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Abstract
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conditions for the existence of fixed points for such mappings in hyperbolic metric
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1 Introduction

Fixed point theorems for monotone single-valued mappings in a metric space endowed
with a partial ordering have been widely investigated. These theorems are hybrids of the
two most fundamental and useful theorems in fixed point theory: the Banach contraction
principle ([1], Theorem 2.1) and the Tarski fixed point theorem [2, 3]. Generalizing the Ba-
nach contraction principle for multivalued mapping to metric spaces, Nadler [4] obtained
the following result.

Theorem 1.1 [4] Let (X,d) be a complete metric space. Denote by CB(X) the set of all
nonempty closed bounded subsets of X. Let F : X — CB(X) be a multivalued mapping. If
there exists k € [0,1) such that

H(F(x),F(y)) < kd(x,)
for all x,y € X, where H is the Hausdor[f metric on C3(X), then F has a fixed point in X.

A number of extensions and generalizations of the Nadler theorem were obtained by
different authors; see for instance [5, 6] and references cited therein. The Tarski theorem
was extended to multivalued mappings by different authors; see [5, 7-9]. Investigation of
the existence of fixed points for single-valued mappings in partially ordered metric spaces
was initially considered by Ran and Reurings in [10] who proved the following result.

Theorem 1.2 [10] Let (X, <) be a partially ordered set such that every pair x,y € X has
an upper and lower bound. Let d be a metric on X such that (X,d) is a complete metric
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space. Let f : X — X be a continuous monotone (either order preserving or order reversing)
mapping. Suppose that the following conditions hold:
(1) There exists k € [0,1) with

d(f(x),f(y)) <kd(x,y) forallx,ye X such thatx > y.

(2) There exists an xg € X with xy < f(xo) or xo > f(x0).
Then f is a Picard operator (PO), that is, f has a unique fixed point x* € X and for each
x € X, lim,_, o0 f"(x) = x™*.

After this, different authors considered the problem of existence of a fixed point for con-
traction mappings in partially ordered metric spaces; see [8, 11-13] and references cited
therein. Nieto et al. in [13] extended the ideas of [10] to prove the existence of solutions
to some differential equations. Recently, two results have appeared, giving sufficient con-
ditions for f to be a PO, if (X, d) is endowed with a graph. The first of which was given by
Jachymski [14] and the second one was given by Jachymski and Lukawska [15], generaliz-
ing the results of [11, 13, 16, 17] to a single-valued mapping in metric spaces with a graph
instead of a partial ordering.

The aim of this paper is two folds: first to give a correct definition of monotone multival-
ued mappings, second to extend the conclusion of Theorem 1.2 to the case of monotone
multivalued mappings in metric spaces endowed with a graph.

2 Preliminaries

It seems that the terminology of graph theory instead of partial ordering gives a clearer
picture and vyield interesting generalization of the Banach contraction principle. Let us
begin this section with terminology for metric spaces which will be used throughout.

Let G be a directed graph (digraph) with set of vertices V(G) and a set of edges E(G) con-
tains all the loops, i.e., (x,x) € E(G) for any x € V(G). We also assume that G has no parallel
edges (arcs) and so we can identify G with the pair (V(G), E(G)). Our graph theory nota-
tions and terminology are standard and can be found in all graph theory books, like [18,
19] and [20]. Moreover, we may treat G as a weighted graph (see [20], p.309]) by assigning
to each edge the distance between its vertices. By G™! we denote the conversion of a graph
G, i.e., the graph obtained from G by reversing the direction of edges. Thus we have

E(G™) = {(0.%) | (x9) € EG)}.

A digraph G is called an oriented graph if whenever (4, v) € E(G), then (v,u) ¢ E(G). The
letter G denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G as a directed graph for which the set
of its edges is symmetric. Under this convention,

E(G) = E(G)UE(G™).

We call (V',E’) a subgraph of G if V' C V(G), E' € E(G) and for any edge (x,y) € E/,
xye V.

If x and y are vertices in a graph G, then a (directed) path in G from x to y of length
N is a sequence (x; j:f[ of N + 1 vertices such that xy = x, x5 =y, and (x,,_1,%,) € E(G) for
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i=1,...,N.Agraph Gis connected if there is a directed path between any two vertices. G is
weakly connected if G is connected. If G is such that E(G) is symmetric and x is a vertex in
G, then the subgraph G, consisting of all edges and vertices which are contained in some
path beginning at x is called the component of G containing x. In this case V(G,) = [«]g,
where [x] is the equivalence class of the following relation R defined on V(G) by the rule:

y Rz if there is a (directed) path in G from y to z.

