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1 Introduction

Throughout this paper we denote by N the set of all positive integers. Let X be a Banach
space and let D be a nonempty subset of X. Let CB(D) and KC(D) denote the families of
nonempty, closed, and bounded subsets and nonempty, compact, and convex subsets of D,
respectively. The Hausdor{f metric on CB(D) is defined by

H(A,B) = max{sup dist(x, B), sup dist(y,A)} for A, B € CB(D),
xeA yeB

where dist(x, D) = inf{||x — y|| : y € D} is the distance from a point x to a subset D. Let
¢t be a single-valued mapping of D into D and T be a multi-valued mapping of D into
CB(D). The set of fixed points of ¢t and T will be denoted by F(¢) = {x € D : x = tx} and
F(T) = {x € D : x € Tx}, respectively. A point x is called a common fixed point of t and T if
x=tx e Tx.

Definition 1.1 A single-valued mapping ¢ : D — D is said to be generalized asymptotically
nonexpansive if there exist sequences {k,} C [1,00) and {s,} C [0, 00) with lim,,_ o k;, =1,
lim,,_, o0 S, = 0 such that

€% = "y < kullxe =yl + 55,

forallx,y e Dandn e N.
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In the case of s, = 0, for all n € N, a single-valued mapping ¢ is called an asymptotically
nonexpansive mapping. In particular, if k, = 1 and s, = 0, for all n € N, a single-valued
mapping ¢ reduce to a nonexpansive mapping. The fixed point property for generalized
asymptotically nonexpansive single-valued mappings can be found in [1]. The following
example shows that the fixed point set of a generalized asymptotically nonexpansive map-

ping is not necessarily closed; see also [2].
Example 1.2 ([1]) Define a single-valued mapping ¢ : [—%, %] — [—%, %] by

x, ifxe [—%,0),
_ )i .
%=1 ifx=0,
x*, ifxe(0,2].

Then t is generalized asymptotically nonexpansive and F(t) = [—%, 0) which is not closed.

Definition 1.3 A multi-valued mapping 7 : D — CB(D) is said to be
(i) nonexpansive it H(Tx, Ty) < ||x — y||, for all x,y € D;
(i) quasi-nonexpansive if F(T) # @ and H(Tx, Tp) < |lx — p||, for allx € D and p € F(T).

The study of fixed points for nonexpansive multi-valued mappings using the Hausdorft
metric was initiated by Markin [3]. Different iterative processes have been used to approx-
imate fixed points of nonexpansive and quasi-nonexpansive multi-valued mappings; in
particular, Sastry and Babu [4] considered Mann and Ishikawa iterates for a multi-valued
mapping T with a fixed point p and proved that these iterates converge to a fixed point
q of T under certain conditions. Moreover, they illustrated that the fixed point g may
be different from p. Later in 2007, Panyanak [5] generalized results of Sastry and Babu
[4] to uniformly convex Banach spaces and proved a convergence theorem of Mann iter-
ates for a mapping defined on a noncompact domain. In 2009, Shahzad and Zegeye [6]
proved strong convergence theorems for the Ishikawa iteration scheme involving quasi-
nonexpansive multi-valued mappings. They constructed an iterative process which re-
moves the restriction of T, namely end-point condition, i.e., Tp = {p} for any p € F(T); see
also [7, 8].

In 2011, Garcia-Falset et al. [9] introduced a new condition on single-valued mappings,
called condition (E), which is weaker than nonexpansiveness. Later, Abkar and Eslamian

[10] used a modified condition for multi-valued mappings as follows.

Definition 1.4 A multi-valued mapping T : D — CB(D) is said to satisty condition (E,)
where p > 0 if for each x,y € D,

dist(x, Ty) < pdist(x, Tx) + ||x — y||.
We say that T satisfies condition (E) whenever T satisfies (E,) for some p > 1.

Remark 1.5 From the above definitions, it is clear that if T is nonexpansive, then T sat-

isfies the condition (E;).



Suantai and Phuengrattana Fixed Point Theory and Applications (2015) 2015:58 Page 3 of 14

In 2011, Sokhuma and Kaewkhao [11] introduced the following iterative process for ap-
proximating a common fixed point of a pair of a nonexpansive single-valued mapping ¢
and a nonexpansive multi-valued mapping 7

In = 1 — )%, + ouzy,

(11)
Xn+l = (1 - ﬁn)xn + ,Bntym neN,

where x; € D, z,, € Tx,, and 0 < a < «y,, B, < b < 1. They also proved a strong convergence
theorem for the iterative process (1.1) in uniformly convex Banach spaces.

