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Abstract
We study self-mappings on complete metric spaces, which we refer to as higher-order
Lipschitz mappings. These mappings generalise Lipschitz mappings, the latter which
are equivalent to first-order Lipschitz mappings studied in this paper. The main result
of this paper is to extend the Banach fixed point theorem (and an often-cited
generalisation) to higher-order contraction mappings. We also present results on the
problem of local Lipschitzity of these higher-order Lipschitz mappings.
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1 Introduction
Let (X , d) be a complete metric space and let T : X → X be a Lipschitz mapping, that is,
d(Ty, Tx) ≤ cd(y, x) for all x, y ∈ X where c ≥ . When  ≤ c < , then T is referred to as a
contraction mapping and when c = , then T is referred to as a non-expansive mapping. In
this paper, we consider the following generalisation of Lipschitz mappings:

Definition . (Higher-order Lipschitz mapping) A mapping T : X → X on a metric
space (X , d) is an rth-order Lipschitz mapping if

d
(
Try, Trx

) ≤
r–∑

k=

ckd
(
Tky, Tkx

) ∀x, y ∈X , ()

where r is a natural number and ck , for all  ≤ k ≤ r – , are non-negative real numbers.

An example is when X is a finite dimensional vector space and T : X → X is a matrix.
Indeed, by the Cayley-Hamilton theorem [, ], T in this case satisfies an identity

f (T) = Tr – ar–Tr– – · · · – a = ,

where f (z) = zr – ar–zr– – · · · – a denotes the characteristic polynomial of T . It follows
that we have the identity

Try – Trx = ar–
(
Tr–y – Tr–x

)
+ · · · + a(y – x),
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which upon taking norms and using the triangle inequality gives us

∥
∥Try – Trx

∥
∥ ≤ cr–

∥
∥Tr–y – Tr–x

∥
∥ + · · · + c‖y – x‖, ()

where ck := |ak|. Now, as in the first-order case, we classify higher-order Lipschitz map-
pings into three cases, thus

• T is an rth-order contraction mapping if the polynomial p(z) := zr –
∑r–

k= ckzk is
stable, that is, |λ| <  if p(λ) = .

• T is an rth-order non-expansive mapping if the polynomial p(z) := zr –
∑r–

k= ckzk is
tamely unstable, that is, there exists at least a magnitude-wise dominating root λ ∈ C

such that p(λ) =  and |λ| = .
• T is an rth-order expansive (Lipschitz) mapping if the polynomial

p(z) := zr –
∑r–

k= ckzk is wildly unstable, that is, there exists λ ∈C such that |λ| >  and
p(λ) = .

Here, C denotes the field of complex numbers. In Section , we give equivalent classifica-
tion based on the coefficients ck .

In the following subsections, we review the pertinent results on the fixed point theory
of Lipschitz mappings and show the relationship with the fixed point theory of the higher-
order counterparts as introduced above.

1.1 Fixed point theory of contraction mappings in metric spaces
The basic result of metric fixed point theory is the Banach [] fixed point theorem (or the
contraction mapping theorem).

Theorem . (Banach fixed point) Let (X , d) be a complete metric space and let T : X →
X be a contraction mapping. Then T has a unique fixed point given by the limit of Picard
iterates xn+ := Txn.

Theorem . is particularly useful in the demonstration of existence and uniqueness of
solutions to certain problems in analysis and economics (see [–]). A survey of various
extensions of Theorem . can be found in []; we highlight the important results related
to those demonstrated in this paper. First, the higher-order contraction case when r > 
and ck =  for all k ≥  is an often-cited generalisation in many texts on Theorem .; this
is the case when Tr , but not Tk for all k < r, is a contraction mapping; that is:

Theorem . Let (X , d) be a complete metric space and T : X → X a mapping such that
Tr is a contraction for some r > . Then T has a unique fixed point given by the limit of
Picard iterates xn+ := Txn.

In Section , we demonstrate that the conclusions of Theorems . and . extend to all
higher-order contraction mappings. Both (first-order) contraction mappings and the rth-
order contraction mappings defined in Theorem . are special cases of the now-proven
generalised Banach contraction conjecture (see Jachymski [], Merryfield-Stein [] and
Arvanitakis []).
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Theorem . (Generalised Banach contraction theorem) Let (X , d) be a complete metric
space and let T : X →X be a mapping such that

min
≤i≤r

y�=x

d(Tiy, Tix)
d(y, x)

≤ c

for some natural number r and real number c ∈ (, ). Then T has a unique fixed point.

In the present paper, we demonstrate the closely related result that an rth-order con-
traction mapping satisfies the minimising inequality

min
≤i≤r

Ti–y�=Ti–x

d(Tiy, Tix)
d(Ti–y, Ti–x)

≤ c ()

for some real number c ∈ (, ). Indeed inequality () also holds true for higher-order non-
expansive and higher-order expansive mappings, respectively, for some c =  and c > .

Now an early continuous mapping generalisation of the Banach fixed point theorem is
the following result due to Caccioppoli []:

Theorem . Let (X , d) be a complete metric space and let T : X →X be a mapping such
that

d
(
Tny, Tnx

) ≤ qnd(y, x), ()

where {qn}n≥ is a summable non-negative sequence independent ofX . Then T has a unique
fixed point given by the limit of the Picard iterates xn+ := Txn.