Clearly G, is connected.

Next we introduce the concept of hyperbolic metric spaces. Indeed let (X, d) be a metric
space. Suppose that there exists a family F of metric segments such that any two points
%,y in X are endpoints of a unique metric segment [x,y] € F ([x,y] is an isometric image
of the real line interval [0, d(x, y)]). We shall denote by Bx @ (1 — B)y the unique point z of
[x,y] which satisfies

d(x,z) =(1-B)d(x,y) and d(z,y) = d(x,y),

where B € [0,1]. Such metric spaces with a family F of metric segments are usually called
convex metric spaces [21]. Moreover, if we have

dap®(1-a)xaqg®(1- a)y) <ad(p,q) + (1 -a)dx,y)

forall p, g, %, y in X, and « € [0,1], then X is said to be a hyperbolic metric space (see [22]).

Obviously, normed linear spaces are hyperbolic spaces. As nonlinear examples, one can
consider Hadamard manifolds [23], the Hilbert open unit ball equipped with the hyper-
bolic metric [24], and CAT(0) spaces [25-27]. We will say that a subset C of a hyperbolic
metric space X is convex if [x,y] C C whenever x, y are in C.

Definition 2.1 Let (X, d) be a hyperbolic metric space. A graph G on X is said to be convex
if and only if for any x,y,z,w € X and « € [0,1], we have

(x,z) € E(G) and (y,w)€E(G) = (ax S1l-w)y,azd(1- a)w) € E(G).

Next we introduce the concept of monotone multivalued mappings. In [9], the authors
offered the following definition.

Definition 2.2 ([9], Definition 2.6) Let F : X — 2% be a multivalued mapping with
nonempty closed and bounded values. The mapping F is said to be a G-contraction if
there exists k € [0,1) such that

H(F(x),F(y)) < kd(x,y) forall (x,y) € E(G)
and if u € F(x) and v € F(y) are such that

d(u,v) <kd(x,y) +a« for each« >0,

then (u,v) € E(G).
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In particular, this definition implies that if € F(x) and v € F(y) are such that
d(u,v) < kd(x,y),

then (u,v) € E(G), which is very restrictive. In fact in the proof of Theorem 3.1 in [9], the
authors try to construct an orbit (x,) such that (x,,x,.1) € E(G), for any n > 1, but this
fails to happen according to Definition 2.2. Our definition of G-contraction multivalued
mappings is more appropriate. It finds its roots in [28]. In the sequel, we assume that (X, d)
is a metric space, and G is a directed graph (digraph) with a set of vertices V(G) = X and
the set of edges E(G) contains all the loops, i.e., (x,x) € E(G), for any x € X.

Definition 2.3 Let (X, d) be a metric space and C a nonempty subset of X.
(i) We say that a mapping T': C — C is G-edge preserving if

Vx,ye C, (x,9)€E(G) = (T(x), T(y)) € E(G).

(ii) We say that a mapping T': C — C is G-contraction if T’ is G-edge preserving and
there exists k € [0,1) such that

Vx,ye C, (x,9)€EG) = d(T(x), T(y)) < kd(x,y).

(i) We say that a mapping T': C — C is G-nonexpansive if T' is G-edge preserving and
Vx,ye C, (x,9)€EG) = d(T(x), T(y)) <d(x,y).

(iv) A multivalued mapping T : C — 2¢ is said to be monotone increasing (resp.

decreasing) G-contraction if there exists & € [0, 1) such that for any x,y € C with
(%,y) € E(G) and any u € T'(x) there exists v € T'(y) such that

(u,v) € E(G) (resp. (v, u) € E(G)) and d(u,v) < ad(x,y).

Similarly we will say that the multivalued mapping 7 : C — 2€ is monotone
increasing (resp. decreasing) G-nonexpansive if for any x,y € C with (x,y) € E(G)
and any u € T'(x) there exists v € T(y) such that

(u,v) € E(G) (resp. (v,u) € E(G)) and d(u,v) <d(x,y).

x € C is called a fixed point of a single-valued mapping T if and only if T'(x) = x. For
a multivalued mapping 7, x is a fixed point if and only if x € T'(x). The set of all
fixed points of a mapping 7 is denoted by Fix(T).