In 2013, Eslamian [12] extended the results of [11,13] in uniformly convex Banach spaces.
He used the following iterative process for a pair of a finite family of asymptotically non-
expansive single-valued mappings {£;}Y, and a finite family of quasi-nonexpansive multi-
valued mapping {T;}Y,:

0 N i) (i
In = £1 )xn +2in ﬂ;(ql)zg), (12)
_ 0 N () N .
Xpsl =0y Xy + Zi:l o'l yn, HEN,

where x; € D, zg,i) e Tix,, and {aif)}, {ﬁff)} are sequences in [0,1] for all i =1,2,...,N such
that 3N, ol = >N D -1,

In this paper, motivated by the above results, we propose an iterative process for approx-
imating a common fixed point of a pair of a finite family of generalized asymptotically non-
expansive single-valued mappings and a finite family of quasi-nonexpansive multi-valued
mappings and prove weak and strong convergence theorems of the proposed iterative pro-
cess in Banach spaces.

2 Preliminaries

A Banach space X is called uniformly convex if for each ¢ > 0 there is a § > 0 such that
for x,y € X with ||x|| <1, |lyll <1, and ||x —y|| > ¢, ||x + y|| <2(1 - 5) holds. The following
result was proved by Xu [14].

Proposition 2.1 Let X be a uniformly convex Banach space and let r > 0. Then there exists
a strictly increasing, continuous, and convex function g : [0, 00) — [0, 00) with g(0) = 0 such
that

|2+ (= 2)y|” < Allel® + @ = )yl = (1= 2)g(llx -yl
forallx,ye B, ={ze X:|z| <r}and i €[0,1].

A Banach space X is said to satisfy the Opial property (see [15]) if it is given that whenever
{x,} converges weakly to x € X,

limsup ||x, — x| < limsup ||x, — ||
n— 00 n— 00

for each y € X with y # x. The examples of Banach spaces which satisfy the Opial property
are Hilbert spaces and all L”[0, 27r] with 1 < p #2 fail to satisfy the Opial property.
The following results are needed for proving our results.
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Definition 2.2 (see [2]) Let F be a nonempty subset of a Banach space X and let {x,}
be a sequence in X. We say that {x,} is of monotone type (I) with respect to F if there exist
sequences {3,} and {¢,} of nonnegative real numbers such that } >, §, <00, Y oo &, < 00,
and [|x,.1 —pll <A +38,)||lx, —pll + &, forallne Nand p € F.

Proposition 2.3 (see [2]) Let F be a nonempty subset of a Banach space X and let {x,} bea
sequence in X. If {x,,} is of monotone type (I) with respect to F and liminf,,_, », dist(x,, F) = 0,
then lim,_, oo x,, = p for some p € X satisfying dist(p, F) = 0. In particular, if F is closed, then
pEeF.

Lemma 2.4 (see [16]) Let {a,}, {b,}, and {c,} be sequences of nonnegative real numbers

satisfy

an < (1 +cp)a, +b,, forallneN,

where Y o b, <ooand ) - ¢, < 00. Then:
(i) lim,_, oo a, exists.

(i) Ifliminf,_, o a, =0, then lim,_, » a, = 0.

Lemma 2.5 (see [17]) Let X be a uniformly convex Banach space, let {},,} be a sequence of
real numbers such that 0 <a < X\, <b<1, forall n e N, and let {x,} and {y,} be sequences
of X satisfying, for somer >0,
(i) limsup,,_, o l%ull <7,
(ii) limsup,,_, o |yl <rand
(iii) limy— oo [|Ann + (1= A)ynll = 7.

Then lim,_, oo “xn _yn” =0.

Lemma 2.6 (see [18]) Let X be a Banach space which satisfies the Opial property and {x,}
be a sequence in X. Let u,v € X be such that lim,_, «, ||x, — u|| and lim,_, , ||x,, — v|| exist. If
{%n;} and {x,,;} are subsequences of {x,} which converge weakly to u and v, respectively, then

u=yv.

