above works, in this paper we aim to propose a new
simple hybrid Bregman projection iterative algorithm for a Bregman quasi-strict pseudo-
contraction and to prove strong convergence results in the framework of reflexive Banach
spaces. The results presented in this paper improve the known corresponding results an-
nounced in the literature sources listed in this work.

2 Preliminaries
In this section, we collect some preliminaries and lemmas which will be used to prove our
main results.

Throughout this paper E is a real reflexive Banach space with the norm ‖ · ‖ and E∗

is the dual space of E. f : E → (–∞, +∞] is a proper, convex, and lower semi-continuous
function. We denote by dom f the domain of f , that is, dom f := {x ∈ E : f (x) < +∞}. For any
x ∈ int(dom f ) and y ∈ E, the right-hand derivative of f at x in the direction of y is defined
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by

f ◦(x, y) = lim
t→+

f (x + ty) – f (x)
t

. (.)

The function f is said to be Gâteaux differentiable at x if f ◦(x, y) exists for any y. In this case,
f ◦(x, y) coincides with �f (x), the value of the gradient �f of f at x. The function f is called
Gâteaux differentiable if it is Gâteaux differentiable for any x ∈ int dom f . The function f is
said to be Fréchet differentiable at x if this limit is attained uniformly in ‖y‖ = . Finally, f is
called uniformly Fréchet differentiable on a subset C of E if the limit is attained uniformly
for x ∈ C and ‖y‖ = .

Let E be a smooth, strictly convex, and reflexive Banach space. Let φ : E × E → [,∞)
denote the Lyapunov functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)

It is obvious from the definition of φ that

(‖x‖ – ‖y‖) ≤ φ(x, y) ≤ (‖x‖ + ‖y‖), ∀x, y ∈ E. (.)

The generalized projection [] �C from E onto C is defined and denoted by

�C(x) = arg min
y∈C

φ(y, x). (.)

A point p ∈ C is said to be an asymptotic fixed point of a mapping T if C contains a
sequence {xn} which converges weakly to p such that limn→∞ ‖xn –Txn‖ = . We denote by
F̂(T) the set of asymptotic fixed points of T . A point p ∈ C is said to be a strong asymptotic
fixed point of a mapping T if C contains a sequence {xn} which converges strongly to p
such that limn→∞ ‖xn – Txn‖ = . We denote by F̃(T) the set of strong asymptotic fixed
points of T .

Let T : C → C be a mapping, and recall the following definitions:
(a) T is said to be relatively nonexpansive [–] if F̂(T) = F(T) �= ∅ and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (.)

(b) T is said to be relatively weak nonexpansive if F̃(T) = F(T) �= ∅ and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (.)

(c) T is said to be hemi-relatively nonexpansive if F(T) �= ∅ and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (.)

(d) T is said to be quasi-φ-strictly pseudo-contractive [] if F(T) �= ∅ and there exists a
constant k ∈ [, ) such that

φ(p, Tx) ≤ φ(p, x) + kφ(x, Tx), ∀x ∈ C, p ∈ F(T). (.)
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Remark . From the definitions, one has the following facts.
() The class of relatively nonexpansive mappings is included by the class of relatively

weak nonexpansive mappings. In fact, for any mapping T : C → C, we have
F(T) ⊂ F̃(T) ⊂ F̂(T). Therefore, if T is a relatively nonexpansive mapping, then
F(T) = F̃(T) = F̂(T).

() The class of relatively weak nonexpansive mappings is contained by the class of
hemi-relatively nonexpansive mappings. Hemi-relatively nonexpansive mappings do
not require F(T) = F̃(T).

() The class of quasi-φ-strict pseudo-contractions is more general than the class of
hemi-relatively nonexpansive mappings. In fact, a hemi-relatively nonexpansive
mapping is a quasi-φ-strict pseudo-contraction with k = .

Let f : E → (–∞, +∞] be a Gâteaux differentiable function. The function Df : dom f ×
int dom f → [, +∞) defined by

Df (y, x) := f (y) – f (x) –
〈
�f (x), y – x

〉
(.)

is called the Bregman distance with respect to f , see []. The Bregman distance has the
following two important properties:

(i) (The three point identity): for any x ∈ dom f and y, z ∈ int dom f ,

Df (x, y) + Df (y, z) – Df (x, z) =
〈
�f (z) – �f (y), x – y

〉
; (.)