Whereas higher-order contraction mappings do not generally satisfy the hypothesis of
Theorem . (note that the mappings satisfying Theorem . are necessarily uniformly
continuous), we demonstrate in Section  that when the additional requirement of conti-
nuity is imposed on a higher-order contraction mapping, the inequality () holds locally
in the sense that for every given x ∈ X , there exists an (open) subset S ⊂ X (depending
on, but not necessarily a neighbourhood of, x) such that for all x ∈ S

d
(
Tnx, Tnx

) ≤ Mcnd(x, x)

for some constants M ≥  and c ∈ (, ). Indeed the same is true for higher-order non-
expansive and higher-order expansive mappings, respectively, but with the constant c = 
and c > .

In general, higher-order Lipschitz mappings are not reducible to lower-order Lipschitz
mappings within the same metric space (X , d). Whereas Lipschitz mappings are (uni-
formly) continuous mappings, this need not be the case for general higher-order Lipschitz
mappings; they may not even be continuous: for instance, the function T : R → R given
by

Tx :=

⎧
⎨

⎩
 if x < ,

 if x ≥ ,
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with the metric induced by the usual absolute value on R, is discontinuous at x =  but we
observe that Tx =  and so

∣∣Ty – Tx
∣∣ =  ≤ c|y – x|

for any c ≥ , thus making T a second-order Lipschitz (indeed, second-order contraction)
mapping. The immediate cases for which a higher-order Lipschitz mapping may be of
lower-order is when it is actually of lower-order on X itself (for instance, matrices, which
are actually (first-order) Lipschitz mappings but satisfy () and also when it is of lower-
order on T(X ); an example in the latter case is the mapping T : R →R given by

Tx :=

⎧
⎨

⎩
 – x if x < ,

x if x ≥ ,

with the metric induced by the usual absolute value on R. Obviously T is discontinuous
at x =  and noting that T = T , then |Ty – Tx| = |Ty – Tx|; in other words, T is second-
order non-expansive mapping but at the same time it is (first-order) non-expansive on the
metric subspace (T(R), | · |). We shall refer to T when it is actually of lower-order on X or
T(X ) as a trivial mapping.

1.2 Fixed point theory of non-contraction mappings in Banach spaces
Now, for non-contraction mappings, complete metric spaces are in general not sufficient
to guarantee the existence or uniqueness fixed points; in this regard, usually, compactness
and/or convexity of subsets of normed linear spaces is required. Some noteworthy results
are as follows.

Theorem . (Edelstein []) Let T be a contractive mapping on a compact metric space,
that is, d(Ty, Tx) ≤ d(y, x) with equality only if x = y. Then T has a unique fixed point given
by the limit of Picard iteration xn+ := Txn.

Theorem . (Kirk []) Let T be a non-expansive self-mapping on a weakly compact con-
vex subset C of a Banach space with normal structure - that is, for any bounded non-empty
convex subset K ⊂ C there exists a point x ∈ K such that supx∈K ‖x – x‖ < diam(K) :=
supx,y∈K ‖x – y‖. Then T has a fixed point.

Theorem . (Schaudera []) Let T be a Lipschitz self-mapping on a compact convex
subset of a Banach space. Then T has a fixed point.

In the present paper, we do not investigate the fixed point theory of higher-order Lip-
schitz mappings under the hypotheses in Theorems ., . and . above. These are de-
ferred to a sequel to this paper.

2 Preliminaries
First of all, we recall the following definitions:

A nowhere dense subset of a topological space is a set whose closure has an empty interior
in the topological space; that is, it contains no open neighbourhood of its elements in the
topological space.
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A real matrix is non-negative if all its entries are non-negative real numbers; it is positive
if all the entries are positive real numbers.

A non-negative matrix A is irreducible if for every pair of indices i, j, there exists a natural
number n such that (An)ij > .

A real non-negative matrix A is primitive if there exists an integer n ≥  such that An is
positive; thus, a primitive matrix is irreducible.

A polynomial f (z) is non-degenerate if whenever α �= β but f (α) = f (β) = , then α �= ζβ ,
where ζ is a root of unity.

An rth-order linear recurrence sequence Sn, satisfying the recursive equation Sn+r =
∑r–

k= ckSn+k , is non-degenerate if the associated characteristic polynomial p(z) = zr –
∑r–

k= ckzk is non-degenerate.
The following useful results are necessary for the proof of our main results. As used

below and elsewhere, we employ the Kronecker delta symbol δjk , which equals  when
j = k and equals  if otherwise.

Theorem . Let Sn be an rth-order linear recurrence sequence satisfying the recursion
Sn+r =

∑r–
k= ckSn+k . Let p(z) = zr –

∑r–
k= ckzk be the associated characteristic polynomial

having distinct (complex) roots λ,λ, . . . with respective multiplicities μ,μ, . . . - thus
∑

i μi = r. Then Sn has an explicit form

Sn =
∑

i

pi(n)λn
i ,

where pi(n) is a polynomial of degree μi – . Also, Sn has an implicit form

Sn =
r–∑

j=

Ij(n)Sj,

where Ij(n) - an impulse-response sequence of Sn - is also an rth-order linear recurrence se-
quence satisfying the same recursion as Sn with initial values Ij(k) = δjk for all  ≤ j, k ≤ r –.

