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Abstract
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1 Preliminaries

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[1] in 1972. They proved that if C is a nonempty bounded, closed and convex subset of a
uniformly convex Banach space E, then every asymptotically nonexpansive self-mapping
T of C has a fixed point. Further, the set F(T') of fixed points of T is closed and convex. In
[2], Zegeye et al. introduced a class of Lipschitz pseudocontractive mappings in a Banach
space. Since then, the weak and strong convergence problems of the iterative algorithms
for such a class of mappings have been studied by several researchers under suitable con-
ditions (see Yao et al. [3] and [4]; Thakur et al. [5, 6]; Dewangan et al. [7, 8]; Zegeye and
Shahzad [9]; Jung [10]). Also, the class of nonexpansive mappings via iteration methods
was extensively studied (see Tan and Xu [11]; Thakur et al. [12]).

In 2011, Ceng et al. [13] considered the following concept of asymptotically k-strict
pseudocontractive type mapping in the intermediate sense in a Hilbert space H. For an
asymptotically k-strict pseudocontractive type mapping T with sequence {y,}, Ceng et al.
proved that the Mann iteration sequence converges weakly to a fixed point of 7.

In this paper, based on [13], the convergence of the iteration approximation of asymp-
totically k-strict pseudocontractive type mappings in a Hilbert space is studied. Finally, we
study the rate of convergence of the iteration. Also, some illustrative numerical examples
(using Matlab software) are presented.

We need the following definitions and lemmas for the main results.

Definition 1.1 [13] Let Bbe a nonempty subset of a Hilbert space . A mapping T : B— B
is called an asymptotically k-strict pseudocontractive type mapping in the intermediate
sense with sequence {y,} if there exists a constant k € [0,1) and a sequence {y,,} in [0, c0)
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with lim,,_, o, y, = 0 such that
: n n, |2 2
lim sup sup (|| T'x-T y|| -1+ y)llx=9l
n—o0o xy€B

—kmax{||x—T"x - (y = T") |, ||« = T"x + (y = T")| }2) <0. (L1)

Throughout this paper we assume

Q,:= max{(), sup (|| T"x - T"y”2 =L+l -yl
x,y€B

’

—kmax{|x - T"x - (y - T"y)

x—T"x + (y— T"y) H}Z)]
Then ®, >0 (Vn>1), ®, — 0 (n — o0), and (1.1) reduces to the relation

|77 17|

x—T"x+(y—T"y)||}2+(~)n

<@A+p)le—yI*+ kmax{ ||x -T"x - (y— T”y)

forallx,y e Band n > 1.

Lemma 1.2 [13] Suppose that {5,,}, {B.} and {y,} are three sequences of nonnegative num-

bers satisfying the recursive inequality
8urt < Bubn +¥Ywy VH =1,

ifBi>1Y 0 (Bu—1)<o0candy 2, yu <00, then lim,_, o 8, exists.

Lemma 1.3 [14] Assume that {a,} is a sequence of nonnegative numbers such that
apn < (1= ap)ay + 8, n=0,

where {a,} is a sequence in (0,1) and {8,} is a sequence of real numbers such that
() limy oy =0andy o2 a, =00;
(Il) limsup,_, g_f, <0o0rYy 218, < o0.

Then lim,,—, o a,, = 0.

Lemma 1.4 [15] Let X be a uniformly convex Banach space, {t,} be a sequence of real
numbers in (0,1) bounded away from 0 and 1, and {x,} and {y,} be sequences of X such
that limsup,_, o %, || < a, limsup,_, o |yl < a and limsup,_, . &%, + 1 = £,)y.| = a for
some a > 0, then lim,,_, » ||x, — || = 0.

Lemma 1.5 [13] Let {x,} be a bounded sequence on a reflexive Banach space X. If

ww({x,)) = {x}, then x,, — x.