(ii) (The four point identity): for any y, w ∈ dom f and x, z ∈ int dom f ,

Df (y, x) – Df (y, z) – Df (w, x) + Df (w, z) =
〈
�f (z) – �f (x), y – w

〉
. (.)

Recall that the Bregman projection [] of x ∈ int dom f onto the nonempty closed and
convex set C ⊂ dom f is the unique vector Pf

C(x) ∈ C satisfying

Df
(
Pf

C(x), x
)

= inf
{

Df (y, x) : y ∈ C
}

. (.)

It should be observed that if E is a smooth Banach space, setting f (x) = ‖x‖ for all
x ∈ E, we have �f (x) = Jx for all x ∈ E. Hence Df (x, y) reduces to the Lyapunov function
φ(x, y) = ‖‖ – 〈x, Jy〉 + ‖y‖ for all x, y ∈ E and the Bregman projection Pf

C(x) reduces
to the generalized projection �C from E onto C. If E is a Hilbert space H , then Df (x, y)
becomes φ(x, y) = ‖x – y‖ for x, y ∈ H and the Bregman projection Pf

C(x) becomes the
metric projection PC from E onto C.

Similarly to the metric projection in a Hilbert space, Bregman projections with respect
to totally convex and differentiable functions have variational characterizations.

Lemma . (see Butnariu and Resmerita []) Suppose that f is Gâteaux differentiable
and totally convex on int dom f . Let x ∈ int dom f and let C ⊂ int dom f be a nonempty,
closed, and convex set. If x̂ ∈ C, then the following conditions are equivalent:
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(a) The vector x̂ is the Bregman projection of x onto C with respect to f , i.e., z = Pf
C(x);

(b) The vector x̂ is the unique solution of the variational inequality

〈
�f (x) – �f (z), z – y

〉 ≥ , ∀y ∈ C; (.)

(c) The vector x̂ is the unique solution of the inequality

Df (y, z) + Df (z, x) ≤ Df (y, x), ∀y ∈ C. (.)

Let x ∈ int dom f , the subdifferential of f at x is the convex set defined by

∂f (x) =
{

x∗ ∈ E∗ : f (x) +
〈
x∗, y – x

〉 ≤ f (y),∀y ∈ E
}

. (.)

The Fenchel conjugate of f is the function f ∗ : E∗ → (–∞, +∞] defined by

f ∗(x∗) = sup
{〈

x∗, x
〉
– f (x) : x ∈ E

}
, x∗ ∈ E∗. (.)

The function f is said to be essentially smooth if ∂f is both locally bounded and single-
valued on its domain. It is called essentially strictly convex if (∂f )– is locally bounded on its
domain and f is strictly convex on every convex subset of dom ∂f . f is said to be a Legendre
if it is both essentially smooth and essentially strictly convex. When the subdifferential of
f is single-valued, it coincides with the gradient ∂f = �f , see [].

We remark that if E is a reflexive Banach space, then we have
(i) f is essentially smooth if and only if f ∗ is essentially strictly convex, see [];

(ii) (∂f )– = ∂f ∗, see [];
(iii) f is Legendre if and only if f ∗ is Legendre, see [];
(iv) If f is Legendre, then �f is a bijection satisfying �f = (�f ∗)–,

ran�f = dom�f ∗ = int dom f ∗ and ran�f ∗ = dom�f = int dom f , see [].
The following result is useful in the next section.

Lemma . (see Bauschke et al. []) Suppose x ∈ E and y ∈ int dom f . If f is essentially
strictly convex, then Df (x, y) =  ⇔ x = y.

When E is a smooth and strictly convex Banach space, one important and interesting
example of a Legendre function is f (x) = 

p‖x‖p ( < p < ∞). In this case the gradient �f of f
coincides with the generalized duality mapping of E, i.e., �f = Jp ( < p < ∞). In particular,
�f = I , the identity mapping in Hilbert spaces.

Let f : E → (–∞, +∞] be a Gâteaux differentiable function. The modulus of total con-
vexity of f at x ∈ dom f is the function νf (x, ·) : [, +∞) → [, +∞] defined by

νf (x, t) := inf
{

Df (y, x) : y ∈ dom f ,‖y – x‖ = t
}

. (.)