Proof See for instance [], Sections .. through ... �

The following corollary, which follows straightforwardly from the above theorem, is
what is most useful for our purposes here.

Corollary . Using the notation of Theorem ., define λ := max |λi| and μ := maxμi.
Then |Sn| ≤ Kλnnμ– for some absolute constant K >  independent of n, λ, μ; moreover, if
λ < , then limn→∞ Sn = .

Theorem . (Skolem-Mahler-Lech [–]) The set of zeroes of a linear recurrence se-
quence Sn over a field of characteristic zero comprises a finite set together with a finite num-
ber of arithmetic progressions. If Sn is non-degenerate, then the set of zeroes is finite.

Remark The set referred to is the set of indices n for which Sn =  and in either case it
may be empty.

Theorem . (Baire category []) Let X be a complete metric space. Then X is not the
countable union of nowhere dense closed sets.
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Theorem . (Perron-Frobenius [, ]) Let A be an irreducible non-negative r × r ma-
trix with spectral radius ρ(A). Then the following statements hold:

. ρ(A) is an eigenvalue of A and it is uniquely dominating if A is primitive;
. mini

∑
j Aij ≤ ρ(A) ≤ maxi

∑
j Aij;

. Collatz-Wielandt formula: Let N := {v = {vj ≥ }r
j= : ∃i, vi �= }. Then

ρ(A) = maxv∈N min≤i≤r,vi �=

vi

(Av)i.

Remark The Perron-Frobenius theorem is more general than this but this suffices for
our purposes here. By a uniquely dominating eigenvalue, we imply one which is a unique
maximum in absolute value.

Theorem . (Keilson-Styan inequality []) Let A be a non-negative r × r matrix with
spectral radius ρ(A). Then det(tI – A) ≤ tr – ρ(A)r for all t ≥ ρ(A).

Theorem . (Rouché) Let g(z) = zr and h(z) =
∑r–

k= akzk be complex-valued polynomials
such that g(R) >

∑r–
k= |ak|Rk for a real number R > , then the polynomial f (z) := g(z) – h(z)

has all its roots lying strictly inside the circle |z| = R.

Proof This follows immediately from a more general theorem of Rouché, a proof of which
can be found in Titchmarsh []. �

Theorem . (Bolzano’s intermediate value []) If a continuous real function defined on
an interval is sometimes positive and sometimes negative, then it must be  at some point
in the interval.

Theorem . (Descartes’ rule of signs) Let f (z) :=
∑r

k= akzk be an rth degree polynomial
over the real numbers ak . Then the number of positive real roots of f is bounded above by
the number of sign changes of the coefficients ak as one proceeds from k =  to k = r (ignoring
zero coefficients).

Proof See for instance []. �

Proposition . Let p(z) = zr –
∑r–

k= ckzk , where ck ≥ , be a polynomial.
(i) If p is stable, then  < p() ≤  and there exists λ ∈ [, ), which is unique and

positive if c �= , such that p(λ) = .
(ii) If p is tamely unstable, then p() =  and  is the only positive root of p.

(iii) If p is wildly unstable, then p() <  and there exists a unique positive λ >  such that
p(λ) = .

Proof First of all, that p() ≤  follows since ck ≥ .
For (i): Suppose to the contrary that p() ≤ . Now we note that for real numbers t,

we have limt→∞ p(t) = ∞ and as such there exists t ≥  such that p(t) ≥ . Given that
p is a continuous function (on the whole of the real line), then by Bolzano’s intermediate
value theorem (Theorem .), there exists t ∈ [, t] such that p(t) = , contradicting
the fact that by assumption we should rather have t < . Finally since p() = –c ≤  and
p() >  then (by Bolzano’s intermediate value theorem again) there exists λ ∈ [, ) such
that p(λ) = . The uniqueness of λ when c �= , in which case λ cannot be , follows from
Descartes’ rule of signs (Theorem .).
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For (ii): If  – p() =
∑r–

k= ck < , then from Rouché’s theorem (Theorem .) all roots of
p(z) would be strictly less than  in absolute value; hence p() ≤ . Now suppose to the
contrary that p() < ; hence there exists t >  such that p(t) ≥  and so by Bolzano’s
intermediate value theorem there exists t ∈ (, t] such that p(t) = , contradicting the
fact that by assumption we should rather have t ≤ ; thus p() = . That  is the only
positive root follows from Descartes’ rule of signs.

For (iii): Supposing to the contrary that p() ∈ [, ], then we would have  – p() ∈ [, ].
But that would imply from Rouché’s theorem that all roots of p(z) are at most  in absolute
value, which is a contradiction. Finally, since p() <  and limt→∞ p(t) = ∞, by Bolzano’s
intermediate value theorem, there exists λ >  such that p(λ) = , the uniqueness of which
follows from Descartes’ rule of signs. �

Corollary . Let T be a second-order Lipschitz mapping on (X , d). Then the inequality
() takes the form

d
(
Ty, Tx

) ≤ (
λ – λ′)d(Ty, Tx) + λλ′d(y, x),

where  ≤ λ′ ≤ λ.