Lemma 1.6 [13] Let H be a real Hilbert space.
(@) lloc =1 = llxll> = lyl* = 2<x — y,y> for all x,y € H;
(i) 1@ =x+ty)|? = A =O)lx)|? + tlyl|® — (A1 = O)lx — ¥ for all t € [0,1] and for all
x,y € H;
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(iti) If {x,} is a sequence in H such that x, — x, it follows that

limsup [, — y|I* = limsup [|x, —%I|* + [lx = |, VyeH.
n—00 n—0o0
Lemma 1.7 [13] Let B be a nonempty subset of a Hilbert space H and T : B — B be an
asymptotically k-strict pseudocontractive type mapping in the intermediate sense with se-
quence {y,}. Then

7= T = 1 (Kl =31+ (U = a1+ (= R )

forallx,y € Bandn > 1, where h,(x,y) = 4k||ly—T"y|||lx— T"x+y—T"y|| + ©,,. In particular,
if F(T) # ¢, then the above inequality reduces to the following

|T"% - q| < i(knx—qn +/ 1+ A =K)ya)lx—ql> + (1 -k)O,)
1-k
forallx € B,qe F(T) and n > 1.

Lemma 1.8 [13] Let B be a nonempty subset of a Hilbert space H and T : B — B be
a uniformly continuous asymptotically k-strict pseudocontractive type mapping in the
intermediate sense with sequence {y,}. Let {x,} be a bounded sequence in B such that
|2y — X1 ll = O and ||x, — T"x,|| = 0 as n — oo. If F(T) # ¢, then ||x, — Tx,|| — 0 as
n—> 00.

Proposition 1.9 [13] Let B be a nonempty, closed and convex subset of a Hilbert space
H and T : B— B be a continuous asymptotically k-strict pseudocontractive type map-
ping in the intermediate sense with sequence {y,} such that F(T) # ¢. Then I — T is
demiclosed at zero in the sense that if {x,} is a sequence in B such that x, — x € B and
limsup,,_, ., limsup,_, o |, — T"x,| =0, then (I - T)x = 0.

2 Semigroup
Let B be a nonempty and closed subset of a Hilbert space /{ and I : B— B be an identity
mapping.

A one-parameter family ¢ = {T'(¢) : 0 < ¢ < oo} from self-mappings of a nonempty closed
convex subset B of a Hilbert space # is said to be a nonexpansive semigroup on B if the
following conditions are satisfied:

(I) T(0)x =x for all x € B;
(II) T(s+t)x=T(s)T(t)x forallx € Bands,t > 0;

(IIT) For each x € B, the mapping ¢t — T'(t)x is continuous on [0, 00);

(IV) I T(®x - Tyl < lx -yl for all x,y € B.

We denote by Fix(¢) the set of all common fixed points of ¢; that is, Fix(¢) = {x € B:
T(s)x = x,Vs > 0}. Fix(¢) is nonempty if B is bounded.

Lemma 2.1 [16] Let B be a nonempty, bounded, closed and convex subset of H and ¢ =
{T(t):0 <t< oo} be a nonexpansive semigroup on B. Then

%/Ot T(u)xdu — T(s)(% fot T(u)xdu)

lim sup lim sup sup
§—00 t—o00 xeB

-0
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In this section, we study a new modified iteration process. This process is defined by

x1 € B,

Uy = ﬁ Z}io Téx,,,

%n1 = (1= Buo)n + Buo fo B(S)un ds,

Xnp = (1= Bup)xu + Bua T1'%n1, (2.1)

Xn,m = (1 - ,Brt,m—l)xn + ﬁn.m—l Tfn_1xn,m—1r

K1 = (1= ﬂn,m)lﬁ(xn) + Bum Tynnxn,mr

where {B,:},i=0,...,m, are the sequences in (0,1) such that the following conditions are
satisfied:
(1) 0<liminf,, By <limsup,_, . Bu; <1
(2) T;:B— Bare uniformly continuous asymptotically k;-strict pseudocontractive type
mappings in the intermediate sense with sequences {y,,;} if there exist constants
k; € [0,1) and sequences {y,;} in [0, 00) with lim,,_,» y,; =0 for i = 0,...,m such
that

| T =17y
<@+ yu)lx-yl?

