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Abstract
Let H be a Hilbert space and let C be a closed, convex and nonempty subset of H. If
T : C → H is a non-self and non-expansive mapping, we can define a map h : C → R

by h(x) := inf{λ ≥ 0 : λx + (1 – λ)Tx ∈ C}. Then, for a fixed x0 ∈ C and for α0 := max{1/2,
h(x0)}, we define the Krasnoselskii-Mann algorithm xn+1 = αnxn + (1 – αn)Txn, where
αn+1 = max{αn,h(xn+1)}. We will prove both weak and strong convergence results
when C is a strictly convex set and T is an inward mapping.

1 Introduction
Let C be a closed, convex and nonempty subset of a Hilbert space H and let T : C → H
be a non-expansive mapping such that the fixed point set Fix(T) := {x ∈ C : Tx = x} is not
empty.

For a real sequence {αn} ⊂ (, ), we will consider the iterations
⎧
⎨

⎩

x ∈ C,

xn+ = αnxn + ( – αn)Txn.
()

If T is a self-mapping, the iterative scheme above has been studied in an impressive
amount of papers (see [] and the references therein) in the last decades and it is often
called ‘segmenting Mann’ [–] or ‘Krasnoselskii-Mann’ (e.g., [, ]) iteration.

A general result on algorithm () is due to Reich [] and states that the sequence {xn}
weakly converges to a fixed point of the operator T under the following assumptions:

(C) T is a self-mapping, i.e., T : C → C and
(C) {αn} is such that

∑
n αn( – αn) = +∞.

In this paper, we are interested in lowering condition (C) by allowing T to be non-self at
the price of strengthening the requirements on the sequence {αn} and on the set C. Indeed,
we will assume that C is a strictly convex set and that the non-expansive map T : C → H
is inward.

Historically, the inward condition and its generalizations were widely used to prove con-
vergence results for both implicit [–] and explicit (see, e.g., [, –]) algorithms. How-
ever, we point out that the explicit case was only studied in conjunction with processes
involving the calculation of a projection or a retraction P : H → C at each step.

As an example, in [], the following algorithm is studied:

xn+ = P
(
αnf (xn) + ( – αn)Txn

)
,
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where T : C → H satisfies the weakly inward condition, f is a contraction and P : H → C
is a non-expansive retraction.

We point out that in many real world applications, the process of calculating P can be a
resource consumption task and it may require an approximating algorithm by itself, even
in the case when P is the nearest point projection.

To overcome the necessity of using an auxiliary mapping P, for an inward and non-
expansive mapping T : C → H , we will introduce a new search strategy for the coefficients
{αn} and we will prove that the Krasnoselskii-Mann algorithm

xn+ = αnxn + ( – αn)Txn

is well defined for this particular choice of the sequence {αn}. Also we will prove both weak
and strong convergence results for the above algorithm when C is a strictly convex set.

We stress that the main difference between the classical Krasnoselskii-Mann and our
algorithm is that the choice of the coefficient αn is not made a priori in the latter, but it is
constructed step to step and determined by the values of the map T and the geometry of
the set C.

2 Main result
We will make use of the following.

Definition  A map T : C → H is said to be inward (or to satisfy the inward condition) if,
for any x ∈ C, it holds

Tx ∈ IC(x) :=
{

x + c(u – x) : c ≥  and u ∈ C
}

. ()

We refer to [] for a comprehensive survey on the properties of the inward mappings.

Definition  A set C ⊂ H is said to be strictly convex if it is convex and with the property
that x, y ∈ ∂C and t ∈ (, ) implies that

tx + ( – t)y ∈ C̊.

In other words, if the boundary ∂C does not contain any segment.

Definition  A sequence {yn} ⊂ C is Fejér-monotone with respect to a set D ⊂ C if, for
any element y ∈ D,

‖yn+ – y‖ ≤ ‖yn – y‖ ∀n ∈N.

For a closed and convex set C and a map T : C → H , we define a mapping h : C →R as

h(x) := inf
{
λ ≥  : λx + ( – λ)Tx ∈ C

}
. ()

Note that the above quantity is a minimum since C is closed. In the following lemma, we
group the properties of the function defined above.
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Lemma  Let C be a nonempty, closed and convex set, let T : C → H be a mapping and
define h : C →R as in (). Then the following properties hold:

(P) for any x ∈ C, h(x) ∈ [, ] and h(x) =  if and only if Tx ∈ C;
(P) for any x ∈ C and any α ∈ [h(x), ], αx + ( – α)Tx ∈ C;
(P) if T is an inward mapping, then h(x) <  for any x ∈ C;
(P) whenever Tx /∈ C, h(x)x + ( – h(x))Tx ∈ ∂C.

