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Abstract
In this paper, we derive a best proximity point theorem for non-self-mappings
satisfied proximal cyclic contraction in PM-spaces and this shows the existence of
optimal approximate solutions of certain simultaneous fixed point equations in the
event that there is no solution. As an application we consider a nonlinear
programming problem. Our results extend and improve the recent results of (Sadiq
Basha in Nonlinear Anal. 74(17):5844-5850, 2011).
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1 Introduction
Best proximity point theorems are those results that provide sufficient conditions for the
existence of a best proximity point and algorithms for finding best proximity points. It is
interesting to note that best proximity point theorems generalized fixed point theorems
in a natural fashion. Indeed, if the mapping under consideration is a self-mapping, a best
proximity point becomes a fixed point.

One of the most interesting is the study of the extension of Banach contraction princi-
ple to the case of non-self-mappings. In fact, given nonempty closed subsets A and B of a
complete PM-space (X, F ,∗), a contraction non-self-mapping T : A → B does not neces-
sarily has a fixed point. Eventually, it is quite natural to find an element x such that Fx,Tx(t)
is maximum for a given problem which implies that x and Tx are in close proximity to
each other.

Many problems can be formulated as equations of the form Tx = x, where T is a self-
mapping in some suitable framework. Fixed point theory finds the existence of a solution
to such generic equations and brings out the iterative algorithms to compute a solution to
such equations.

However, in the case that T is non-self-mapping, the aforementioned equation does
not necessarily have a solution. In such a case, it is worthy to determine an approximate
solution x such that the error Fx,Tx(t) is maximum.

2 Preliminaries
Throughout this paper, the space of all probability distribution functions (briefly, d.f.’s) is
denoted by �+ = {F : R ∪ {–∞, +∞} → [, ] : F is left-continuous and non-decreasing on
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R, F() = , and F(+∞) = } and the subset D+ ⊆ �+ is the set D+ = {F ∈ �+ : l–F(+∞) = }.
Here l–f (x) denotes the left limit of the function f at the point x, l–f (x) = limt→x– f (t). The
space �+ is partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if
and only if F(t) ≤ G(t) for all t in R. The maximal element for �+ in this order is the d.f.
given by

ε(t) =

{
, t ≤ ,
, t > .

Definition . ([]) A mapping ∗ : [, ] × [, ] → [, ] is a continuous t-norm if ∗ satis-
fies the following conditions:

(a) ∗ is commutative and associative;
(b) ∗ is continuous;
(c) a ∗  = a for all a ∈ [, ];
(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [, ].

Two typical examples of a continuous t-norm are a ∗ b = ab and a ∗ b = min(a, b).
A t-norm ∗ is said to be of Hadžić type if

∀ε ∈ (, ) ∃δ ∈ (, ): a >  – δ ⇒
n︷ ︸︸ ︷

a ∗ a ∗ · · · ∗ a >  – ε (n ≥ ).

The t-norm minimum is a trivial example of a t-norm of Hadžić type, but there exists a
t-norm of Hadžić type weaker than minimum (see []).

Definition . A probabilistic metric space (briefly, PM-space) is a triple (X, F ,∗), where
X is a nonempty set, ∗ is a continuous t-norm, and F is a mapping from X × X into D+

such that, if Fx,y denotes the value of F at the pair (x, y), the following conditions hold: for
all x, y, z in X,

(PM) Fx,y(t) = ε(t) for all t >  if and only if x = y;
(PM) Fx,y(t) = Fy,x(t);
(PM) Fx,z(t + s) ≥ Fx,y(t) ∗ Fy,z(s) for all x, y, z ∈ X and t, s ≥ .

For more details and examples of these spaces see also [–].

Definition . Let (X, F ,∗) be a PM-space.
() A sequence {xn}n in X is said to be convergent to x in X if, for every ε >  and λ > ,

there exists a positive integer N such that Fxn ,x(ε) >  – λ whenever n ≥ N .
() A sequence {xn}n in X is called Cauchy sequence if, for every ε >  and λ > , there

exists a positive integer N such that Fxn ,xm (ε) >  – λ whenever n, m ≥ N .
() A PM-space (X, F ,∗) is said to be complete if and only if every Cauchy sequence in X

is convergent to a point in X .