Proof By Proposition ., one root of the polynomial p(z) = z – cz – c is real and non-
negative, λ say; hence given that c ≥  then the other root must be real and non-positive,
–λ′ say, where λ′ ≥ . We can therefore factor p(z) as p(z) = (z – λ)(z + λ′) = z – (λ – λ′)z –
λλ′ and given that c = λ – λ′ ≥ , the conclusion follows. �

Lemma . Let p(z) := zr –
∑r–

k= ckzk , where ck ≥ , be a polynomial with unique positive
root λ as given by Proposition .. Then

. λ dominates all other roots of p(z); furthermore, λ is a uniquely dominating root if
p(z) is non-degenerate.

. λ ∈ [ – p(), ( – p())/r], λ =  and λ ∈ (,  – p()] if p is stable, tamely unstable
and wildly unstable, respectively.

Proof We observe that the (companion) non-negative matrix

C :=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

   . . . 
   . . . 
...

...
...

. . .
...

   . . . 
c c c . . . cr–

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

()

has the characteristic polynomial p(z) := zr –
∑r–

k= ckzk . Now let Ij(n) be the rth-order
impulse-response sequence with characteristic polynomial p(z) and initial values Ij(k) = δjk

for all  ≤ j, k ≤ r – . If we define the column vector v(n) := [Ij(n), Ij(n + ), . . . , Ij(n + r – )]T

then v(n + ) = Cv(n) and since v() = [δj,, δj,, . . . , δj,r–]T, then it follows by induction that

Ij(n + k) =
(
v(n)

)
k+ =

(
Cv(n – )

)
k+ = · · · =

(
Cnv()

)
k+ =

(
Cn)

k+,j+

for all n ≥  and  ≤ j, k ≤ r –. Given that Cn ≥  for all n ≥ , then C would be irreducible
if for any given index j ∈ [, r – ] there exists a sufficiently large natural number n such
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that Ij(n) > ; but if this were not the case, then Ij(n) =  for all sufficiently large n and so
by the Skolem-Mahler-Lech theorem (Theorem .) there would exist a natural m such
that Ij(k + lm) =  for all  ≤ k ≤ m –  and all l ≥ , contradicting the fact that Ij(j) =  �= .
Similarly, when Ij(n) is non-degenerate, that is, when p(z) is a non-degenerate polynomial,
then by the Skolem-Mahler-Lech theorem, there would exist a sufficiently large natural
number nj such that Ij(n) >  for all n ≥ nj; consequently, the matrix Cmaxj{nj} would be
positive and so it follows that C is primitive when p(z) is non-degenerate. This gives the
first part of the lemma.

Now from Proposition ., λ is the unique positive root of p(z); consequently it fol-
lows from the first part of the Perron-Frobenius theorem (Theorem .) that ρ(C) = λ

and the conclusion of the first part of the lemma follows immediately. Finally we observe
that mini

∑
j Cij = min{,

∑r–
k= ck} = min{,  – p()} and similarly we have maxi

∑
j Cij =

max{,
∑r–

k= ck} = max{,  – p()}; but by Proposition ., we have p() > , p() =  and
p() <  if T is rth-order contraction, non-expansive and expansive, respectively; hence
given that ρ(C) = λ, then from the second part of the Perron-Frobenius theorem plus the
fact that λr ≤  – p() when λ ≤  (the Keilson-Styan inequality, Theorem . with t = ),
the second part of the lemma follows. �

Proposition . For all λ ∈ [, ), μ ≥  and integers m ≥ ,

∞∑

k=

λm+k(m + k)μ– < Lλm(m + )μ–

for some absolute constant L dependent only on λ, μ.

Proof First note that the polylogarithm function Li–μ(λ) :=
∑∞

k= λkkμ– converges (via
Cauchy’s root test, say) for all λ ∈ [, ). Now if m ∈ {, } then

∞∑

k=

λm+k(m + k)μ– =
∞∑

k=

λkkμ– = Li–μ(λ),

from which the proposition follows in that case by setting, for instance, L := ( +
Li–μ(λ)) max{, –μ/λ}. Now when m ≥  and using the fact that mk ≥ m + k when also
k ≥ , then we have

∞∑

k=

λm+k(m + k)μ– = λm(
mμ– + λ(m + )μ–) +

∞∑

k=

λm+k(m + k)μ–

≤ λm(
mμ– + λ(m + )μ–) +

∞∑

k=

λm+k(mk)μ–

= λm(
mμ– + λ(m + )μ–) + λmmμ–

∞∑

k=

λkkμ–

= λm(
mμ– + λ(m + )μ–) + λmmμ–(–λ + Li–μ(λ)

)

< λm(m + )μ–( + λ – λ + Li–μ(λ)
)

= λm(m + )μ–( + Li–μ(λ)
)
.

Setting L := ( + Li–μ(λ)) max{, –μ/λ} as before, the proposition follows. �
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Proposition . Let T : X → Y be a mapping between metric spaces (X , dX ) and
(Y , dY ). Then T is continuous at x∗ ∈X if and only if for every sequence {xn}n≥ converging
to x∗ we find that the sequence {Txn}n≥ is Cauchy.