)

x—Tlx+ (y—T}y) ” }2 + 0Oy,

+kymax{|x - T/ — (y - T/'y)

fori=0,...,mandforallx,ye B,n>1.
(3) ¥ isa contractive mapping on B with coeflicient A.
(4) ¢ ={¢(t):1 <t <oo}isanonexpansive semigroup on B.
(5) {t.} C[1,+00) is a positive real divergent sequence.
Now, we prove that the sequence {x,} generated by (2.1) is weakly convergent in a Hilbert

space H.

Theorem 2.2 Let B be a nonempty, closed and convex subset of a real Hilbert space H. Sup-
pose that T; : B— B are uniformly continuous asymptotically k;-strict pseudocontractive
type mappings in the intermediate sense for i = 0,...,m, for all x € B, <x — Tix, Tix> > 0.
Assumethaty . yui < 00 and {x,} is a sequence defined by (2.1). If F = ("o F(T;) NF(y) N
F(§) # ¢, then

(1) limy,— o ||x, — q|| exists for all q € F;

(2) lim,_ o l|%y — Uyl = 0 and lim,,_, o ||%, — Tix,|| =0 (i = 0,...,m);

(3) The sequence {x,} is weakly convergent to q € F.

Proof By the Holder inequality,

2

1 " n " . 9
_gl? = | —— PV ..
ity — gl H"“;:o Tyon—d| = j§=o | 7ox. —

forl<j<n,

|| T{)xn _q||2 =< (1 + VjO)”xn _qHZ + kO Hxn - T{)xn ”2 + ®j0~
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Using Lemma 1.6(i), we have
|6 = Toea|” = 0 — @) = (To5n - a) |
= [l = 11 = | Th — || — 2= — Ty, Totn=
since <x,, — Téx,,, Téx,,> >0,

| Thxn = q” < @+ vj0) 0 — 11 + kol — 11 = ko | Thxu — g + ©j0,

therefore

| 76w~ a]* < <1+ 1+"}(g)||xn —al*+

By process (2.1), we get

n
lln = ql* < " sz (uxn —ql* + > || Thxn —q||2)

j=1

n ) v Yo 2. O
< — n— E 1 n P
~ (n+1)2 <||x d +/1(< +1+k0>||x 1l +1+/<0))

n(n+1)(1 + =) n? Un

Ol — g + —
(m+1)2 n—q (m+1)21+ko

Sn 2 Un
1+ — )%, — + , 2.2
( 1+ko)nn I+ (2:2)

where ¢, = max{yjo,1 <j < n} and v, = max{®jp,1 <j < n}. By process (2.1) and inequality
(2.2),

IA

2

1 [
[0 — q||2 = “ (1- ﬁn.o)xn + ﬂn,Ot_ /0 o(s)u, ds - q

2

- “(1 Br)n—) + ﬁn,oti( /0 " (¢()un - q) ds)

n

2

1 tn
(= Bu)n =l + B |~ /0 ($(S)un — q) ds

tn

2

L[
o ) /o ()i ds

<@- ,Bn,O)”xn - q||2 + Buollun — q”2

1[4
- ﬁn,O (1 - /371,0) Xn — t_ / ¢(S)un ds
n JO0

= (1 - IBn,O)Hxn - q||2 + ,Bn,O[pOHxn - q||2 + 0'0]