Definition . Let (X, F ,∗) be a PM-space. For each p in X and λ > , the strong λ-neigh-
borhood of p is the set

Np(λ) =
{

q ∈ X : Fp,q(λ) >  – λ
}

,
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and the strong neighborhood system for X is the union
⋃

p∈V Np where Np = {Np(λ) :
λ > }.

The strong neighborhood system for X determines a Hausdorff topology for X.

Theorem . ([]) If (X, F ,∗) is a PM-space and {pn} and {qn} are sequences such that
pn → p and qn → q, then limn→∞ Fpn ,qn (t) = Fp,q(t) for every continuity point t of Fp,q.

Lemma . ([]) Let (X, F ,∗) be a Menger PM-space with ∗ of Hadžić-type and {xn} be a
sequence in X such that, for some k ∈ (, ),

Fxn ,xn+ (kt) ≥ Fxn–,xn (t) (n ≥ , t > ).

Then {xn} is a Cauchy sequence.

Let A and B be two nonempty subsets of a PM-space and t > , the following notions
and notations are used in the sequel.

FA,B(t) := sup{Fx,y(t) : x ∈ A, y ∈ B},
A := {x ∈ A : Fx,y(t) = FA,B(t) for some y ∈ B},
B := {y ∈ B : Fx,y(t) = FA,B(t) for some x ∈ A}.

Definition . Let (X, F ,∗) be a PM-space. Given non-self-mappings S : A → B and T :
B → A, the pair (S, T) is said to form a proximal cyclic contraction if there exists a non-
negative number α <  such that

Fu,Sx(t) = FA,B(t),
Fv,Ty(t) = FA,B(t)

}
⇒ Fu,v(t) ≥ min

{
Fx,y

(
t
α

)
, FA,B(t)

}

for all u, x in A and v, y in B and t > .

Note that, if S is a self-mapping that is a contraction, then the pair the pair (S, S) forms
a proximal cyclic contraction.

Definition . Let (X, F ,∗) be a PM-space. A mapping S : A → B is said to be a proximal
contraction of the first kind if there exists a non-negative number α <  such that

Fu,Sx (t) = FA,B(t),
Fu,Sx (t) = FA,B(t)

}
⇒ Fu,u (αt) ≥ Fx,x (t)

for all u, u, x, x in A and t > .

Definition . Let (X, F ,∗) be a PM-space. A mapping S : A → B is said to be a proximal
contraction of the second kind if there exists a non-negative number α <  such that

Fu,Sx (t) = FA,B(t),
Fu,Sx (t) = FA,B(t)

}
⇒ FSu,Su (αt) ≥ FSx,Sx (t)

for all u, u, x, x in A and t > .
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Definition . Let (X, F ,∗) be a PM-space. Given a mapping S : A → B and an isometry
g : A → A, the mapping S is said to preserve isometric distance with respect to g if

FSgx,Sgx (t) = FSx,Sx (t)

for all x and x in A. and t > .

Definition . Let (X, F ,∗) be a PM-space. An element x in A is said to be a best prox-
imity point of the mapping S : A → B if it satisfies the condition that

Fx,Sx(t) = FA,B(t)

for all x in A and t > .

It can be observed that a best proximity reduces to a fixed point if the underlying map-
ping is a self-mapping.

Definition . Let (X, F ,∗) be a PM-space. B is said to be approximatively compact with
respect to A if every sequence {yn} of B satisfying the condition that for all t > , Fx,yn (t) →
Fx,B(t) for some x in A has a convergent subsequence.

It is easy to observe that every set is approximatively compact with respect to itself, and
that every compact set is approximatively compact. Moreover, A and B are non-void if
A is compact and B is approximatively compact with respect to A.

3 Proximal contractions
The following main result is a generalized best proximity point theorem for non-self prox-
imal contractions of the first kind. Our results extend and improve some results of [].