Proof Indeed if T is continuous at x∗, then the conclusion of the proposition holds true,
hence it suffices for us to show that limn→∞ Txn = Tx∗ for every sequence {xn}n≥ converg-
ing to x∗. Suppose to the contrary that for some sequence {xn}n≥ converging to x∗ we have
limn→∞ Txn �= Tx∗ and we define a sequence {un}n≥ by un = x∗ and un+ = xn. Clearly un

converges to x∗ but since we have

lim
n→∞ dY (Tun+, Tun) = lim

n→∞ dY
(
Txn, Tx∗) �= 

we find that {Tun}n≥ is not Cauchy, which is a contradiction. Hence limn→∞ Txn = Tx∗ for
any sequence {xn}n≥ converging to x∗ and so T is continuous at x∗. �

3 Main result
We now prove our main results. We begin with a direct proof of the fixed point theorem
for higher-order contraction mappings; thereafter, we provide a re-metrisation argument
that relates higher-order Lipschitz mappings to (first-order) Lipschitz mappings. This re-
metrisation of the original metric space does not necessarily result in a complete metric
space even if the former is complete; consequently, we shall need a completion of the re-
metrised space and an extension of the higher-order Lipschitz mapping into the complete
re-metrised space.

3.1 Higher-order contraction mappings
The main result of this subsection is as follows, which extends the conclusion of the Ba-
nach fixed point theorem (Theorem .) to higher-order contraction mappings:

Theorem . (Higher-order contraction mapping theorem) Let (X , d) be a complete met-
ric space and let T : X → X be an rth-order contraction mapping. Then T has a unique
fixed point and limn→∞ Tnx converges to this fixed point for arbitrary x ∈X .

We accomplish the proof below, but we require the following auxiliary lemma.

Lemma . The sequence {Tnx}n≥ is Cauchy for all x ∈ X ; moreover, limn→∞ Tny =
limn→∞ Tnx for all x, y ∈X .

Proof For all x := x, y := y ∈ X let xn := Tnx and yn := Tny. Then from the inequality (),
we have

d(ym+r , xm+r) ≤
r–∑

k=

ckd(ym+k , xm+k) ()

for all m ≥ . Now we prove by induction that

d(yn, xn) ≤
r–∑

j=

Ij(n)d(yj, xj), ()
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where Ij(n) satisfies Ij(n + r) =
∑r–

k= ckIj(n + k) and Ij(k) = δjk for all  ≤ k ≤ r –  (thus, Ij(n)
is an impulse-response sequence). Indeed inequality () already holds with equality when
 ≤ n := k ≤ r – , which serves as our base cases for the induction; thus for some non-
negative integer m, suppose it holds for n = m, m + , . . . , m + r – . Then from inequality
() we have

d(ym+r , xm+r) ≤
r–∑

k=

ckd(ym+k , xm+k)

≤
r–∑

k=

ck

r–∑

j=

Ij(m + k)d(yj, xj)

=
r–∑

j=

d(yj, xj)
r–∑

k=

ckIj(m + k)

=
r–∑

j=

d(yj, xj)Ij(m + r).

Thus inequality () holds for n = m + r as well and so it holds for all n ≥ . From Corol-
lary ., Ij(n) →  as n → ∞ and so from inequality () d(yn, xn) →  as n → ∞; hence
from the continuity of d, we have d(limn→∞ yn, limn→∞ xn) =  and thus limn→∞ Tny =
limn→∞ Tnx, assuming the limit exists, which we show next.

Henceforward we make the substitution y = Tx, thus xn+ = Txn. We show that {xn}n≥

is Cauchy but this is trivial if x = x, that is, if x is a fixed point; hence we assume that
x �= x. Now let n > m and letting λ and μ denote, respectively, the maximum in absolute
value and multiplicity of the roots of the polynomial p(z) = zr –

∑r–
k= ckzk , then via the

triangle inequality of d, inequality (), Corollary . and Proposition ., we have

d(xn, xm) ≤
n–m–∑

k=

d(xm+k+, xm+k)

≤
n–m–∑

k=

r–∑

j=

Ij(m + k)d(xj+, xj)

=
r–∑

j=

d(xj+, xj)
n–m–∑

k=

Ij(m + k)

≤ K
r–∑

j=

d(xj+, xj)
n–m–∑

k=

λm+k(m + k)μ–

< K
r–∑

j=

d(xj+, xj)
∞∑

k=

λm+k(m + k)μ–

< KLλm(m + )μ–
r–∑

j=

d(xj+, xj).

Note that
∑r–

j= d(xj+, xj) �=  since by assumption x �= x. Now given that  ≤ λ < , it
follows that λm(m + )μ– →  as m → ∞, hence for any arbitrary ε > , we can find N(ε)
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large enough such that

λm(m + )μ– <
ε

KL
∑r–

j= d(xj+, xj)
∀m ≥ N(ε),

which implies that d(xn, xm) < ε for all n > m ≥ N(ε) and thus the sequence {xn}n≥ is
indeed Cauchy. �

Proof of Theorem . Indeed by Lemma . the sequence {xn := Tnx}n≥ is Cauchy
for any arbitrary x ∈ X and is therefore convergent, say limn→∞ Tnx = limn→∞ Txn =
x∗ ∈X . Consequently limn→∞ Tnx∗ = x∗ and so the set S(x∗) := {Tnx∗}n≥ is a closed sub-
set of X ; indeed (S(x∗), d) is a complete metric subspace of X such that T(S(x∗)) ⊆ S(x∗).
But for every sequence {sn}n≥ ⊆ S(x∗) convergent to x∗, it follows from Lemma . that
the sequence {Tsn}n≥ is Cauchy; hence given that x∗ ∈ S(x∗), then by Proposition . it
follows that T is continuous at x∗ in S(x∗) and consequently Tx∗ = x∗. Now to see that x∗

is a unique fixed point, observe that if Ty∗ = y∗ for some y∗ �= x∗ then

 < d
(
y∗, x∗) = d

(
Try∗, Trx∗)

≤
r–∑

k=

ckd
(
Tky∗, Tkx∗)

=
r–∑

k=

ckd
(
y∗, x∗)

=
(
 – p()

)
d
(
y∗, x∗).