3 Main results

We begin with the following well-known theorem, which gives the existence of a fixed
point for monotone single-valued and multivalued contraction mappings in metric spaces
endowed with a graph.
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Theorem 3.1 [14] Let (X,d) be a complete metric space, and let the triple (X, d, G) have
the following property:

(%) Forany (x,)u>1in X, ifx, — x and (x,, x441) € E(G), for n > 1, then there is a subsequence
(%, )1 With (xx,,x) € E(G), for n > 1.

Letf: X — X be a G-contraction, Xy := {x € X : (x,f (x)) € E(G)}. Then the following state-
ments hold:
(1) cardFixf = card{[x]g : x € X/}.
(2) Fixf #90 if and only if Xy # .
(3) f has a unique fixed point if and only if there exists an xo € Xy such that Xy C [xo]g.
(4) Forany x € Xy, f x5 is a PO, that is, f has a unique fixed point x* € [x]g and for
each x € [x]g, lim,_ o0 f" (%) = x*.
(5) If Xy # 0 and G is weakly connected, then f is a PO, that is, f has a unique fixed point
x* € X and for each x € X, lim,_, » f"(x) = x*.

The multivalued version of Theorem 3.1 may be stated as follows.

Theorem 3.2 [29] Let (X,d) be a complete metric space and suppose that the triple
(X, d, G) has property (x). We denote by CB(X) the collection of all nonempty closed and
bounded subsets of X. Let T : X — CB(X) be a monotone increasing G-contraction mapping
and X7 := {x € X; (x,u) € E(G) for some u € T(x)}. If X1 # 0, then the following statements
hold:

(1) Foranyx € Xr, T has a fixed point.

(2) Ifx € X with (x,x) € E(G) where X is a fixed point of T, then {T"(x)} converges to .

(3) If G is weakly connected, then T has a fixed point in G.

(4) If X' =[xl : x € X1}, then T|x has a fixed point in X.

(5) If T(X) € E(G) then T has a fixed point.

(6) Fix T # 9 if and only if X7 # 0.

Remark 3.1 The missing information in Theorem 3.2 is the uniqueness of the fixed point.
In fact we do have a partial positive answer to this question. Indeed if z and w are two fixed
points of T such that (i, w) € E(G), then we must have & = w. In general T may have more

than one fixed point.

Remark 3.2 If we assume G is such that E(G) := X x X then clearly G is connected and
Theorem 3.2 gives the Nadler theorem [4].

The following is a direct consequence of Theorem 3.2.

Corollary 3.1 Let (X,d) be a complete metric space. Let G be a graph on X such that the
triple (X, d, G) has the Property (x). If G is weakly connected then every G-contraction T :
X — CB(X) such that (xo,x1) € E(G), for some xo € X and x; € T(xo), has a fixed point.

Next we discuss some existence results for nonexpansive single-valued and multivalued
G-monotone mappings. To the best of our knowledge, these results were never investi-
gated for such mappings.



Alfuraidan and Khamsi Fixed Point Theory and Applications (2015) 2015:44 Page 6 of 10

Theorem 3.3 Let (X, d) be a complete hyperbolic metric space and suppose that the triple
(X, d, G) has property (x). Assume G is convex. Let C be a nonempty, closed, convex, and
bounded subset of X. Let T : C — C be a G-nonexpansive mapping. Assume Cy :={x € C:
(x, T(x)) € E(G)} # 0. Then

inf{d(x, T(x));x € C} =0.

In particular, there exists an approximate fixed point sequence (x,) in C of T, i.e.,
lim d(x,, T(x,)) = 0.
n—00

Proof Fixa e C.Let A € (0,1) and define T; : C — C by

T, (x) =ra® (1-A)T(x).

If (x,y) € E(G), then we have (T'(x), T(y)) € E(G), since T is G-edge preserving. Moreover,
since G is convex and (a,a) € E(G), we obtain

(T5.(x), To(»)) = (Aa ® A - V)T (%), Aa & (1 - V)T () € E(G),
i.e., Ty is G-edge preserving, and
d(ra®(1-2Tx),2a®1-2)T(Y) <1A-0d(Tx),T()) < 1 -1dxy),
i.e., d(T;(x), To(y) < (1 - A)d(x,y). In other words, T; is a G-contraction. It is easy to see

that Cr C Cr,. Hence Cr, is not empty. Theorem 3.1 implies the existence of a fixed point
w;y of Ty in C. So we have

wy=ra® (1 -1)T(w,),
which implies
d(w)\.’ T(a))\)) < )\.d(d, T(wk)) = )"S(C)’

where §(C) = sup{d(x,7);x,y € C} is the diameter of C. Set x,, = wy,, for n > 1. Then we
have d(x,, T'(x,,)) < 8(C)/n, for n > 1. In particular, we have

inf{d(x, T(x));x € X} < nll)ngo d(x, T(x4)) = 0.
The proof of Theorem 3.3 is therefore complete. d

In order to obtain a fixed point existence result for G-nonexpansive mappings, we need

some extra assumptions.