The function f is called totally convex at x if νf (x, t) > , whenever t > . The function
f is called totally convex if it is totally convex at any point x ∈ int dom f . The function f is
said to be totally convex on bounded sets if νf (B, t) >  for any nonempty bounded subset
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B of E and t > , where the modulus of total convexity of the function f on the set B is the
function νf : int dom f × [, +∞) → [, +∞] defined by

νf (B, t) := inf
{
νf (x, t) : x ∈ B ∩ dom f

}
. (.)

Recall that the function f is said to be sequentially consistent [] if for any two se-
quences {xn} and {yn} in E such that the first one is bounded,

lim
n→∞ Df (yn, xn) =  ⇒ lim

n→∞‖yn – xn‖ = . (.)

The following lemmas will be useful in the proof of the next section.

Lemma . (see Butnariu and Iusem []) The function f is totally convex on bounded
sets if and only if the function f is sequentially consistent.

Lemma . (see Reich and Sabach []) Let f : E →R be a Gâteaux differentiable and to-
tally convex function. If x ∈ E and the sequence {Df (xn, x)} is bounded, then the sequence
{xn} is bounded too.

Recall the following definitions.

Definition . Let C be a subset of E and let T : C → C be a mapping.
() T is said to be Bregman relatively nonexpansive if F̂(T) = F(T) �= ∅ and

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F(T). (.)

() T is said to be Bregman weak relatively nonexpansive if F̃(T) = F(T) �= ∅ and

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F(T). (.)

() T is said to be Bregman quasi-nonexpansive if F(T) �= ∅ and

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F(T). (.)

() T is said to be Bregman quasi-strictly pseudo-contractive [] if there exists a
constant k ∈ [, ) and F(T) �= ∅ such that

Df (p, Tx) ≤ Df (p, x) + kDf (x, Tx), ∀x ∈ C, p ∈ F(T). (.)

() A mapping T : C → C is said to be closed if for any sequence {xn} ⊂ C with
xn → x ∈ C and Txn → y ∈ C as n → ∞, then Tx = y.

Remark . From the definitions, the following facts are obtained easily.
() Bregman relatively nonexpansive mappings, Bregman weak relatively nonexpansive

mappings, Bregman quasi-nonexpansive mappings, and Bregman quasi-strict
pseudo-contractions are more general than relatively nonexpansive mappings,
relatively weak nonexpansive mappings, hemi-relatively nonexpansive mappings,
and quasi-φ-strictly pseudo-contractions, respectively.
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() The class of Bregman quasi-strictly pseudo-contractions is more general than the
class of Bregman relatively nonexpansive mappings, the class of Bregman weak
relatively nonexpansive mappings, and the class of Bregman quasi-nonexpansive
mappings.

Now, we give some examples of Bregman quasi-strict pseudo-contractions.

Example . (see Reich and Sabach []) Let E be a real reflexive Banach space, A : E →
E∗ be a maximal monotone mapping and f : E → (–∞, +∞] be a uniformly Fréchet dif-
ferentiable and bounded on bounded subsets of E such that A– �= ∅, then the resolvent

Resf
A(x) = (�f + A)– ◦�f (x) (.)

is closed and Bregman relatively nonexpansive from E onto D(A), so is a closed Bregman
quasi-strict pseudo-contraction.

Example . Let E be a smooth Banach space, and define f (x) = ‖x‖ all x ∈ E. Let x �= 
be any element of E, T : E → E be defined as follows:

T(x) =

⎧
⎨

⎩
( 

 + 
n+ )x, if x = ( 

 + 
n )x;

–x, if x �= ( 
 + 

n )x
(.)

for all n ≥ . Then T is a Bregman quasi-strict pseudo-contraction.

Proof Since �f (y) = Jy, the Bregman distance with respect to f

Df (x, y) = f (x) – f (y) –
〈∇f (y), x – y

〉

= ‖x‖ – ‖y‖ – 〈Jy, x – y〉
= ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E. (.)

Therefore, we have from (.) that

Df (x, Tx) = ‖x‖ – 〈x, JTx〉 + ‖Tx‖ ≥ (‖x‖ – ‖Tx‖) ≥ , ∀x ∈ E. (.)