Proof Properties (P) and (P) follow directly from the definition of h. To prove (P), ob-
serve that () implies


c

Tx +
(

 –

c

)

x ∈ C

for some c ≥ . As a consequence,

h(x) = inf
{
λ ≥  : λx + ( – λ)Tx ∈ C

} ≤
(

 –

c

)

< .

In order to verify (P), we first note that h(x) >  by property (P) and that h(x)x + ( –
h(x))Tx ∈ C. Let {ηn} ⊂ (, h(x)) be a sequence of real numbers converging to h(x) and note
that, by the definition of h, it holds

zn := ηnx + ( – ηn)Tx /∈ C

for any n ∈ N. Since ηn → h(x) and

∥
∥zn – h(x)x –

(
 – h(x)

)
Tx

∥
∥ =

∣
∣ηn – h(x)

∣
∣‖x – Tx‖,

it follows that zn → h(x)x + ( – h(x))Tx ∈ C, so that this last must belong to ∂C. �

Our main result is the following.

Theorem  Let C be a convex, closed and nonempty subset of a Hilbert space H and let
T : C → H be a mapping. Then the algorithm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ C,

α := max{ 
 , h(x)},

xn+ := αnxn + ( – αn)Txn,

αn+ := max{αn, h(xn+)}

()

is well defined.
If we further assume that
. C is strictly convex and
. T is a non-expansive mapping, which satisfies the inward condition () and such that

Fix(T) 
= ∅,
then {xn} weakly converges to a point p ∈ Fix(T). Moreover, if

∑∞
n=( – αn) < ∞, then the

convergence is strong.
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Proof To prove that the algorithm is well defined, it is sufficient to note that αn ∈ [h(xn), ]
for any n ∈ N; then, by recalling property (P) from Lemma , it immediately follows that

xn+ = αnxn + ( – αn)Txn ∈ C.

Assume now that T satisfies the inward condition. In this case, by property (P) of the
previous lemma, we obtain that the non-decreasing sequence {αn} is contained in [ 

 , ).
Also, since T is non-expansive and with at least one fixed point, it follows by standard
arguments that {xn} is Fejér-monotone with respect to Fix(T) and, as a consequence, both
{xn} and {Txn} are bounded.

Firstly, assume that
∑∞

n=( – αn) = ∞. Then, since αn ≥ 
 , we derive that

∑∞
n= αn( –

αn) = ∞ and from Lemma  of [] we obtain that

‖xn – Txn‖ → .

This fact, together with the Fejér-monotonicity of {xn} proves that the sequence weakly
converges in Fix(T) (see [], Proposition .).

Suppose that

∞∑

n=

( – αn) < ∞. ()

Since

‖xn+ – xn‖ = ( – αn)‖Txn – xn‖,

and by the boundedness of {xn} and {Txn}, it is promptly obtained that

∞∑

n=

‖xn+ – xn‖ < ∞,

i.e., {xn} is a strongly Cauchy sequence and hence xn → x∗ ∈ C.
Note that T satisfies the inward condition. Then, by applying properties (P) and (P)

from Lemma , we obtain that h(x∗) <  and that for any μ ∈ (h(x∗), ) it holds

μx∗ + ( – μ)Tx∗ ∈ C. ()

On the other hand, we observe that since limn→∞ αn =  by () and since αn = max{αn–,
h(xn)} holds, it follows that we can choose a sub-sequence {xnk } with the property that
{h(xnk )} is non-decreasing and h(xnk ) → . In particular, for any μ < ,

μxnk + ( – μ)Txnk /∈ C ()

eventually holds.
Choose μ,μ ∈ (h(x∗), ) with μ 
= μ and set v := μx∗ + ( – μ)Tx∗ and v := μx∗ +

( – μ)Tx∗. Then, whenever μ ∈ [μ,μ], by () we have that v := μx∗ + ( – μ)Tx∗ ∈ C.
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Moreover,

μxnk + ( – μ)Txnk → v

since xn → x∗. This last, together with (), implies that v ∈ ∂C and [v, v] ⊂ ∂C, since μ is
arbitrary.

