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Abstract
In this paper, we study the existence of fixed points of monotone nonexpansive
mappings defined in Banach spaces endowed with a graph. This work is a continuity
of the previous results of Ran and Reurings, Nieto et al., and Jachimsky done for
contraction mappings defined in metric spaces endowed with a graph.
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1 Introduction
Banach’s contraction principle [] is remarkable in its simplicity, yet it is perhaps the most
widely applied fixed point theorem in all of analysis. This is because the contractive condi-
tion on the mapping is simple and easy to test, because it requires only a complete metric
space for its setting, and because it is a powerful result with a wide range of applications,
including iterative methods for solving linear, nonlinear, differential, integral, and differ-
ence equations. Due to its applications in mathematics and other related disciplines, the
Banach contraction principle has been generalized in many directions. Recently a version
of this theorem was given in partially ordered metric spaces [, ] and in metric spaces
endowed with a graph [–].

In this paper, we study the case of nonexpansive mappings defined in Banach spaces
endowed with a graph. Nonexpansive mappings are those which have Lipschitz constant
equal to . The fixed point theory for such mappings is rich and varied. It finds many appli-
cations in nonlinear functional analysis []. It is worth mentioning that such investigation
is, to the best of our knowledge, new and was never carried out. This work was inspired
by [].

2 Graph basic definitions
The terminology of graph theory instead of partial ordering gives a wider picture and
yields interesting generalization of the Banach contraction principle. In this section, we
give the basic graph theory definitions and notations which will be used throughout.

Let G be a directed graph (digraph) with a set of vertices V (G) and a set of edges E(G)
containing all the loops, i.e., (x, x) ∈ E(G) for any x ∈ V (G). We also assume that G has
no parallel edges (arcs), and so we can identify G with the pair (V (G), E(G)). Our graph
theory notations and terminology are standard and can be found in all graph theory books
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such as [] and []. Moreover, we may treat G as a weighted graph (see [], p.]) by
assigning to each edge the distance between its vertices. By G– we denote the conversion
of a graph G, i.e., the graph obtained from G by reversing the direction of edges. Thus we
have

E
(
G–) =

{
(y, x) | (x, y) ∈ E(G)

}
.

A digraph G is called an oriented graph if whenever (u, v) ∈ E(G), then (v, u) /∈ E(G). The
letter G̃ denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G̃ as a directed graph for which the set
of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E
(
G–).

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G), E′ ⊆ E(G) and for any edge (x, y) ∈ E′,
x, y ∈ V ′.

If x and y are vertices in a graph G, then a (directed) path in G from x to y of length
N is a sequence (xi)i=N

i= of N +  vertices such that x = x, xN = y and (xn–, xn) ∈ E(G) for
i = , . . . , N . A graph G is connected if there is a directed path between any two vertices. G is
weakly connected if G̃ is connected. If G is such that E(G) is symmetric and x is a vertex in
G, then the subgraph Gx consisting of all edges and vertices which are contained in some
path beginning at x is called the component of G containing x. In this case V (Gx) = [x]G,
where [x]G is the equivalence class of the following relation R defined on V (G) by the rule:

yR z if there is a (directed) path in G from y to z.

Clearly Gx is connected.

3 Monotone nonexpansive mappings
Throughout we assume that (X,‖ · ‖) is a Banach space and τ is a Hausdorff topological
vector space topology on X which is weaker than the norm topology. Let C be a nonempty,
convex and bounded subset of X not reduced to one point. Let G be a directed graph such
that V (G) = C and E(G) ⊇ �. Assume that G-intervals are convex. Recall that a G-interval
is any of the subsets [a,→) = {x ∈ C; (a, x) ∈ E(G)} and (←, b] = {x ∈ C; (x, b) ∈ E(G)} for
any a, b ∈ C.

Definition . Let C be a nonempty subset of X. A mapping T : C → C is called
() G-monotone if (T(x), T(y)) ∈ E(G) whenever (x, y) ∈ E(G) for any x, y ∈ C;
() G-monotone nonexpansive if T is G-monotone and

∥∥T(x) – T(y)
∥∥ ≤ ‖x – y‖, whenever (x, y) ∈ E(G)

for any x, y ∈ C.
The point x ∈ C is called a fixed point of T if T(x) = x. The set of fixed points of T will be
denoted by Fix(T).
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Remark . For examples of metric spaces endowed with a graph and G-monotone map-
pings which are Lipschitzian with respect to the graph, we refer the reader to the examples
found in [].