From the definition of T , it is obvious that F(T) = {}. In addition, it is easy to see that
‖Tx‖ ≤ ‖x‖, which implies that

‖Tx‖ – ‖x‖ ≤ 〈, JTx – Jx〉 = 〈p, JTx – Jx〉, ∀p ∈ F(T), x ∈ E. (.)

It follows from the above inequality that

‖p‖ – 〈p, JTx〉 + ‖Tx‖ ≤ ‖p‖ – 〈p, Jx〉 + ‖x‖, ∀p ∈ F(T), x ∈ E. (.)

By using (.), (.), and (.), we have

Df (p, Tx) ≤ Df (p, x) + kDf (x, Tx), ∀p ∈ F(T), x ∈ E, (.)

which implies that T is a Bregman quasi-strict pseudo-contraction. �
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Example . (see Ugwunnadi et al. []) Let E = R and define T , f : [–, ] → R by f (x) =
x and Tx = x for all x ∈ [–, ]. Then T is a Bregman quasi-strict pseudo-contraction but
not a quasi-φ-strict pseudo-contraction.

3 Main results
In this section, we state and prove our main theorem.

Theorem . Let E be a real reflexive Banach space, C be a nonempty, closed, and con-
vex subset of E. Let f : E → R be a Legendre function which is bounded, uniformly Fréchet
differentiable, and totally convex on bounded subsets of E, and T : C → C be a closed and
Bregman quasi-strict pseudo-contraction such that F(T) �= ∅. Let {xn} be a sequence gener-
ated by the following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

C = C,

x = Pf
C

(x),

Cn+ = {z ∈ Cn : Df (xn, Txn) ≤ 
–κ

〈∇f (xn) – ∇f (Txn), xn – z〉},
xn+ = Pf

Cn+
(x), n ≥ ,

(.)

where κ ∈ [, ). Then the sequence {xn} converges strongly to p̂ = Pf
F(T)(x), where Pf

F(T) is
the Bregman projection of E onto F(T).

Proof The proof is split into seven steps.
Step : Show that F(T) is closed and convex.
First, we prove that F(T) is closed. Let {pn} be a sequence in F(T) with pn → p as n → ∞.

One has Tpn = pn → p as n → ∞. By the closedness of T , one has Tp = p. This implies that
F(T) is closed.

Next we prove that F(T) is convex. For any p, p ∈ F(T), t ∈ (, ), putting p = tp + ( –
t)p, we prove that p ∈ F(T). From the definition of Bregman distance Df (x, y), one has

Df (p, Tp) = f (p) – f (Tp) –
〈∇f (Tp), p – Tp

〉

= f (p) – f (Tp) – t
〈∇f (Tp), p – Tp

〉
– ( – t)

〈∇f (Tp), p – Tp
〉

= f (p) + t
[
f (p) – f (Tp) –

〈∇f (Tp), p – Tp
〉]

+ ( – t)
[
f (p) – f (Tp) –

〈∇f (Tp), p – Tp
〉]

– tf (p) – ( – t)f (p)

= f (p) + tDf (p, Tp) + ( – t)Df (p, Tp) – tf (p) – ( – t)f (p). (.)

Since T is Bregman quasi-strictly pseudocontractive, one has

tDf (p, Tp) + ( – t)Df (p, Tp)

≤ t
{

Df (p, p) + κDf (p, Tp)
}

+ ( – t)
{

Df (p, p) + κDf (p, Tp)
}

= t
{

f (p) – f (p) –
〈∇f (p), p – p

〉
+ κDf (p, Tp)

}

+ ( – t)
{

f (p) – f (p) –
〈∇f (p), p – p

〉
+ κDf (p, Tp)

}

= tf (p) + ( – t)f (p) – f (p) + κDf (p, Tp). (.)
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Substituting (.) into (.), one obtains

Df (p, Tp) = f (p) + tDf (p, Tp) + ( – t)Df (p, Tp) – tf (p) – ( – t)f (p)

≤ f (p) + tf (p) + ( – t)f (p) – f (p) + κDf (p, Tp) – tf (p) – ( – t)f (p)

= κDf (p, Tp), (.)

which implies that Df (p, Tp) ≤ , and from Lemma ., it follows that Tp = p. Therefore,
F(T) is also convex. Hence F(T) is closed and convex, and Pf

F(T)(x) is well defined for
every x ∈ C.