Definition 3.1 We will say that G is transitive if, for any two vertices x and y that are
connected by a directed finite path, we have (x,y) € E(G).
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Note that if the triple (X, d, G) has property (%) and G is transitive, then we have the
following property:

(#x) Forany (x,)u>1 in X, if x, — x and (%, %441) € E(G), for n > 1, then (x,, %) € E(G), for

n>1.

Definition 3.2 We will say that a nonempty subset C of X is G-compact if and only if for
any (x,),>1 in C, if (x,,,%,41) € E(G), for n > 1, then there exists a subsequence (xy,) of (x,)

which is convergent to a point in C.

Note that G-compactness does not necessarily imply compactness. Indeed, consider the
metric set X, subset of R3, built on a cone routed at the origin. All rays are bounded and
compact. But X is unbounded. Define the graph G on X by (x,y) € E(G) if and only if x and
y are on the same ray. Then any sequence (x,,) € X such that (x,,, x,,1) € E(G), for n > 1, will
belong to a ray. Hence (x,) has a convergent subsequence. This shows that X is G-compact

but fails to be compact.

Theorem 3.4 Let (X,d) be a complete hyperbolic metric space and suppose that the
triple (X, d, G) has property (x). Assume G is convex and transitive. Let C be a nonempty,
G-compact and convex subset of X. Let T : C — C be a G-nonexpansive mapping. Assume
Cr:={xeC:(x,T(x)) € E(G)} #0. Then T has a fixed point.

Proof Since Cr is not empty, choose xy € Cr. Let (1) be a sequence of numbers in (0,1)
such that lim,,_, 5 A, = 0. As in the proof of Theorem 3.3, define the mapping 77 : C — C
by

T1(x) = Aixo @ (1 — A) T (x).

Since (%9, T'(x0)) € E(G), we get (xo, T1(x0)) € E(G). Since T is G-edge preserving, we ob-
tain (77 (xo), 70" (x0)) € E(G) and

d(TI”(xo), Tl’”l(xo)) < ){’d(xo, Tl(xo)) forn>1.

Hence (T7'(xo)) is a Cauchy sequence. Since C is G-compact, we conclude that (77 (x,))
is convergent. Set lim,_, o 77 (%0) = x1. The property () implies that (xo,x1) € E(G). By
induction, we construct a sequence (x,) such that x,,; is a fixed point of T},;; : C — C
defined by

Tpi1(®) = Ay, @ (1= X)) T(x),

obtained as the limit of (T

e1(®n)ik=1. In particular, we have (x,,%,,1) € E(G), forany n > 1.

Since C is G-compact, there exists a subsequence (xx,) which converges to w € C. Since G
is transitive, the property () implies that (xx,, ®) € E(G). Using the G-nonexpansiveness

of T, we conclude that

d(T(xr,), T(w)) < d(x,,w) forn=>1.
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Hence (T (xx,)) converges to T'(w). Since x,,,; is a fixed point of T,,1, we get xy,11 = Ayp1%, D
(1 = Ays1) T(x41), which implies

d(xnﬂr T(anrl)) = )\n+1d(xm T(anrl)) <Xun8(C) form=>1,

which implies limy,_,  d(x,, T'(x,)) = 0. Hence (T'(x,)) converges to w as well. Therefore

we must have T(w) = w, i.e., T has a fixed point. O

Next we investigate the above results for multivalued mappings. The first result for these

mappings is the analog to Theorem 3.3.

Theorem 3.5 Let (X, d) be a complete hyperbolic metric space and suppose that the triple
(X,d, G) has property (x). Assume G is convex. Let C be a nonempty, closed, convex,
and bounded subset of X. Set C(C) to be the set of all nonempty closed subsets of C. Let
T : C — C(C) be a monotone increasing G-nonexpansive mapping. If Cr := {x € C; (x,y) €

E(G) for somey € T(x)} is not empty, then T has an approximate fixed point sequence
(%) € C, that is, for any n > 1, there exists y, € T(x,) such that

lim d(x,,y,) = 0.