By the strict convexity of C, we derive that

μx∗ + ( – μ)Tx∗ = μx∗ + ( – μ)Tx∗

and x∗ = Tx∗ must necessarily hold, i.e., {xn} strongly converges to a fixed point of T . �

Remark  Following the same line of proof, it can be easily seen that the same results
hold true if the starting coefficient α = max{ 

 , h(x)} is substituted by α = max{b, h(x)},
where b ∈ (, ) is a fixed and arbitrary value. In the statement of Theorem , the value
b = 

 was taken to ease the notation.
We also note that the value h(xn) can be replaced, in practice, by hn =  – 

jn , where
jn := min{j ∈ N : ( – 

j )xn + 
j Txn ∈ C}.

Remark  As it follows from the proof, the condition
∑

n( – αn) < ∞ provides a localiza-
tion result for the fixed point x∗ as a side result. Indeed, in this case, it holds that x∗ = v = v

belongs to the boundary ∂C of the set C.

Remark  In [], for a closed and convex set C, the map

f (x) := inf
{
λ ∈ [, ] : x ∈ λC

}

was introduced and used in conjunction with an iterative scheme to approximate a fixed
point of minimum norm (see also []). Indeed, in the above mentioned paper, it is proved
that the iterative scheme

⎧
⎪⎪⎨

⎪⎪⎩

λn = max{f (xn),λn–},
yn = αnxn + ( – αn)Txn,

xn+ = αnλnxn + ( – αn)yn

strongly converges under the assumptions that {αn} is a sequence in (, ) such that
limn

αn
(–λn) =  and that

∑
n( – λn)αn = ∞. We point out that the mentioned conditions

appear to be difficult to be checked as they involve the geometry of the set C.

We illustrate the statement of our results with a brief example.

Example  Let H = l(R) and let C := B ∩ B, where B := {(ti)i∈N : (t – .) +
∑∞

i= t
i ≤ (.)} and B := {(ti)i∈N :

∑∞
i= t

i ≤ }. Then C is a nonempty, closed and
strictly convex subset of H . Let T : C → H be the map defined by T(t, t, . . . , ti, . . .) :=
(–t, t, . . . , ti, . . .), then T is a non-expansive inward map with Fix(T) = {(, t, . . . , ti, . . .) :
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∑∞
i= t

i ≤ }. If we use the algorithm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = (ti)i∈N ∈ C,

α := max{ 
 , h(x)},

xn+ := αnxn + ( – αn)Txn,

αn+ := max{αn, h(xn+)},

then, by the natural symmetry of the problem, we obtain the constant sequence

x = · · · = xn = (, t, . . . , ti, . . .) ∈ Fix(T).

If we use the algorithm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = (ti)i∈N ∈ C,

α := max{., h(x)},
xn+ := αnxn + ( – αn)Txn,

αn+ := max{αn, h(xn+)},

then {xn} still converges in Fix(T), but {xn} ∩ Fix(T) = ∅ whenever ti 
= .

We conclude the paper by including few question that appear to be still open to the best
of our knowledge.

Question  It has been proved that the Krasnoselskii-Mann algorithm converges for gen-
eral classes of mappings (see, e.g., [] and []). By maintaining the same assumption on
the set C and the inward condition of the involved map, it appears to be natural to ask for
which classes of mappings the same result of Theorem  still holds.

Question  Under which assumptions can algorithm () be adapted to produce a con-
verging sequence to a common fixed point for a family of mappings? In other words, does
the algorithm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ C,

α := max{ 
 , hn(x)},

xn+ := αnxn + ( – αn)Tnxn,

αn+ := max{αn, hn+(xn+)}

converge to a common fixed point of the family {Tn}, where

hn(x) := inf
{
λ ≥  : λx + ( – λ)Tnx ∈ C

}

and under suitable hypotheses?
We refer to [] and [] for two examples regarding the classical Krasnoselskii-Mann

algorithm.
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Question  In the classical literature, it has been proved that the inward condition can be
often dropped in favor of a weaker condition. For example, a mapping T : C → X is said
to be weakly inward (or to satisfy the weakly inward condition) if

Tx ∈ IC(x) ∀x ∈ C.

Does Theorem  hold even for weakly inward mappings?
On the other hand, we observe that the strict convexity of the set C does appear to be

unusual for results regarding the convergence of Krasnoselskii-Mann iterations. We do not
know if our result can hold for a convex and closed set C, even at the price of strengthening
the requirements on the map T .
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