Let T : C → C be a G-monotone nonexpansive mapping. Fix λ ∈ (, ). Let x ∈ C be
such that (x, T(x)) ∈ E(G). Define x = λx + ( – λ)T(x). Since the set [x, T(x)] =
[x,→)∩ (←, T(x)] is convex, then x ∈ [x, T(x)], i.e., (x, x) and (x, T(x)) are in E(G).
Since T is G-monotone nonexpansive, we get (T(x), T(x)) ∈ E(G) and

∥∥T(x) – T(x)
∥∥ ≤ ‖x – x‖.

By induction we construct a sequence {xn} in C such that the following hold for any n ≥ :
(i) xn+ = λxn + ( – λ)T(xn),

(ii) (xn, xn+), (xn, T(xn)) and (T(xn), T(xn+)) are in E(G),
(iii) ‖T(xn+) – T(xn)‖ ≤ ‖xn+ – xn‖.

Such a sequence is known as Krasnoselskii sequence [] (see also [–]). The following
result is found in [, ].

Proposition . Under the above assumptions, we have

( + nλ)
∥∥T(xi) – xi

∥∥ ≤ ∥∥T(xi+n) – xi
∥∥ + ( – λ)–n(∥∥T(xi) – xi

∥∥ –
∥∥T(xi+n) – xi+n

∥∥)

for any i, n ∈N. This inequality implies

lim
n→+∞

∥
∥xn – T(xn)

∥
∥ = ,

i.e., {xn} is an approximate fixed point sequence of T .

The first part of this proposition is easy to prove via an induction argument on the
index i. As for the second part, note that {‖xn – T(xn)‖} is decreasing. Indeed we have
xn+ – xn = ( – λ)(T(xn) – xn) for any n ≥ . Therefore {‖xn – T(xn)‖} is decreasing if and
only if {‖xn+ – xn‖} is decreasing, which holds since

‖xn+ – xn+‖ ≤ λ‖xn+ – xn‖ + ( – λ)
∥∥T(xn+) – T(xn)

∥∥ ≤ ‖xn+ – xn‖

for any n ≥ . So if we assume that limn→+∞ ‖xn – T(xn)‖ = R > , then we let i → +∞ in
the main inequality to obtain

( + nλ)R ≤ δ(C)

for any n ∈N, where δ(C) = diam(C). Obviously this is a contradiction since both λ and R
are not equal to .

Remark . We may let λ change with n ∈ N. In this case the sequence {xn} is defined by

xn+ = λnxn + ( – λn)T(xn), n = , , . . . .
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Under suitable assumptions on the sequence {λn}, we will have the same conclusions as
Proposition ., see [] for more details.

Before we state the main result of this paper, let us recall the definition of τ -Opial con-
dition.

Definition . X is said to satisfy the τ -Opial condition if whenever any sequence {yn} in
X τ -converges to y, we have

lim sup
n→+∞

‖yn – y‖ < lim sup
n→+∞

‖yn – z‖

for any z ∈ X such that z �= y.

Definition . The triple (C,‖ · ‖, G) has property (P) if and only if for any sequence
{xn}n∈N in C such that (xn, xn+) ∈ E(G) for any n ≥ , and if a subsequence {xkn}
τ -converges to x, then (xkn , x) ∈ E(G) for all n.

Theorem . Let X be a Banach space which satisfies the τ -Opial condition. Let C be a
bounded convex τ -compact nonempty subset of X not reduced to one point. Assume that
(C,‖·‖, G) has property (P) and the G-intervals are convex. Let T : C → C be a G-monotone
nonexpansive mapping. Assume that there exists x ∈ C such that (x, T(x)) ∈ E(G). Then
T has a fixed point.

Proof Consider the Krasnoselskii sequence {xn}, from Proposition ., which starts at x.
Since C is τ -compact, then {xn} will have a subsequence {xkn} which τ -converges to some
point ω ∈ C. By properties (ii) and (P), we get (xkn ,ω) ∈ E(G) for any n ∈ N. Consider the
type function

r(x) = lim sup
n→+∞

‖xkn – x‖, x ∈ C.

Then Proposition . implies

lim
n→+∞

∣∣‖xkn – x‖ –
∥∥T(xkn ) – x

∥∥∣∣ ≤ lim
n→+∞

∥∥xkn – T(xkn )
∥∥ = .

Hence

lim sup
n→+∞

∥∥T(xkn ) – x
∥∥ = lim sup

n→+∞
‖xkn – x‖,

i.e., r(x) = lim supn→+∞ ‖T(xkn ) – x‖ for any x ∈ C. In particular we have

r
(
T(ω)

)
= lim sup

n→+∞

∥∥T(xkn ) – T(ω)
∥∥ ≤ lim sup

n→+∞
‖xkn – ω‖ = r(ω).