Theorem . Let A and B be non-void closed subsets of a complete PM-space (X, F ,∗)
with ∗ of Hadžić-type such that A and B are non-void. Let S : A → B, T : B → A and
g : A ∪ B → A ∪ B satisfy the following conditions:

(a) S and T are proximal contractions of the first kind.
(b) S(A) ⊆ B and T(B) ⊆ A.
(c) The pair (S, T) forms a proximal cyclic contraction.
(d) g is an isometry.
(e) A ⊆ g(A) and B ⊆ g(B).

Then there exist a unique element x in A and a unique element y in B satisfying the condi-
tions that

Fgx,Sx(t) = FA,B(t),

Fgy,Ty(t) = FA,B(t),

Fx,y(t) = FA,B(t).

Further, for any fixed element x in A, the sequence {xn}, defined by

Fgxn+,Sxn (t) = FA,B(t),
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converges to the element x. For any fixed element y in B, the sequence {yn}, defined by

Fgyn+,Tyn (t) = FA,B(t),

converges to the element y.
On the other hand, a sequence {un} of elements in A converges to x if there is a sequence

{εn} of positive numbers for which

lim
n→∞

n∏
i=

( – εi) = 

in which

n∏
i=

ai = a ∗ · · · ∗ an

for ai ∈ (, ] and

Fun+,zn+ (t) ≥  – εn,

where zn+ ∈ A satisfies the condition that

Fzn+,Sun (t) = FA,B(t)

for t > .

Proof Let x be an element in A. In view of the facts that S(A) is contained in B and
that A is contained in g(A), it is ascertained that there is an element x in A such that

Fgx,Sx (t) = FA,B(t)

for t > . Again, since S(A) is contained in B, and A is contained in g(A), there exists
an element x in A such that

Fgx,Sx (t) = FA,B(t)

for t > . One can proceed further in a similar fashion to find xn in A. Having chosen xn,
one can determine an element xn+ in A such that

Fgxn+,Sxn (t) = FA,B(t),

because of the facts that S(A) is contained in B and that A is contained in g(A). In light
of the facts that g is an isometry and that S is a proximal contraction of the first kind,

Fxn ,xn+ (αt) = Fgxn ,gxn+ (αt) ≥ Fxn–,xn (t)

for t > . Therefore, by Lemma ., {xn} is a Cauchy sequence and hence converges to
some element x in A. Similarly, in view of the facts that T(B) is contained in A and that
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B is contained in g(B), it is guaranteed that there is a sequence {yn} of elements in B

such that

Fgyn+,Tyn (t) = FA,B(t)

for t > . Because g is an isometry and T is a proximal contraction of the first kind, it
follows that

Fyn ,yn+ (αt) = Fgyn ,gyn+ (αt) ≥ Fyn–,yn (t)

for t > . Therefore, by Lemma ., {yn} is a Cauchy sequence and hence converges to
some element y in B. Since the pair (S, T) forms a proximal cyclic contraction and g is an
isometry, it follows that

Fxn+,yn+ (t) = Fgxn+,gyn+ (t) ≥ min

{
Fxn ,yn

(
t
α

)
, FA,B(t)

}

for t > .
Letting n → ∞, since Fx,y(t) ≤ Fx,y(t/α) we have,

Fx,y(t) = FA,B(t)

for t > . Thus, it can be concluded that x is a member of A and that y is a member of B.
Since S(A) is contained in B, and T(B) is contained in A, there exist an element u in A
and an element v in B such that

Fu,Sx(t) = FA,B(t),

Fv,Ty(t) = FA,B(t)

for t > . Because S is a proximal contraction of the first kind,

Fu,gxn+ (αt) ≥ Fx,xn (t)

for t > . Letting n → ∞, we have the result that u = gx. Thus, it follows that

Fgx,Sx(t) = FA,B(t)

for t > . Similarly, it can be shown that v = gy and hence

Fgy,Ty(t) = FA,B(t)

for t > . To prove the uniqueness, let us suppose that there exist elements x∗ in A and y∗

in B such that

Fgx∗ ,Sx∗ (t) = FA,B(t),

Fgy∗ ,Ty∗ (t) = FA,B(t)
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for t > . Since g is an isometry, and the non-self-mappings S and T are proximal contrac-
tions of the first kind, it follows that