3 Main results

In this section, we prove weak and strong convergence theorems of the proposed iterative
process in Banach spaces. We first note that if {#;}%Y, is a finite family of generalized asymp-
totically nonexpansive single-valued mappings of D into itself, where D is a nonempty con-
vex subset of a Banach space X. Then we have ||t/'x — ty|| < K lx—y| + s for all x,y€D
and all i = 1,2,...,N, where {k} C [1,00) and {s{} C [0,00) with lim,_. k\’ = 1 and
lim,_ 0 sff) =0.Putk, = maxlsiSN{kﬁf)} ands, = maxlSiSN{sff)}. It is clear that lim,_, o &k, =

1 and lim,,_, », 5,, = 0 and
|trx— £1y]| < Kallac =yl + s

forallx,ye D,i=1,2,...,N,and all» e N.

In order to prove our main results, the following lemma is needed.
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Lemma3.1 Let D be a nonempty, closed, and convex subset of a Banach space X. Let {t;}|
be a finite family of generalized asymptotically nonexpansive single-valued mappings of D
into itself with sequences {k,} C [1,00) and {s,} C [0,00) such that ., (k, — 1) < 0o and
> o s < 00. Let {Ti}Y, be a finite family of quasi-nonexpansive multi-valued mappings
of D into CB(D). Assume that F = ﬂf\il F(t;)N ﬂf\il F(T;) is nonempty closed and T;p = {p}
forallpe Fandi=1,2,...,N. Let x, € D and the sequence {x,} be generated by

0
Y = B xn+Z,lﬁnzn, zy € Tikn,

Kpsl = ozS, )xn + Zi 1 )t”yn, neN,

where {O[,(,,i)} and {ﬂf,i)} are sequences in [0,1] forall i =1,2,...,N such that Zi 0 an =1and
Zﬁo D _ 1. Then limy oo lln — pl| exists for all p € F.

Proof Letp e F,fori=1,2,...,N, we have

N
%1 =Pl < e llan —pll + e [thy - |

i=1
N
<ol —pll+ Y0 (Kully =1 + 50)

i=1

N N
= a0l —pll + ke D el lyu—pll +5, Y

i=1 i=1

N
<aOlxn—pll + ki Y aPllyn—pll + 50

i=1

Ol = pll + ks Za ( [ p||+Zﬁ B p||>+sn
N

- )+ k, B Za’)”xn pll +k, Zoe Z,B’)Hz -p| +su
i=1

N
+ 0D )
i1

\/

lx, = pll + & Za Zﬁ”dlst 20, Tip) + s,
i=1 i=1

N
+k,,,3 Za’)”xn -pll +k, Za Z,Bff)H(Tix,,,Tip)+sn
i=1

i=1

IA

i=1

)

0)
N

0+ kL Za’)nxn pll+k, Za Zﬂ;”nxn—puw
i=1

)

<af
:
< (afq
<aa
)

N
+k, Zaﬁ?) |, — pll + s,
i=1

< knll%n =pll +su

= (1 + (ky, — 1))||xn =Pl +3n.

By Lemma 2.4, > -, (k, — 1) < 00 and > -, s, < 00, we conclude that lim,_, [[x, — p|
exists forall p € F. g
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Theorem 3.2 Let D be a nonempty, closed, and convex subset of a Banach space X. Let
{t:}X, be a finite family of generalized asymptotically nonexpansive single-valued mappings
of D into itself with sequences {k,} C [1,00) and {s,} C [0,00) such that ., (k, —1) < 00
and Y22, s, < 0c. Let {T;}Y, be a finite family of quasi-nonexpansive multi-valued map-
pings of D into CB(D). Assume that F = ﬂf\ilF(t,’) N ﬂf\il F(T;) is nonempty closed and
Tip={p}forallpe Fandi=1,2,...,N. Let x, € D and the sequence {x,} be generated by

(@
Yn = nxn"'zllﬁnzn) Zy eTixm

Bt = o %+ Y @ty neN,

where {oz,,)} and {ﬁn } are sequences in [0,1] for all i =1,2,...,N such that Zﬁo aﬁ,i) =1
and Zz:o BY = 1. Then the sequence {x,} converges strongly to a point in F if and only if
liminf,_, o, dist(x,, F) = 0.

Proof The necessity is obvious and thus we prove only the sufficiency. Suppose that
liminf,_, o, dist(x,, F) = 0. In the proof of Lemma 3.1, we see that the sequence {x,} is
of monotone type (I) with respect to F. It follows by Proposition 2.3 that {x,} converges
to a point in F. g

The closedness of F = ﬂfil Ft)N ﬂﬁl F(T;) can be dropped if ¢; is asymptotically non-
expansive foralli =1,2,...,N. Then the following corollary is obtained directly from The-
orem 3.2.