tn
— Buo(L= Buo) [0 tl /o $(Sunds| 2.3)
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where pg =1+ kg’il and og = kgil. For2 <i<m,
2 n 2
6, = qll* = | (X = Bui—1)%n + Buisa T/ 151 — 4|
2
= (1= Bui-1)lloen — q”2 + B ” Tin,lxn,i—l - q”
2
- IBn,i—l(l - ﬁn,i—l) ”xn - T,‘Yi1xn,i—1 “ ’
using Lemma 1.6(i), for 2 <i <m,
2 Vni-1 2 ®ni—1
T Xpi1 — <|1+ Kyl — + . 2.4
| 73051 - a _( 1+ki_1>” wir =l + T (2.4)
Let p; =1+ 1’% and o; = 3’;{’ fori=1,...,m,
(1%, = 6]||2 < (1= Buis)llxn — ¢I||2 + Buic1 [Pi-l [l%67s,i-1 — 61||2 + Ut—l]
2
- ﬁn,i—l(l - ,Bn,i—l) ”xn - Tin,lxn,i—l || .
Also
”xn,m - Q||2 = (1 - ﬂn,m—l) ”xn - 4”2 + lgn,m—l [pm—l ”xn,m—l - 61||2 + Um—l]
2
= Bum-1(1 = Bum-1) ”xn - T:;klxn,m—l ”
< A= Bum-)lln - q”2 + Bum-1 [pm—l [(1 — Bum-2) 1% — 6I||2
+ ,Bn,m—Z [pm—2 ”xn,m—Z - q||2 + Gm—2]
7 2
- :Bn,m—2(1 - ,Bn,m—Z) ”xn - Tm_zxn,m—Z || ] + Um—l]
2
= Bum-1(1 = Bum-1) ”xn - T;Z,_lxn,m—l ’
continuing this process
”xn,m - q||2 = {(1 - ,Bn,m—l) + lgn,m—lpm—l[(l - ,Bn,m—Z)
+ :Bn,m—me—Z [(1 - ,Bn,m—S) + ,Bn,m—B)Om—3[' o [ o [(1 - ﬁn,l)
+ Buao1[ A = Bo) + Buopo]] -+ [ Hlxn — ql”
+ ﬁn,m—lam—l + ﬁn,m—lﬁn,m—me—lam—Z
+ IBn,m—lﬂn,m—Zﬂn,m—Bpm—lpm—20m—3
+ ...
+ lgn,m—lﬂn,m—2 e ﬁn,Opm—lpm—2 <+ 0100, (25)

SO

%m = qII* < pnll%n = qll* + 1 (2.6)
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where

Mp = (1 - ﬁn,m—l) + ﬁn,m—lpm—l [(1 - ﬂn,m—Z)
+ lgn,m—me—Z [(1 - ,Bn,m—B) + lgn,m—Bpm—3 [ o [ o [(1 - ,Bn,l)
+ Buap1[ (A= Bino) + Buopo]] -],

and

Mn = ,Bn,m—lam—l + ,Bn,m—lﬁn,m—me—lam—Z
+ ﬂn,m—lﬁn,m—Zﬂn,m—Spm—lpm—ZUm—S

+ ..

+ Bum-1 " BnoPm-1Pm=2 - - P100.

By process (2.1),

Pener =gl = (= Bun) | ) = > + B | Tonm — |
B = Bugn) [V () = Tt |
< (L= Bum)X* 1% = qII* + Busm[ o %nm — qlI* + 0]
B = B [V ) = Tt (2.7)

by inequalities (2.6) and (2.7)
1%+ = qllz = [(1 - ,Bnm))L2 + ﬁn,mpmﬂn] lln — q||2 + Brm(OmNu + O (2.8)

Since 1im, oo[(1 = Bum)A? + BumPmin] < 1 and lim,_, e Bum(omnn + om) = 0, by
Lemma 1.2 we deduce that lim,,_, , ||, — ¢q|| = 4 exists for some 4 > 0.
By inequality (2.6), limsup,,_, o, [|¥.,m — qll < /4, also by inequality (2.7), since