But by Proposition ., we have  < p() ≤ , which leads to the contradiction that  <
d(y∗, x∗) ≤ ( – p())d(y∗, x∗) < d(y∗, x∗). Equivalently, in a more straightforward fashion,
if y∗ �= x∗ is also a fixed point, then we get the contradiction (via Lemma .) that y∗ =
limn→∞ Tny∗ = limn→∞ Tnx∗ = x∗. This completes the proof of Theorem .. �

3.2 The general case
Now we consider the general case of higher-order Lipschitz mappings. First of all, it is
worthy of note the theorem of Bessaga [] states that whenever X is an arbitrary set with
a self-map T satisfying the property that each iterate Tn has a unique fixed point, then for
each c ∈ (, ), there exists a metric dc on X such that (X , dc) is a complete metric space
and T is a contraction mapping on (X , dc). Thus in light of Theorem . demonstrated in
the previous subsection, we are motivated to consider a re-metrisation of the space (X , d)
over which a higher-order Lipschitz mapping is defined.

Now let T be an rth-order Lipschitz mapping on a complete metric space (X , d) as given
in () and let λ be the unique positive root of the polynomial p(z) = zr –

∑r–
k= ckzk as guar-

anteed by Proposition ., in particular we assume that p() �= . Define a new metric on
the space X as follows:

D(y, x) =
r–∑

k=

bkd
(
Tky, Tkx

)
, where bk =

k∑

j=

cjλ
j–k–. ()
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That D is a metric on X is straightforward. Indeed, D is non-negative since d and bk are
non-negative and it is sub-additive since d is sub-additive; furthermore, D(y, x) =  if and
only if y = x since bk �=  (because, by assumption, c �= ) and finally D(y, x) = D(x, y).

Now we have the following lemma.

Lemma . Let (X , d) be a (not necessarily complete) metric space and let T : X → X be
an rth-order Lipschitz mapping. Let D be the new metric defined in (). Then

D(Ty, Tx) ≤ λD(y, x).

Moreover, a sequence {xn}n≥ ⊂ (X , D) is Cauchy in (X , D) if and only if the sequence
{Tkxn}n≥ ⊂ (X , d) is Cauchy in (X , d) for all  ≤ k ≤ r – .

First, we prove the following recurrence relation for the constants bk in ().

Proposition . Let bk be as defined in (). Then

b = λ–c, br– = ,

bk = λ–(bk– + ck),  ≤ k ≤ r – .

Proof Obviously, b =
∑

j= cjλ
j–k– = cλ

–. Then also

br– =
r–∑

j=

cjλ
j–r = λ–r

r–∑

j=

cjλ
j = λ–r(λr – p(λ)

)
= .

Finally,

bk =
k∑

j=

cjλ
j–k– = λ–

k–∑

j=

cjλ
j–k + ckλ

– = λ–(bk– + ck),

which completes the proof. �

Proof of Lemma . Via Proposition ., we have

D(Ty, Tx) =
r–∑

k=

bkd
(
Tk+y, Tk+x

)

=
r∑

k=

bk–d
(
Tky, Tkx

)

= br–d
(
Try, Trx

)
+

r–∑

k=

bk–d
(
Tky, Tkx

)

≤
r–∑

k=

ckd
(
Tky, Tkx

)
+

r–∑

k=

bk–d
(
Tky, Tkx

)

= cd(y, x) +
r–∑

k=

(bk– + ck)d
(
Tky, Tkx

)
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= λbd(y, x) +
r–∑

k=

λbkd
(
Tky, Tkx

)

= λ

r–∑

k=

bkd
(
Tky, Tkx

)

= λD(y, x).

Finally, since bk �=  for all  ≤ k ≤ r – , then we note from () that if limn≥m→∞ D(xn, xm) =
, then likewise limn≥m→∞ d(Tkxn, Tkxm) =  for all  ≤ k ≤ r – ; similarly, if
limn≥m→∞ d(Tkxn, Tkxm) =  for all  ≤ k ≤ r – , then likewise limn≥m→∞ D(xn, xm) = ,
which completes the proof. �

We note in the first place that Lemma . does not imply that T is uniformly continu-
ous (or even continuous) in (X , d) as was noted in the introduction; rather, T is Lipschitz
continuous (and therefore uniformly continuous) in (X , D). Secondly, when λ < , then the
Banach fixed point theorem (Theorem .) cannot be applied to assert that T has a fixed
point in (X , D) unless T is continuous in (X , d); however, the following theorem reme-
dies the case when T is discontinuous on (X , d). To proceed, let (X , D) be the canonical
completion of the metric space (X , D); that is,

D
(
[yn], [xn]

)
:= lim

n→∞ D(yn, xn),

where {yn}n≥, {xn}n≥ are Cauchy sequences in (X , D) and [xn] denotes the equivalence
class of {xn}n≥ in (X , D), where {yn}n≥ is equivalent to {xn}n≥ if limn→∞ D(yn, xn) = .