Step : Show that Cn is closed and convex for all n ≥ .
In fact, for n = , C = C is closed and convex. By induction, assume that Ck is closed and

convex for some k ∈N. For z ∈ Ck+, one obtains

Df (xk , Txk) ≤ 
 – κ

〈∇f (xk) – ∇f (Txk), xk – z
〉
. (.)

It is easy to see that Ck+ is also closed and convex. Then, for all n ≥ , Cn is closed and
convex. Furthermore, Pf

Cn (x) is well defined for every x ∈ C and n ≥ .
Step : Show that F(T) ⊂ Cn for all n ≥ .
It is obvious that F(T) ⊂ C = C. Suppose that F(T) ⊂ Ck for some k ∈ N, for all p ∈ F(T),

one has p ∈ Ck . Since T is Bregman quasi-strictly pseudocontractive, one has

Df (p, Txk) ≤ Df (p, xk) + κDf (xk , Txk). (.)

On the other hand, in view of the three point identity of the Bregman distance, one has

Df (p, Txk) = Df (p, xk) + Df (xk , Txk) +
〈∇f (xk) – ∇f (Txk), p – xk

〉
. (.)

Substituting (.) into (.), one has

Df (p, xk) + Df (xk , Txk) +
〈∇f (xk) – ∇f (Txk), p – xk

〉 ≤ Df (p, xk) + κDf (xk , Txk), (.)

that is,

Df (xk , Txk) ≤ 
 – κ

〈∇f (xk) – ∇f (Txk), xk – p
〉
, (.)

which implies that p ∈ Ck+. From this it follows that F(T) ⊂ Cn for all n ≥ .
Step : Show that limn→∞ Df (xn, x) exists.
In fact, since xn = Pf

Cn (x), from Lemma .(b), one has

〈∇f (x) – ∇f (xn), y – xn
〉 ≤ , ∀y ∈ Cn, (.)

and since F(T) ⊂ Cn for all n ≥ , we arrive at

〈∇f (x) – ∇f (xn), p – xn
〉 ≤ , ∀p ∈ F(T). (.)
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From Lemma .(c), one has

Df (xn, x) = Df
(
Pf

Cn (x), x
) ≤ Df (p, x) – Df

(
p, Pf

Cn (x)
) ≤ Df (p, x) (.)

for each p ∈ F(T) and for each n ≥ . Therefore, {Df (xn, x)} is bounded. In view of
Lemma ., one has {xn} is also bounded.

On the other hand, noticing that xn = Pf
Cn (x) and xn+ = Pf

Cn+
(x) ∈ Cn+ ⊂ Cn, one has

Df (xn, x) ≤ Df (xn+, x) for all n ≥ . This implies that {Df (xn, x)} is a nondecreasing se-
quence. Therefore, limn→∞ Df (xn, x) exists.

Step : Show that xn → p̂ as n → ∞.
Since {xn} is bounded and E is reflexive, there exists a subsequence {xni} ⊂ {xn} such

that xni ⇀ p̂ ∈ C = C. Since Cn is closed and convex and Cn+ ⊂ Cn, this implies that Cn is
weakly closed and p̂ ∈ Cn for all b ≥ . In view of xni = Pf

Cni
(x), one has

Df (xni , x) ≤ Df (̂p, x), ∀ni ≥ . (.)

Since f is a lower semi-continuous function on the convex set C, it is weakly lower semi-
continuous on C. Hence we have

lim inf
i→∞ Df (xni , x) = lim inf

i→∞
{

f (xni ) – f (x) –
〈∇f (x), xni – x

〉}

≥ f (̂p) – f (x) –
〈∇f (x), p̂ – x

〉

= Df (̂p, x). (.)

Therefore, one has

Df (̂p, x) ≤ lim inf
i→∞ Df (xni , x) ≤ lim sup

i→∞
Df (xni , x) ≤ Df (̂p, x), (.)

which implies that

lim
i→∞ Df (xni , x) = Df (̂p, x), (.)

and so f (xni ) → f (̂p) as n → ∞. Since f is uniformly continuous, one has

lim
i→∞ xni = p̂. (.)

On the other hand, noticing that {Df (xn, x)} is convergent, this together with (.) im-
plies that

lim
n→∞

{
Df (xn, x)

}
= Df (̂p, x). (.)