%241 — 6]”2 — [l — q||2 + BumllXn — QHZ 2 Om
= ”xn,m - 61|| +—,
BrmPm Pm

then / < liminf,_, o [|%,,n — gl and lim,,_, o |%,x — gll = A
By the same argument, lim,,_, o ||%,,; — qll = A for i =2,...,m — 1. By process (2.1),

lim [|%,,; — gll = lim |[(1 = Buic)) @ — @) + Buia (T4 %mic1 — q) | = s
n—00 n— 00
and by inequality (2.4), lim,_ o |T7%,; — qll < h, then by Lemma 1.4, lim,_, [, —
T/ Xpiall=0fori=2,...,m.
Now, we show ||x,, — T}* %, || — O for i =2,...,m, by process (2.1),
156, = % |l = Briz1 ”xn - Tl‘n_lxn,i—l ” —0 asn— oo,

also

o6 = Tn| < [o0n = TP sdmica | + || T mie1 = TPy
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and by Lemma 1.7,

” T %0 = Ti X1 ”

=

1-kiy

X (kica [0 = Zmica || + \/(1 + (1= kict) Viic1) 1% = it 12 + (1= ki) (%1 K1),

where /1, (x,,%i.1) = 4k %01 — T %t l1%n = T %0 + Xir — T %01l + Opiye
We have
[E e b
= [0 = Bria) (o = T si1) + Bica (T ymics = Tsinir) |
= (U= Bid) [0 = T mia | + B | T7 y%mi2 = TP y6mia |
= Brica(L = Bui2) [%n = Tl ynia”
< (1= B[ + Vi) 12 = i 1
kit |00 = Tnia |+ O]
+ Buia[(L+ Vi) | T o2 — i |
kit |00 = Tnia |+ O]
— Bnica (L= o) [ — Tl ptnica |
= (U= Bui2) [+ Vi) B2y [ = TP gtnica |
ki [nia = Ty |+ O]
¥ Brica[ (L4 Vi) (L = Brica) [ — Tl gtnica |
t ki [Fmicr = T i | + Onica] = Bria (L = Bi2) |0 = Tl mia |

= kict [ %ni-1 = T/ 1 %mic ||2 + Buiza(L = Buiz2) Vit | %n = Ti y%mica ||2 +Opi1,
therefore
(A = kic) |1 = TP %mica ||2 < Buic2 (1= Buica) Vict |%n — T} 3%, ||2 + Oy,

it means that ”xn,i—l - Tl'yilxn,i—l || — 0, hn (xm xn,i—l) — 0, ” Tiyilxn - T,’Vilxn,i—l ” — Oand ”xn -

T/ %4]l = 0 fori=2,...,m. Since
Jim (1 = gll = im (= Bu) ( () = @) + Brm (T — ) | = 1
and

lim [[¥(x) = q|| < lim Allx - qll <,

n—00
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by inequality (2.4), lim, .o || T} %n,m —qll < h, by Lemma 1.4, lim,,—, ¢ [[% (%) — T} % m |l = 0.

Since

’

”xn+l - T;;xn,m ” = (1 - ﬁn,m) ” W(xn) - T;Z,xn,m

then lim,,_, o [lo¢41 = T;Z,xn,m | =0.
We show ||x,, — T)hx, |l — 0 and [l%,41 — %, || — 0. We have

96041 = Xnll < [[®ns1 = Tonm | + | Tontmm = %nm | + 1%mm = %ull,
by the same argument

(= &) [ = Tt |” < B = B Vom0 = Ty smmr | + @, (2.9)
it means that ||x,,,, — T)yXmll — 0 and [|%,.,1 — %, || — 0. Since

2= Tt < o = Tt + | Tt = Tt

< %n = Xuaall + Hxn+l - Tz,xn,m ” + ” Ts,xn,m - Tszxn

’

by Lemma 1.7 and inequality (2.9), ||x,, — T x| — O.
We show limy,—, o |14y, — %, = 0 and lim,,—, o | T§ %, — %4l = 0. Let Q,, = i Ot" o (s)u, ds,
by inequality (2.3) and process (2.1), lim,,—, « [|#41 — gl = /. Also