Corollary 3.3 Let D be a nonempty, closed, and convex subset of a Banach space X.
Let {t;}Y, be a finite family of asymptotically nonexpansive single-valued mappings of D
into itself with a sequence {k,} C [1,00) such that y . (k, —1) < cc. Let {Ti}ﬁl be a fi-
nite family of quasi-nonexpansive multi-valued mappings of D into CB(D). Assume that
F = ﬂf\il F(t) N ﬂf\ilF(Ti) is nonempty and Tip = {p} forallp € F and i=1,2,...,N. Let
x1 € D and the sequence {x,} be generated by

Vn = nxn+§llﬂnznr 2 € Tixy,
0
x,,+1—a,(q)xn+§i1 )t”yn, neN,

where {aﬁ,i } and {ﬁ,,i } are sequences in [0,1] for all i =1,2,...,N such that Zf\[o ,f =1
and Zl o Bn’ =1. Then the sequence {x,} converges strongly to a point in F if and only if

liminf,_, o dlSt(xm F)=

Recall that a mapping ¢t : D — D is called uniformly L-Lipschitzian if there exists a con-
stant L > 0 such that ||#"x — t"y|| < L||x — y|| for all x,y € D and # € N. Next, we prove a

strong convergence theorem in a uniformly convex Banach space.

Lemma 3.4 Let D be a nonempty, closed, and convex subset of a uniformly convex Banach
space X. Let {t;}| be a finite family of uniformly L-Lipschitzian and generalized asymptot-
ically nonexpansive single-valued mappings of D into itself with sequences {k,} C [1,00)
and {s,} C [0,00) such that Y oo (k, — 1) < 00 and Y >2;s, < co. Let {T}}N, be a fi-
nite family of quasi-nonexpansive multi-valued mappings of D into CB(D). Assume that
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F = ﬂf\il F(g) N ﬂfilF(Ti) is nonempty and Tip = {p} forallp € F and i =1,2,...,N. Let
x1 € D and the sequence {x,} be generated by

(@
Yn = n xn'*'zlllgnzn, zy € Tixy,

0)
Xn+l = 05;(1 Xp + Zz 1an)tnyn» neN,

where {an)} omd {,3 }aresequences in[0,1] foralli=1,2,...,N suchthat0 <a < a,(f),ﬁi,i) <
b<1, YN o =1, omd SN BY = 1. Then we have thefollowmg

(i) limy,— o0 ||, e || =0foralli=1,2,...,N;

(i) lim,—co |, — tix,|| =0 foralli=1,2,...,N.

Proof (i) By Lemma 3.1, lim,,_,  ||x,, — p|| exists. Put lim,_, « ||x, — p|| = c. By the definition
of {x,}, we have

|75 = p|| < kallyn = Pl + 52

N
Ky (ﬂ,5°>||xn -pl+ ) BP|2Y —pH) +Sn
i=1

N
= kB 50— pll + k> BO 28— p| + 5.

i=1

N
= kB9 1%, — pll + Ky Z BY dist(z?, T;p) + s,

i=1

< kB I, - p||+k,,Z,B (Titn, Tip) + 1

i=1

N
< kB = pll + K Y B 16— pll + 51

i=1

N

= ky (ﬁff” . Zﬁ,&”) 6 =PIl + 51
i=1

= kn”xn —P” + Sy.

Then we have

hmsup”t”yn p| <11msup(k lyn =PIl +54) <limsup(kyllx, — pll +5,).

n—0o0

By lim,,—, o0 k, =1 and lim,,_, o 5, = 0, we have

timsup|¢/y, - p | <limsup lly, - p|l <limsup llx, —pll = . (31)

n— 00
Since ¢ = limy— o0 %51 = Pl = lim,oo o (6, — p) + 3N, @ (e, — p)]I, it follows by
Lemma 2.5 that

lim ”x,,—tl-”y,,H =0 foralli=1,2,...,N. (3.2)
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Consider

N
%1 =Pl < o llan —pll + > |ty - p|

i=1
N N
= (1 - Zafﬁ) e = pll + D |8y - p|
i=1 i=1
N N
< (1 - Zaf;)) e = pll + Y o (kullyn = 1l + 51)
i=1 i=1
This implies that
N
%1 =Pl = 1960 =2l <Y (kullyn = pIl = 160 =PIl + 53).-
i=1
Therefore,
s =l =l =pll =Pl = =
n - — .
bN Zﬁl 0‘5;)
=< kn”yn = pll +58u.
By (3.1), we obtain
¢ — timing( WPl =l =pll
T oo bN n—P