In fact we have r(T(x)) ≤ r(x) for any x ∈ C which is an upper-bound of {xkn}. Finally
if X satisfies the τ -Opial condition, then we must have T(ω) = ω, i.e., ω is a fixed point
of T . �
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Remark . The existence of x ∈ C such that (x, T(x)) ∈ E(G) was crucial. Indeed,
the Krasnoselskii sequence {xn} will satisfy (xn, xn+) ∈ E(G) for every n. However, if
(T(x), x) ∈ E(G) then we will have (xn+, xn) ∈ E(G) for every n. In this case, we need
to revise property (P) into property (P∗) defined as follows:

The triple (C,‖ · ‖, G) has property (P∗) if and only if for any sequence {xn}n∈N in C
such that (xn+, xn) ∈ E(G) for any n ≥ , and if a subsequence {xkn} τ -converges to x,
then (x, xkn ) ∈ E(G) for all n.

The following results are direct consequences of Theorem ..

Corollary . Let C be a bounded closed convex nonempty subset of lp,  < p < +∞. Let τ

be the weak topology. Let G be the digraph defined on lp by ({αn}, {βn}) ∈ E(G) iff αn ≤ βn

for any n ≥ . Then any G-monotone nonexpansive mapping T : C → C has a fixed point
provided there exists a point x ∈ C such that (x, T(x)) ∈ E(G) or (T(x), x) ∈ E(G).

Remark . The case of p =  is not interesting for the weak-topology since l is a Schur
Banach space. But if we consider the weak∗-topology σ (l, c) on l or the pointwise con-
vergence topology, then l satisfies the weak∗-Opial condition. In this case we have a sim-
ilar conclusion of Corollary . for l.

Corollary . Let C be a bounded closed convex nonempty subset of Lp,  ≤ p < +∞. Let
τ be the almost everywhere convergence topology. Let G be the digraph defined on Lp by
(f , g) ∈ E(G) if and only if f (t) ≤ g(t) almost everywhere. Assume that C is almost every-
where compact. Then any G-monotone nonexpansive mapping T : C → C has a fixed point
provided there exists a point f ∈ C such that (f, T(f)) ∈ E(G) or (T(f), f) ∈ E(G).

Competing interests
The author declares that he has no competing interests.

Acknowledgements
The author acknowledges King Fahd University of Petroleum and Minerals for supporting this research. The author thanks
the referees for their valuable suggestions including the reference [5].

Received: 5 January 2015 Accepted: 19 March 2015

References
1. Banach, S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam.

Math. 3, 133-181 (1922)
2. Nieto, JJ, Rodríguez-López, R: Contractive mapping theorems in partially ordered sets and applications to ordinary

differential equations. Order 22, 223-239 (2005)
3. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations.

Proc. Am. Math. Soc. 132, 1435-1443 (2004)
4. Alfuraidan, MR: Remarks on monotone multivalued mappings on a metric space with a graph. Preprint
5. Bojor, F: Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal. 75(9),

3895-3901 (2012)
6. Jachymski, J: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136,

1359-1373 (2007)
7. Browder, FE: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041-1044 (1965)
8. Bachar, M, Khamsi, MA: Fixed points of monotone nonexpansive mappings. Preprint
9. Diestel, R: Graph Theory. Springer, New York (2000)
10. Johnsonbaugh, R: Discrete Mathematics. Prentice Hall, New York (1997)
11. Krasnoselskii, MA: Two observations about the method of successive approximations. Usp. Mat. Nauk 10, 123-127

(1955)
12. Berinde, V: Iterative Approximation of Fixed Points, 2nd edn. Lecture Notes in Mathematics, vol. 1912. Springer, Berlin

(2007)
13. Chidume, C: Geometric Properties of Banach Spaces and Nonlinear Iterations. Lecture Notes in Mathematics,

vol. 1965. Springer, London (2009)



Alfuraidan Fixed Point Theory and Applications  (2015) 2015:49 Page 6 of 6

14. Ishikawa, S: Fixed points and iteration of a nonexpansive mapping in a Banach space. Proc. Am. Math. Soc. 59, 65-71
(1976)

15. Goebel, K, Kirk, WA: Iteration processes for nonexpansive mappings. Contemp. Math. 21, 115-123 (1983)
16. Goebel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge Stud. Adv. Math., vol. 28. Cambridge University

Press, Cambridge (1990)
17. Kirk, WA: Fixed point theory for nonexpansive mappings II. In: Sine, RC (ed.) Fixed Points and Nonexpansive

Mappings. Contemporary Mathematics, vol. 18, pp. 121-140 (1983)


	Fixed points of monotone nonexpansive mappings with a graph
	Abstract
	MSC
	Keywords

	Introduction
	Graph basic deﬁnitions
	Monotone nonexpansive mappings
	Competing interests
	Acknowledgements
	References