Theorem . Define the mapping,

T : X →X , [xn] �→ [Txn].

Then we have

D
(
T[yn], T[xn]

) ≤ λD
(
[yn], [xn]

)
.

In particular, if (X , d) is complete, then T has a fixed point in (X , d) if and only if T has a
fixed point in (X , D).

Proof Since {xn}n≥ is Cauchy in (X , D) then, by Lemma .,

D(Txn, Txm) ≤ λD(xn, xm)

and so {Txn}n≥ is Cauchy in (X , D); thus T is well defined. Now given Cauchy sequences
{yn}n≥, {xn}n≥ in (X , D), then we have

D
(
T[yn], T[xn]

)
= D

(
[Tyn], [Txn]

)

= lim
n→∞ D(Tyn, Txn)

≤ λ lim
n→∞ D(yn, xn)

= λD
(
[yn], [xn]

)
.



Ezearn Fixed Point Theory and Applications  (2015) 2015:88 Page 14 of 18

Finally, if x = Tx in (X , d), then let [x] be the equivalence class of the constant sequence
{x, x, x, . . .} ∈ (X , D). Then

T[x] = [Tx] = [x].

On the other hand, if [xn] = T[xn] = [Txn] in (X , D), then by Lemma ., T is continuous
at x := limn→∞ xn in (X , d), hence

Tx = lim
n→∞ Txn = lim

n→∞ xn = x,

which completes the proof. �

4 Local Lipschitzity
If r > , a natural question that arises is whether there are pairs x, y ∈ X and a constant
c >  such that d(Tny, Tnx) ≤ cnd(y, x) for all n ≥ ; such a pair is therefore Lipschitzian
under T , in the sense that this would be the case if T were a Lipschitz mapping with
Lipschitz constant c. In this section, motivated by the existence of the unique positive
real root λ of the polynomial p(z) (in Definition .) when p() �= , we show that near-
local Lipschitzity of open subsets exists with respect to an arbitrary point: that is, given
x ∈ X there exists an open subset S ⊂ X and positive real number m ≥  such that
d(Tnx, Tnx) ≤ mλ

nd(x, x) for all x ∈ S . We also prove the closely related result that
there exists an open subset S of X  and real number m ≥  such that d(Tny, Tnx) ≤
mλ

nd(y, x) for all (x, y) ∈ S . Though plausible, we are not able to determine whether or
when local Lipschitzity can occur (non-trivially) in either case, that is, whether or when
m can take the value .

Unless otherwise mentioned, we assume p() �=  throughout the remaining part of this
subsection.

Proposition . Let (X , d) be a complete metric space and let T be an rth-order Lipschitz
mapping on X . For every pair x �= y ∈X define

M := M(y, x) = max
≤k≤r–

λ–k d(Tky, Tkx)
d(y, x)

.

Then

M = max
n≥

λ–n d(Tny, Tnx)
d(y, x)

.

Proof We prove by induction; by definition the conclusion holds up to n = r – , hence
assuming the conclusion holds up to n + r – , we have

d
(
Tn+ry, Tn+rx

) ≤
r–∑

k=

ckd
(
Tn+ky, Tn+kx

)

≤ M
r–∑

k=

ckλ
n+kd(Ty, Tx)
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= Mλnd(Ty, Tx)
r–∑

k=

ckλ
k

= Mλnd(Ty, Tx)
(
λr – p(λ)

)

= Mλn+rd(Ty, Tx),

and so the conclusion holds for n + r as well and thus it holds for all n. �

Remark Obviously, M(y, x) ≥  for every x, y ∈ X so if M(y, x) can be  for some pair x, y
then T is essentially locally Lipschitz on the pair x, y. We are not able to establish whether
or when local Lipschitzity can occur, but the next results give near misses.

Theorem . Let T be an rth-order Lipschitz mapping on a complete metric space (X , d).
Then for all x, y ∈X

min
≤i≤r

d(Ti–y,Ti–x) �=

d(Tiy, Tix)
d(Ti–y, Ti–x)

≤ λ.

In particular, minx �=y
d(Ty,Tx)

d(y,x) ≤ λ.

Proof Define the column vector v := [d(y, x), . . . , d(Tr–y, Tr–x)]T and let C be the com-
panion non-negative r × r matrix defined in (). Then

Cv =

⎛

⎜
⎜⎜⎜
⎝

d(Ty, Tx)
d(Ty, Tx)

...
∑r–

k= ckd(Try, Trx)

⎞

⎟
⎟⎟⎟
⎠

.

Now by definition of T in Definition . we have (Cv)r ≥ d(Try, Trx), consequently we
have the inequality

min
≤i≤r
vi �=

(Cv)i

vi
≥ min

≤i≤r
d(Ti–y,Ti–x) �=

d(Tiy, Tix)
d(Ti–y, Ti–x)

. ()

But by the Collatz-Wielandt formula of the Perron-Frobenius theorem (Theorem .), the
left-hand side of () attains the maximum value of ρ(C), which equals λ from the proof of
Lemma .. The conclusion of the theorem then follows immediately. �

Remark We note that if the inequality in Theorem . is uniform for all  ≤ i ≤ r for some
x, y ∈X , then the maximum bound M(x, y) as defined in Proposition . would be exactly
equal to .