Therefore f (xn) → f (̂p) as n → ∞. Since f is uniformly continuous, one has

lim
n→∞ xn = p̂. (.)

Step : Show that p̂ = Tp̂.
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Since xn+ = Pf
Cn+

(x) ∈ Cn+, from (.) one has

Df (xn, Txn) ≤ 
 – k

〈∇f (xn) – ∇f (Txn), xn – xn+
〉
, (.)

which together with limn→∞ xn = p̂ implies that

lim
n→∞ Df (xn, Txn) = . (.)

Noticing that f is totally convex on bounded subsets of E, from Lemma . f is sequentially
consistent. It follows that

lim
n→∞‖xn – Txn‖ = . (.)

Since xn → p̂ as n → ∞, by the closedness of T , we have Tp̂ = p̂.
Step : Show that p̂ = Pf

F(T)(x).
Taking n → ∞ in (.), one has

〈∇f (x) – ∇f (̂p), p – p̂
〉 ≤ , ∀p ∈ F(T). (.)

In view of Lemma .(a), one has p̂ = Pf
F(T)(x). This completes the proof of Theorem ..

�

Since the class of Bregman quasi-nonexpansive mappings is Bregman quasi-strict
pseudo-contractive, the following corollary is obtained by using Theorem ..

Corollary . Let E be a real reflexive Banach space, C be a nonempty, closed, and convex
subset of E. Let f : E → R be a Legendre function which is bounded, uniformly Fréchet
differentiable, and totally convex on bounded subsets of E, and T : C → C be a closed and
Bregman quasi-nonexpansive mapping such that F(T) �= ∅. Let {xn} be a sequence generated
by the following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

C = C,

x = Pf
C

(x),

Cn+ = {z ∈ Cn : Df (xn, Txn) ≤ 〈∇f (xn) – ∇f (Txn), xn – z〉},
xn+ = Pf

Cn+
(x), n ≥ .

(.)

Then the sequence {xn} converges strongly to p̂ = Pf
F(T)(x), where Pf

F(T) is the Bregman pro-
jection of E onto F(T).

Setting f (x) = ‖x‖ for all x ∈ E, then �f (x) = Jx for all x ∈ E. Hence Df (x, y) reduces
to the Lyapunov function φ(x, y) = ‖‖ – 〈x, Jy〉 + ‖y‖ for all x, y ∈ E, the Bregman pro-
jection Pf

C(x) reduces to the generalized projection �C from E onto C and the Bregman
quasi-nonexpansive mapping reduces to the hemi-relatively nonexpansive mapping. So,
by utilizing Corollary ., the following corollary is obtained.
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Corollary . Let E be a real reflexive, smooth, and strictly convex Banach space, C be
a nonempty, closed, and convex subset of E. Suppose that T : C → C is a closed hemi-
relatively nonexpansive mapping such that F(T) �= ∅. Let {xn} be a sequence generated by
the following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

C = C,

x = �C (x),

Cn+ = {z ∈ Cn : φ(xn, Txn) ≤ 〈J(xn) – J(Txn), xn – z〉},
xn+ = �Cn+ (x), n ≥ .

(.)

Then the sequence {xn} converges strongly to p̂ = �F(T)(x), where �F(T) is the generalized
projection of E onto F(T).

Similar to Corollary ., the following corollary can be obtained from Theorem ..

Corollary . Let E be a real reflexive, smooth, and strictly convex Banach space, C be a
nonempty, closed, and convex subset of E. Suppose that T : C → C is a closed and quasi-
φ-strict pseudo-contraction such that F(T) �= ∅. Let {xn} be a sequence generated by the
following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

C = C,

x = �C (x),

Cn+ = {z ∈ Cn : φ(xn, Txn) ≤ 
–κ

〈J(xn) – J(Txn), xn – z〉},
xn+ = �Cn+ (x), n ≥ .

(.)

Then the sequence {xn} converges strongly to p̂ = �F(T)(x), where �F(T) is the generalized
projection of E onto F(T).

4 Applications
4.1 Application to equilibrium problems
Let C be a nonempty, closed, and convex subset of a real reflexive Banach space E. Let
g : C × C →R be a bifunction that satisfies the following conditions:

(A) g(x, x) =  for all x ∈ C;
(A) g is monotone, i.e., g(x, y) + g(y, x) ≤  for all x, y ∈ C;
(A) for all x, y, z ∈ C,

lim sup
t↓

g
(
tz + ( – t)x, y

) ≤ g(x, y); (.)