Fx,x∗ (αt) = Fgx,gx∗ (αt) ≥ Fx,x∗ (t),

Fy,y∗ (αt) = Fgy,gy∗ (αt) ≥ Fy,y∗ (t)

for t > . Therefore, x and x∗ are identical, and y and y∗ are identical.
On the other hand, let {un}∞n= in which u = x be a sequence of elements in A and {εn}

a sequence (, ) such that

lim
n→∞

n∏
i=

( – εi) = 

and

Fun+,zn+ (t) ≥  – εn,

where zn+ ∈ A satisfies the condition that

Fzn+,Sun (t) = FA,B(t)

for t > . Since S is a proximal contraction of the first kind,

Fxn+,zn+ (αt) ≥ Fxn ,un (t).

Given δ ∈ (, ), for all n ≥ N we have

Fxn+,un+ (t + δ) ≥ Fxn+,zn+ (t) ∗ Fzn+,un+ (δ)

≥ Fxn ,un

(
t
α

)
∗ ( – εn)

≥ Fxn ,un

(
t
α

)
∗ ( – εn–) ∗ ( – εn)

≥ · · · ≥ Fx,u

(
t

αn+

)
∗

n∏
i=

( – εi)

for t > . Since δ ∈ (, ) was arbitrary, we have

Fxn+,un+ (t) ≥
n∏

i=

( – εi)

for t > . Now,

Fun+,x(t) ≥ Fun+,xn+ (t) ∗ Fxn+,x(t)

≥
n∏

i=

( – εi) ∗ Fxn+,x(t)
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for t > . Then

lim
n→∞ Fun+,x(t) → 

for t > , and it can be concluded that {un} converges to x. This completes the proof of the
theorem. �

The following example illustrates the preceding generalized best proximity point theo-
rem.

Example . Consider the complete PM-space (R, F , min) where

Fx,y(t) =
t

t + |x – y| ,

when t >  and

Fx,y(t) = ,

when t ≤  for x, y in R.
Let A = [–, ] and B = [, ].
Let S : A → B, T : B → A, and g : A ∪ B → A ∪ B be defined as

S(x) =
–x


,

T(y) =
–y


,

g(x) = –x.

Then it is easy to see that

FA,B(t) = ,

A = {} and B = {}. The mapping g is an isometry and the non-self-mappings S and
T are proximal contractions of the first kind, and the pair (S, T) forms a proximal cyclic
contraction. The other hypotheses of Theorem . are also satisfied. Further, it is easy
to observe that the element  in A and B satisfy the conditions in the conclusion of the
preceding result.

If g is assumed to be the identity mapping, then Theorem . yields the following best
proximity point result.

Corollary . Let A and B be non-void closed subsets of a complete PM-space (X, F ,∗) with
∗ of Hadžić-type such that A and B are non-void. Let S : A → B and T : B → A satisfy
the following conditions:

(a) S and T are proximal contractions of the first kind.
(b) S(A) ⊆ B and T(B) ⊆ A.
(c) The pair (S, T) forms a proximal cyclic contraction.
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Then there exist a unique element x in A and a unique element y in B satisfying the condi-
tions that

Fx,Sx(t) = FA,B(t),

Fy,Ty(t) = FA,B(t),

Fx,y(t) = FA,B(t)

for t > .

Theorem . Let A and B be non-void closed subsets of a complete PM-space (X, F ,∗) with
∗ of Hadžić-type such that A and B are non-void. Let S : A → B and g : A → A satisfy the
following conditions:

(a) S is a proximal contraction of the first and second kind.
(b) S(A) is contained in B.
(c) g is an isometry.
(d) S preserves isometric distance with respect to g .
(e) A is contained in g(A).

Then there exists a unique element x in A such that

Fgx,Sx(t) = FA,B(t)

for t > . Further, for any fixed element x in A, the sequence {xn}, defined by

Fgxn+,Sxn (t) = FA,B(t),

converges to the element x for t > .
On the other hand, a sequence {un} of elements in A converges to x if there is a sequence

{εn} of positive numbers for which

lim
n→∞

n∏
i=

( – εi) = 

and

Fun+,zn+ (t) ≥  – εn,

where zn+ ∈ A satisfies the condition that

Fzn+,Sun (t) = FA,B(t)

for t > .