< timinf(Knlly, - pll +s)
n— 00

= liminf |y, - p||
n—0o0

<limsup ||y, -pll <c.
n—00

Thus,
N
_ T ol = T ©(, _ () (M) _
¢=lim [ly, —pll = lim || % (x, p)+;ﬂn (z -p)|-

Since
|2 - p|| = dist(z0, Tip) < H(Ti, Tip) < 1~ P,
it implies that
lim sup||z£f) —p|| <limsup||x, — p|l =c.
n—>00 00
Hence, by Lemma 2.5, we have

lim ”x,,—zgf)” =0 foralli=1,2,...,N.

n—00

+ %, - pll

Page 8 of 14
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(ii) Since ¢; is generalized asymptotically nonexpansive, for alli=1,2,...,N, we get
Nt %00 — 2| < || 8750 = €'y || + [ 8790 = % | < Klln = ull + 80+ |50 — %]

By the definition of {x,}, we have y, — x,, = Zf\il ,Bf,i) (zS,i) — x,,). This implies that

N
620 =l < a3 B 128 =l + 8 = 0] + 50
i=1

<k, ||z£f) — X, || + Htfyn — X, || + 5,
Then, by (i) and (3.2), we get

lim [x, — £/x,] =0 foralli=1,2,...,N. (3.3)

n—00
Fori=1,2,...,N, we have

_ t"+1

960 = tikn | < 11960 = st Il + e = £ o0 | + | 7 201 — £ || + {87 00 — i

=< (1 + L)Hxn — Xn+l ” + ||xn+1 - t:"l+1xn+l ” + LH t;lxn —Xn ”

N
<@1+1L) Zaﬁf) lo6n = £y || + [ #ne1 = £ Har | + L| %0 — 2.
i=1
By (3.2) and (3.3), we conclude that lim,,  [l%, — £ix,|| =0 foralli=1,2,...,N. O

Theorem 3.5 Let D be a nonempty, compact, and convex subset of a uniformly convex
Banach space X. Let {t;}Y, be a finite family of uniformly L-Lipschitzian and generalized
asymptotically nonexpansive single-valued mappings of D into itself with sequences {k,} C
[1,00) and {s,} C [0,00) such that y oo (k,—1) < 0o and y o2, s, < 0o. Let {T;}Y, be a finite
family of quasi-nonexpansive multi-valued mappings of D into CB(D) satisfying condition
(E). Assume that F = ﬂﬁl F(t;) N ﬂf\il F(T;) is nonempty and Tip = {p} for all p € F and
i=12,...,N. Let x; € D and the sequence {x,} be generated by

. N ,
Y= B, + YN 82D, 2D e T,

0 N
X =V, + Yo a,(f)ti”y,,, nel,

where {a,(f)} and {ﬂf,i)} are sequences in [0,1] foralli=1,2,...,N suchthat0 <a < aﬁ,i), f,i) <
b<1, Z?:Io o) =1, and Zﬁo ﬂf,i) = 1. Then the sequence {x,} converges strongly to a point

inF.

Proof By Lemma 3.1, we have {x,} is bounded. Since D is compact, there exists a subse-
quence {x,,} of {x,} converging strongly to p € D. By condition (E), there exists i > 1 such
thatfori=1,2,...,N,

diSt(p) T’lp) = ”p - xl’l]' ” + diSt(xnj1 Zp)

< N %u; = pll + pdist(ey, Tixy) + 2, - pll



Suantai and Phuengrattana Fixed Point Theory and Applications (2015) 2015:58 Page 10 of 14

= 2”xrl}' _P” + HdiSt(xni) Tixn/)

< 2l = pll + 12 - 27 |-

Then, by Lemma 3.4(i), we have p € Tjp foralli=1,2,...,N.Sop € ﬂf\il F(T)).
Since ¢; is uniformly L-Lipschitzian, for all i =1,2,...,N, we have

ltip = pll < tip — b | + 166, — 2 | + 165, =

< (L + D)l = pl + 15, — 51
By Lemma 3.4(ii), it implies that t;p =p for all i = 1,2,...,N. Thus, p € ﬂi\:[l F(t;). There-
fore, p € F. Since lim,,. o [l — pl| exists, we get lim,,—, o [|x, — pll = limj_ o0 |2, — pll = 0
This shows that {x,} converges strongly to a point in F. d

Next, we give a numerical example to support Theorem 3.5.