(A) for each x ∈ C, g(x, ·) is convex and lower semicontinuous.
The so-called equilibrium problem corresponding to g is to find x̄ ∈ C such that

g(x̄, y) ≥ , ∀y ∈ C. (.)
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The set of its solutions is denoted by EP(g). The resolvent of a bifunction g : C × C → R

is the operator Resf
g : E → C defined by

Resf
g(x) =

{
z ∈ C : g(z, y) +

〈
�f (z) – �f (x), y – z

〉 ≥ ,∀y ∈ C
}

. (.)

The resolvent operator Resf
g has the following properties:

() Resf
g is single-valued;

() The set of fixed points of Resf
g is the solution set of the corresponding equilibrium

problem, i.e., F(Resf
g) = EP(g);

() Resf
g is a closed Bregman quasi-nonexpansive mapping, so is a closed Bregman

quasi-strict pseudo-contraction.

Theorem . Let E be a real reflexive Banach space, C be a nonempty, closed, and con-
vex subset of E. Let g : C × C → R be a bifunction that satisfies conditions (A)-(A) such
that EP(g) �= ∅. Let f : E → R be a Legendre function which is bounded, uniformly Fréchet
differentiable, and totally convex on bounded subsets of E, and Resf

g : E → C be a resol-
vent operator defined as (.). Let {xn} be a sequence generated by the following iterative
algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

C = C,

x = Pf
C

(x),

Cn+ = {z ∈ Cn : Df (xn, Resf
g(xn)) ≤ 

–κ
〈∇f (xn) – ∇f (Resf

g(xn)), xn – z〉},
xn+ = Pf

Cn+
(x), n ≥ ,

(.)

where κ ∈ [, ). Then the sequence {xn} converges strongly to p̂ = Pf
EP(g)(x), where Pf

EP(g) is
the Bregman projection of E onto EP(g).

Proof Since Resf
g is a closed Bregman quasi-strict pseudo-contraction, by applying Theo-

rem ., the sequence {xn} converges strongly to p̂ = Pf
EP(g)(x). �

4.2 Application to variational inequality problems
Let C be a nonempty subset of a real reflexive Banach space E with dual E∗. Let A : C ⊆
E → E∗ be a nonlinear mapping. The variational inequality problem for a nonlinear map-
ping A and its domain C is to find x̄ ∈ C such that

〈Ax̄, y – x̄〉 ≥ , ∀y ∈ C. (.)

The set of solutions of the variational inequality problem is denoted by VI(C, A).
Recall the definition of Bregman inverse strongly monotone operators which was intro-

duced by Butnariu and Kassay []. We assume that the Legendre function f satisfies the
following range condition:

ran(�f – A) ⊆ ran(�f ). (.)
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The operator A : E → E is called Bregman inverse strongly monotone if

(dom A) ∩ (int dom f ) �= ∅ (.)

and for any x, y ∈ int dom f and each u ∈ Ax, v ∈ Ay, we have

〈
u – v,�f ∗(�f (x) – u

)
– �f ∗(�f (y) – v

)〉 ≥ . (.)

For any operator A : E → E∗ , the anti-resolvent Af : E → E of A is defined by

Af := �f ∗ ◦ (�f – A). (.)

Observe that dom Af ⊆ (dom A) ∩ (int dom f ) and ran Af ⊆ int dom f .
The following result which points out the connection between the fixed point set of

Pf
C ◦ Af and the solution set of the variational inequality corresponding to the Bregman

inverse strongly monotone operator A was introduced by Reich and Sabach [].

Lemma . Let f : E → (–∞, +∞] be a Legendre and totally convex function which satis-
fies the range condition ran(�f –A) ⊆ ran(�f ). Let A : E → E∗ be a Bregman inverse strongly
monotone mapping. If C is a nonempty, closed, and convex subset of (dom A) ∩ (int dom f ),
then () VI(C, A) = F(Pf

C ◦ Af ); () Pf
C ◦ Af is a Bregman relatively nonexpansive mapping,

so is a closed Bregman quasi-strict pseudo-contraction.