Proof Proceeding as in Theorem ., it is possible to find a sequence {xn} of elements in
A such that

Fgxn+,Sxn (t) = FA,B(t)



Saadati Fixed Point Theory and Applications  (2015) 2015:79 Page 10 of 12

for t >  and for all non-negative integral values of n, because of the facts that S(A) is
contained in B and that A is contained in g(A). Due to the facts that S is a proximal
contraction of the first kind and g is an isometry,

Fxn ,xn+ (αt) = Fgxn ,gxn+ (αt) ≥ Fxn–,xn (t)

for t > . Therefore, by Lemma ., {xn} is a Cauchy sequence and hence converges to
some element x in A. Because of the facts that S is a proximal contraction of the second
kind and preserves the isometric distance with respect to g ,

FSxn ,Sxn+ (αt) = FSgxn ,Sgxn+ (αt) ≥ FSxn–,Sxn (t)

for t > . Therefore, by Lemma ., {Sxn} is a Cauchy sequence and hence converges to
some element y in B. Thus, it can be concluded that

Fgx,y(t) = lim
n→∞ Fgxn+,Sxn (t) = FA,B(t).

Eventually, gx is an element of A. Because of the fact that A is contained in g(A), gx = gz
for some member z in A. Owing to the fact that g is an isometry, Fx,z(t) = Fgx,gz(t) = .
Consequently, the elements x and z must be identical, and hence x becomes an element
of A. Because S(A) is contained B,

Fu,Sx(t) = FA,B(t)

for t > , for some element u in A. On account of the fact that the mapping S is a proximal
contraction of the first kind,

Fu,gxn+ (αt) ≥ Fx,xn (t)

for t > . As a result, the sequence {g(xn)} must converge to u. However, because of the
continuity of g , the sequence {g(xn)} converges to gx as well. Therefore, u and gx must be
identical. Thus, we have the result that

Fgx,Sx(t) = Fz,Sx(t) = FA,B(t)

for t > . The uniqueness and the remaining part of the proof follow as in Theorem ..
This completes the proof of the theorem. �

The preceding generalized best proximity point theorem is illustrated by the following
example.

Example . Consider the complete PM-space (R, F , min) where

Fx,y(t) =
t

t + |x – y| ,

when t > , and

Fx,y(t) = ,

when t ≤  for x, y ∈ R.
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Let A = [–, ] and B = [–, –] ∪ [, ]. Then FA,B(t) = t
t+ , A = {–, }, and B = {–, }.

Let S : A → B be defined as

Sx =

{
 if x is rational,
 otherwise.

Then S is a proximal contraction of the first and second kind, and S(A) ⊆ B.
Further, let g : A → A be defined as gx = –x. Then g is an isometry, S preserves

the isometric distance with respect to g , and A ⊆ g(A). It can also be observed that
Fg(–),S(–)(t) = FA,B(t) for t > .

If g is assumed to be the identity mapping, then Theorem . yields the following best
proximity point theorem.

Corollary . Let A and B be non-void closed subsets of a complete PM-space (X, F ,∗)
with ∗ of Hadžić-type such that A and B are non-void. Let S : A → B satisfy the following
conditions:

(a) S is a proximal contraction of the first and second kind.
(b) S(A) is contained in B.

Then there exists a unique element x in A such that

Fx,Sx(t) = FA,B(t).

Further, for any fixed element x in A, the sequence {xn}, defined by

Fxn+,Sxn (t) = FA,B(t),

converges to the best proximity point x of S.

4 Application
A solution to the nonlinear programming problem

max
x∈A

Fx,Tx(t)

is fundamentally an ideal optimal approximate solution to the equation Tx = x which is
shifting to have a solution when T is supposed to be a non-self-mapping.

Considering the fact that Fx,Tx(t) is at least FA,B(t) for all x in A, a solution x to the afore-
mentioned nonlinear programming problem becomes an approximate solution with the
lowest possible error to the corresponding equation Tx = x if it satisfies the condition that
Fx,Tx(t) = FA,B(t) for t > .
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