Theorem . Let T be a continuous higher-order Lipschitz mapping on a complete metric
space (X , d). Then for every x ∈ X there exist an open set S ⊂ X and a natural number
m such that

d
(
Tnx, Tnx

) ≤ mλ
nd(x, x)

for all x ∈ S and n ≥ .
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Proof By Proposition ., there exists a bound M(x, x) for each x, x ∈ X such that
d(Tnx, Tnx) ≤ M(x, x)λnd(x, x) for all n ≥ . For all natural numbers m define the sets

Xm :=
{

x ∈X : M(x, x) ≤ m
}

.

Obviously if {yk}k≥ ⊂ X is a sequence converging to y such that M(x, yk) ≤ m, then via
the continuity of the metric d and of T we have

d
(
Tnx, Tny

)
= lim

k→∞
d
(
Tnx, Tnyk

)

≤ lim
k→∞

M(x, yk)λnd(x, yk)

≤ m lim
k→∞

λnd(x, yk)

= mλnd(x, y)

and as such the sets Xm are all closed. But every x ∈ X is contained in some Xm and so
we have X =

⋃
m≥ Xm. Thus by the Baire category theorem (Theorem .), there exist

m ≥  and an open set S ∈Xm such that M(x, x) ≤ m for all x ∈ S . �

Theorem . Let T be a continuous higher-order Lipschitz mapping on a complete metric
space (X , d). Then there exist an open set S ⊂X  and a natural number m such that

d
(
Tny, Tnx

) ≤ mλ
nd(y, x)

for all (x, y) ∈ S and n ≥ .

Proof The proof is similar to that given for Theorem .. Here we define the sets

Xm :=
{

(x, y) ∈X  : M(y, x) ≤ m
} ∀m ∈ {, , , . . .},

where M(y, x) is the maximum bound defined in Proposition .. With respect to a chosen
metric on X  which agrees with the product topology on X , then X  is also a com-
plete metric space. Furthermore, if {(xk , yk)}k≥ ⊂ X  converges to (x, y) say, such that
M(yk , xk) ≤ m then via the continuity of the metric d and of T we have

d
(
Tny, Tnx

)
= lim

k→∞
d
(
Tnyk , Tnxk

)

≤ lim
k→∞

M(yk , xk)λnd(yk , xk)

≤ m lim
k→∞

λnd(yk , xk)

= mλnd(y, x)

and so the sets Xm are closed. Since every pair (x, y) ∈ X  is contained in some Xm, it
follows that

X  =
⋃

m≥

Xm.
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Thus by the Baire category theorem, there exist m ≥  and an open set S ∈Xm such that
M(y, x) ≤ m for all (x, y) ∈ S . �

Now we have the following problem.

Local Lipschitzity problem Suppose T is a non-trivial rth-order Lipschitz mappings
(that is, T is not of lower order on either T(X ) or X ). Can the constants M and m ap-
pearing in Proposition . and Theorems . and . be exactly equal to ?

The determination of whether or when this can be answered in the affirmative would
demonstrate that there are subsets of elements in a complete metric space from which the
Picard iterations are sharply convergent to the fixed point of a higher-order contraction
mapping on the metric space in question.

5 Conclusion
In light of the fact that a higher-order Lipschitz mapping can be considered as a linear
system of mapping in the form of the matrix inequality

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

d(Ty, Tx)
d(Ty, Tx)

...
d(Tr–y, Tr–x)

d(Try, Trx)

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

≤

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

   . . . 
   . . . 
...

...
...

. . .
...

   . . . 
c c c . . . cr–

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

d(y, x)
d(Ty, Tx)

...
d(Tr–y, Tr–x)
d(Tr–y, Tr–x)

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

it is rather natural to consider mappings when the above matrix inequality can be satis-
fied but with non-negative r × r matrix rather than the companion matrix. We recall that
the tools used in the local-Lipschitzity analysis of higher-order Lipschitz mappings (the
Perron-Frobenius result in particular) are at our disposal to use when we consider a non-
negative matrix instead of just a companion matrix. We therefore propose the following
broader kind of mappings.

Definition . Let (X , d) be a (complete) a metric space. Then a countable collection of
self-mappings {Tk}k≥ on X is said to form an rth-order Lipschitz system of mappings if
there exists an r × r non-negative matrix [ci,j]r

i,j= such that the following matrix inequality
is satisfied:

⎛

⎜⎜
⎜⎜
⎝

d(Tk+y, Tk+x)
d(Tk+y, Tk+x)

...
d(Tk+ry, Tk+rx)

⎞

⎟⎟
⎟⎟
⎠

≤

⎛

⎜⎜
⎜⎜
⎝

c c . . . cr

c c . . . cr
...

...
. . .

...
cr, cr, . . . crr

⎞

⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎝

d(Tky, Tkx)
d(Tk+y, Tk+x)

...
d(Tk+r–y, Tk+r–x)

⎞

⎟⎟
⎟⎟
⎠

.

When Tk := Tk , then (essentially) we achieve an rth-order Lipschitz mapping. One can
then similarly inquire as regards the fixed point theory of such Lipschitz system of map-
pings.
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Endnote
a Schauder’s theorem is more general than this and relates to continuous self-mappings on compact convex subsets

of Banach spaces.
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