Theorem . Let E be a real reflexive Banach space, C be a nonempty, closed, and convex
subset of E. Let A : E → E∗ be a Bregman inverse strongly monotone operator such that
C ⊂ (dom A) and VI(C, A) �= ∅. Let f : E → R be a Legendre function which is bounded,
uniformly Fréchet differentiable, and totally convex on bounded subsets of E. Assume that
the range condition ran(�f –A) ⊆ ran(�f ) is satisfied for A. Let {xn} be a sequence generated
by the following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

C = C,

x = Pf
C

(x),

Cn+ = {z ∈ Cn : Df (xn, Pf
C ◦ Af (xn))

≤ 
–κ

〈∇f (xn) – ∇f (Pf
C ◦ Af (xn)), xn – z〉},

xn+ = Pf
Cn+

(x), n ≥ ,

(.)

where κ ∈ [, ). Then the sequence {xn} converges strongly to p̂ = Pf
VI(C,A)(x), where Pf

VI(C,A)
is the Bregman projection of E onto VI(C, A).

4.3 Application to zero point problem of maximal monotone operators
Let E be a real reflexive Banach space, A : E → E∗ be a maximal monotone operator. The
problem of finding an element x ∈ E such that ∗ ∈ Ax is very important in optimization
theory and related fields.



Wang Fixed Point Theory and Applications  (2015) 2015:91 Page 15 of 17

Recall that the resolvent of A, denoted by Resf
A : E → E , is defined as follows:

Resf
A(x) = (�f + A)– ◦�f (x). (.)

From Example ., we know that Resf
A is a closed Bregman quasi-strict pseudo-

contraction. So the following result is obtained easily by applying Theorem ..

Theorem . Let E be a real reflexive Banach space with the dual E∗, A : E → E∗ be a
maximal monotone operator with A–(∗) �= ∅. Let f : E →R be a Legendre function which
is bounded, uniformly Fréchet differentiable, and totally convex on bounded subsets of E.
Let Resf

A : E → E be the resolvent with respect to A. Let {xn} be a sequence generated by
the following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

C = C,

x = Pf
C

(x),

Cn+ = {z ∈ Cn : Df (xn, Resf
A(xn)) ≤ 

–κ
〈∇f (xn) – ∇f (Resf

A(xn)), xn – z〉},
xn+ = Pf

Cn+
(x), n ≥ ,

(.)

where κ ∈ [, ). Then the sequence {xn} converges strongly to p̂ = Pf
A–(∗)(x), where Pf

A–(∗)
is the Bregman projection of E onto A–(∗).

5 Numerical examples
In this section, we use a numerical example to demonstrate the convergence of Theo-
rem ..

Let E = R, C = [–, ], f (x) = 
 x, Tx = –x, k ∈ [ 

 , ). From the definition of T , it is
obvious that  is the unique fixed point of T , that is, F(T) = {}, one can easily prove that

D(, Tx) ≤ D(, x) + kD(x, Tx), ∀x ∈ [–, ], k ∈
[




, 
)

(.)

(see Example . of Ugwunnadi et al. []). Hence, T is a closed and Bregman quasi-strict
pseudo-contraction. In fact, one can prove that from the definition of Bregman distance,
we have

Df (xn, Txn) = f (xn) – f (Txn) –
〈
�f (Txn), xn – Txn

〉

=



x
n –




x
n +

〈



xn, xn

〉

= x
n. (.)

On the other hand, we compute that

〈
�f (xn) – �f (Txn), xn – z

〉
= 〈xn, xn – z〉 = x

n – xnz. (.)
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Figure 1 x0 = 1, k = 0.9, the convergence process of the sequence {xn} generated by (5.5).

From (.) and (.), the Cn+ of algorithm (.) can be evolved into the following:

Cn+ =
{

z ∈ Cn : z ≤ k – 


xn

}
. (.)

Therefore, algorithm (.) can be simplified as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ [–, ] chosen arbitrarily,

C = C = [–, ],

x = Pf
C

(x),

Cn+ = {z ∈ Cn : z ≤ k–
 xn},

xn+ = Pf
Cn+

(x) = k–
 xn, n ≥ .

(.)

So, the sequence {xn} converges strongly to p̂ = Pf
F(T)(x) =  by using Theorem ..

Take the initial point x = , k = ., the numerical experiment result using software
Matlab . is given in Figure , which shows that the iteration process of the sequence {xn}
converges to .
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