n—0oQ
In particular, we have lim,,_, o, dist(x,, T'(x,)) = 0, where

dist(x, T(x,)) = inf{d(x,9);y € T(x4)}.
Proof Fix A € (0,1) and xy € C. Define the multivalued map T; on C by

T.(x) = 2xo ® (1= )T (x) = {hxo © (1 - M)y;y € T()}.
Note that T;(x) is nonempty and closed subset of C. Let us show that 7; is a mono-
tone increasing G-contraction. Let x,y € C such that (x,y) € E(G). Since T is a monotone
increasing G-nonexpansive mapping, for any x* € T'(x) there exists y* € T(y) such that
(x*,y*) € E(G) and d(x*,y*) < d(x,y). Since

d(hxo ® (1 - A", Axo @ (1 - A)y*) <A -N)d(x*,y*) < (1-)d(x,),
which proves our claim. Since G is convex, we get (Axo @ (1 — 1)x™*, Axo @ (1 - 1)y*) € E(G).
This clearly shows that T is a monotone increasing G-contraction as claimed. Note that
we have C7 C Cr,, which implies that Cy, is nonempty. Using Theorem 3.2 we conclude
that T}, has a fixed point x; € C. Thus there exists y; € T(x;) such that

%5 =2x0 @ (L= A)ys.

In particular we have

d(x1,y1) < Ad(x0,y1) < A8(C),
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which implies dist(x;, T'(x;)) < A8(C). If we choose A = %, for n > 1, there exist x,, € C and
Yu € T(x,) such that d(x,, y,) < §(C)/n, which implies

1
dist(xn, T(xn)) < -58(C).
n
The proof of Theorem 3.5 is therefore complete. O

The multivalued version of Theorem 3.4 may be stated as follows.

Theorem 3.6 Let (X,d) be a complete hyperbolic metric space and suppose that the triple
(X,d, G) has property (xx). Assume G is convex and transitive. Let C be a nonempty,
G-compact, and convex subset of X. Then any T : C — C(C) monotone increasing
G-nonexpansive mapping has a fixed point provided Cr := {x € C; (x,y) € E(G) for some y €
T (x)} is not empty.

Proof Since Cy is not empty, choose x¢ € Cr. Let (A,) be a sequence of numbers in (0,1)
such that lim,,_,» A, = 0. As we did in the proof of Theorem 3.5, define the mapping T :
C— Cby

T1(x) = Aixo @ (1 — A) T (x).

Since Cr C Cry, there exists yo € T1(xo) such that (xo,y0) € E(G). Using the properties of
T, there exists y, € T1(y1) such that (y1,y,) € E(G) and

dy1,y2) < 1 — A)d(xo, y1).

By induction we build a sequence (y,), with yo = %o, such that y,.1 € T1(Vu), Vs Yus1) €
E(G), and

d(ymyn+1) < (1 - )‘l)d(yrl—luyn) =< (1 - Al)nd(xmyl) =< (1 - )‘l)n(g(c)

for n > 1. So (y,) is Cauchy. Set lim,_, .00 ¥» = #1 € C. The property (xx) implies that
(yu,%1) € E(G), for any n. In particular, we have (xo,%;) € E(G). Using the properties of
T, for any n there exists z, € T'(x;) such that

d(yn+1: Zn) < (1 - )‘l)d(ymxl)-

Clearly this implies that (z,) converges to x; as well. Since T'(x;) is closed, we conclude
that x; € T'(x1), i.e., x1 is a fixed point of T;. By induction, we construct a sequence (x;,) in
C such that x,,,; is a fixed point of T),,; : C — C(C) defined by

Tn+1(x) = )\n+1xn @ (1 - )"n+1)T(x):
and (xy,,%,.1) € E(G). Since C is G-compact, there exists a subsequence (xy,) which con-
verges to w € C. Since G is transitive, the property (xx) implies that (x,, w) € E(G). Since

x,, is a fixed point of T, there exists z, € T(x,,) such that

Xy = )Wlxn—l @ (1 - )"n)zn
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for any n > 1. Note that d(x,,2,) < A,d(xy,,2,) < L,6(C), for any n > 1. In particu-
lar we have lim,_, o d(x,,z,) = 0. Since C is G-compact, there exists a subsequence
(xx,) which converges to some point w € C. Clearly (z,) also converges to w. Using
the G-nonexpansiveness of T, since (xx,, ) € E(G), there exists w, € T(w) such that
d(zk,, wn) < d(xk,, w), for any n. Therefore we see that (w,) converges to w. Since T'(w)
is closed, we conclude that w € T(w), i.e., w is a fixed point of 7. O
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