Example 3.6 Let R be the real line with the usual norm | - | and let D = [0, 3]. Define two
single-valued mappings #; and £, on D as follows:

fhix = sinx, bhx = X.

Also we define two multi-valued mappings 77 and T, on D as follows:

Tix = [Or§]1 x73; sz:[f,f].
{1}, x=3; 42

Let {x,} and {y,} be generated by

Yo = B0%, + Y1, 820, 2P e Tix,, (3.4)
Kpsl = ozf, )xn + Zi 1 )t”yn, neN,
0 1 _ 2 _ 0 1
where o = 35t ol = 28, o = 352, B0 = BET, B0 = 5L B = B2, for all
n € N. Then the sequences {x,} and {y,} converge strongly to 0, where {0} = ﬂi:l F(t;) N

i F(T)).

Solution [t is shown in [19] that both t, and t, are generalized asymptotically nonexpan-
sive single-valued mappings. Moreover, they are uniformly L-Lipschitzian mappings and
ﬂlz L F(t;) ={0}. It is easy to see that both T; and T, are quasi-nonexpansive multi- valued

mappings satlsfymgcondltlon (E) and (- 1F ;) ={0}. Thus, N2 1F )N, E(T;) = {0}.

3n+4 (1) 2n-1 (2) Sn 2 15n+7 5n-1 (2) 15n 2
For every n € N, :10n 0‘ 5 ) On _10n B :60n'ﬂ”:W’ n = T30m ¢

Then the sequences {aﬁ, I8 {(x,, } {oz,, 1 {,B } {/3,, }, and {,8(2)} satisfy all the conditions of
Theorem 3.5. Put zfql) = % and z,, = ?for all n € N. Then the algorithm (3.4) becomes

13
Yn = ( + 7o )xm
5
KXn+l = ( 16}1 72 )xn (

(3.5)

2n-1

)tlyn, neN.

Using the algorithm (3.5) with the initial point x| = 2.5, we have numerical results in Table1.
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Table 1 The values of the sequences {x,} and {y,} in Example 3.6

n Xn Yn

2.5000000  1.5277778
21025927 12119111
15352877  0.8671533
1.0799923  0.6037457
0.7544605 04191447

A w N -

21 0.0023377  0.0012740

38 0.0000040  0.0000022
39 0.0000027  0.0000015
40 0.0000019  0.0000010
41 0.0000013  0.0000007
42 0.0000009  0.0000005

Finally, we prove a weak convergence theorem in uniformly convex Banach spaces.

Theorem 3.7 Let D be a nonempty, closed, and convex subset of a uniformly convex
Banach space X with the Opial property. Let {t;}Y, be a finite family of uniformly L-
Lipschitzian and generalized asymptotically nonexpansive single-valued mappings of D
into itself with sequences {k,} C [1,00) and {s,} C [0,00) such that _,-,(k, — 1) < 00 and
> o s < 00. Let {T;}Y, be a finite family of quasi-nonexpansive multi-valued mappings
of D into KC(D) satisfying the condition (E). Assume that F = ﬂf\ilF(ti) N ﬂf\ilF(Ti) is
nonempty and Tip = {p} forallp € F and i =1,2,...,N. Let x; € D and the sequence {x,}
be generated by

Yn = nxn"'zllﬁnzn: ZE’IZ)GTixm
Bt = o %+ Y @ty neN,

where {an)} cmd {/3 }are sequences in[0,1] foralli=1,2,...,Nsuchthat0 < a < a,(f), ,B,(f) <

b<1, Zl o o =1, and Zl 0 ﬁ,, = 1. Then the sequence {x,,} converges weakly to a point
in F.

Proof By Lemma 3.1, {x,} is bounded. Since X is uniformly convex, there exists a subse-
quence {x,} of {x,} converging weakly to p € D. By Lemma 3.4, we have lim;_, o, llo6; —
zﬁ,? | = 0 and lim;_, Nl — Liokm;ll = O foralli=1,2,...,N. We will show that p € F. Since
T1p is compact, for all j € N, we can choose Wy, € Ip such that %, — Wi, || = dist(x,,/., Tip)
and the sequence {W”i} has a convergent subsequence {w,, } with lim_, .o w,,, = w € T1p.
By condition (E), we have

diSt(xnk; Tip) < l‘LdiSt(xnk: Tlxnk) + ”xn/< -pl.

Then we have
%, = Wil < 1% = Wi Il + [ Wiy = wl
= dist(x,,, T1p) + [lwp, — Wl
= MdiSt(xnk’ Tlxnk) + ”xnk —P” + ”Wnk - W”

< )% =20 | + 1%, =PIl + Wiy = wll.
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This implies that

fim sup [, - wll < limsup lx, — pl.
k— o0 k— o0

From the Opial property, we have p = w € T1p. Similarly, it can be shown that p € T;p for
alli=2,...,N. Thus, p € (Y, F(T).
Next, by mathematical induction, we can prove that, fori=1,2,...,N,

lim ||x,,], - timxn/, || =0 foreachmeN. (3.6)
j—o00
Indeed, it is obvious that the conclusion it true for m = 1. Suppose the conclusion holds
for m > 1. Since ¢; is uniformly L-Lipschitzian, we have
”x,,}. N tlm+lx"1 ” = Hx,,] t' Ky H * ”t K = tl"”lx,,} H

= ”xn/ - tlmxn} H + L”xn] - tixn,' ”

This shows that lim;_ o [|%, — tl.’”*lx,,j |=0foralli=1,2,...,N. Hence, (3.6) holds.
From (3.6), we have foreachxe D,me Nandi=1,2,...,N,

limsup ||x,; — x| = lim sup”tf”x,,j - x” (3.7)
j—o0 Jj—00

Since ¢; is generalized asymptotically nonexpansive, we get

lim suthi"’xn - t;"pH < lim sup(km||xnj -pll+ sm).

J—> 00 J—> 00

Then we have

hmsup(hmsup”t Xy = 1] p”) <l1msup||x,,] rl. (3.8)
=

m— 00

By Proposition 2.1, we have

p+tlp 1 1 2
Koy = =" H = Hz(xn, p+3 (xnj—tf”p)
1
= Sl —pl* + 5 ||xn, iy’ -—g(llp—t pl)-
It implies that

mo 2
lim sup x,,}—p+tip 111rnsup %, — plI? +—11msup||xn tmp”
j=00 2 2 s ' j= !

1
- 28(lp=£p])- (39)
By the Opial property and {x,} converging weakly to p, we obtain

p+tlp 2
2

lim sup ||x,, p||2 < limsup
1400 }~>00

x,,] -
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Then, by (3.9), we have

g(”p - t’"p”) < 2lim sup “xn; - tl-"’p”2 - 21im sup [|x, -pl* (3.10)
o0 o0

j= j—
It implies by (3.7), (3.8), and (3.10) that
lim supg(“p - tlmp”) <2lim sup(lim sup||x,,}. - tf“p”Z) —2limsup [l -pl?
m— 00 m— 00 j—00 Jj—>00
<0.

This shows that lim,,_, o g(llp — t/"pll) = 0 for all i = 1,2,...,N. Then the properties of g
yield lim,,, o [[p — £"pll =0 for alli = 1,2,...,N. So we have

m+1
ti

ltp —pll < |tip - £"'p|| + [P -p|

<Llp-t'p| + |t/ p-p| >0 asm— .

This implies that t;p =p foralli=1,2,...,N. Thus, p € ﬂﬁl F(2).

Hence, we obtain p € F.

Finally, we show that {x,} converges weakly to p. To show this, suppose not. Then there
exists a subsequence {x,,} of {x,} such that {x,,} converges weakly to g € D and g # p. By
the same method as given above, we can prove that ¢ € 7. By Lemma 3.1, lim,,_, » [|x,, — p|
and lim,,_, o ||, —g|| exist. It follows by Lemma 2.6 that g = p. Thus, {x,} converges weakly
to a point in F. g

Remark 3.8 Theorem 3.5 extends and generalizes the results of Sokhuma and Kaewkhao
[11] to a pair of a finite family of generalized asymptotically nonexpansive single-valued
mappings and a finite family of quasi-nonexpansive multi-valued mappings satisfying con-
dition (E). Theorems 3.5 and 3.7 extend and generalize the results of Eslamian [12] and
Eslamian and Abkar [13] to a pair of a finite family of generalized asymptotically nonex-
pansive single-valued mappings and a finite family of quasi-nonexpansive multi-valued
mappings satisfying condition (E).
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