lim ||x,1 — ¢l = lim ”(1 = B0)xn — ) + Buo(n — q) ” =h.
n—0oQ n—oQ

By inequality (2.3),

2

192, - qlI* = < pollxs = qlI* + 00,

1 [
1 / $(unds—q
tn 0

and lim,_, » [|2, — g|| <% and by Lemma 1.4, lim,,_, o |2, — %, = 0. Since ||x,1 — x| =
Broll$2, — x,l, then limy,—, o |21 — %4l = 0. Also [lx, — gl < llxn — 2l + 2, — gl and
lim, . |22, — gl = . By inequality (2.2), ||u, —q|I* < pollxx—q|I* + 00, so limsup,, . ||, —
gll <limsup,_, ., [l*, — gl = &. On the other hand, by |2, — ¢||* = || i Ot” K(S)u,ds—q|* <
lu,, — gl|%, we have

lim |lx, — ¢l = lim ||, — g = lim |lu, —q| = h,
n— 00 n—0o0 n—0o0

and by the same argument lim,_ o |4, — %, = 0, lim,—, o | T§x, — x|l = 0. For all
0 <r < 00, we note that

@) — x| < @20 — D) || + | SR = Q]| + 1120 =
E 2”96,, - Qn” + ”(,25(7')9,, - Qn

’

by Lemma 2.1, ||¢(r)x, —x,|| — 0. Also by Lemma 1.8 we have ||x,, — Tjx,|| — 0 as n — 00
fori=0,...,m. Assume that x,; — u weakly and x,; — v weakly as # — co. Then u,v € F.
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We prove that u = v. If u # v, by Opial’s condition,

lim |lx, —u|l = Him [, — u|]
n— o0 11— 00
< lim ||, — V||
11— 00
= lim |jx, — V||
n— 00
< lim ||x,; — ul|
J—> 00
= lim ||x, —u],
n— 00
which is a contradiction. Therefore, we have the conclusion. O

Theorem 2.3 Suppose that all of the conditions of Theorem 2.2 hold. If 0 <
liminf, o0 By < limsup,_, . Bui <1 for all i = 0,...,m — 1, limy_00 Byyw = 0 and
> Bum = 00, then the sequence {x,},o generated by (2.1) is strongly convergent to q € F
in B.

Proof By the same argument of Theorem 2.2,

%41 = q”2 =< [(1 - ,‘3n,m))L2 + ,Bn,mpmﬂn] ll, — 61||2 + Bum(OmNn + Om). (2.10)

Since limy,_, 00 Bum = 0 and limy,—, 00 Bum(0mMn + 0m) = 0, by Lemma 1.3 we deduce that
lim,,— 0 ||, — gll = 0. Also lim,,_  ||%;, = Tymxnll =0 for i = 0,...,m and lim,_, o ||%,41 —
xn” =0. |

Now, we study a new modified iteration process. This process is defined by

x1 € B,

tn = 5 S0 o Thitw,

%n1 = (L= Bu0)n + Buo s fo" Pty ) s,

Xn2 = (1= Bu1)%n + Bua T7 %1, (2.11)

Xnm = (1- ,Bn,m—l)xn + Bum-1 T:,l,_lxn,m—ly

Xp+l = (1 - ,Bn,m)W(xn) + lgn,m T:,l«,xn,m:

where {8,:}, i = 0,...,m, are the sequences in (0,1) and ¢ : B x I — B is an integrable
function and I = [0, ] C R. We have the following theorem.

Theorem 2.4 Suppose that all of the conditions of Theorem 2.2 hold. If ¢ : Bx I — Bisa
contraction mapping with constant [ <1 € R* such that for all x,y e Band t € I,

@) = p(. )| < lllx—yl.

Also 0 < liminf,,_, o By <limsup,_, . Bui<1foralli=0,...,m—1,lim,_ o Bum =0 and
> Bum = 00, then the sequence {x,},>0 generated by (2.11) is strongly convergent to q €
F =" F(T) NE(W) N E) # in B.
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Proof By the same argument of Theorem 2.2,

1 [ 2
%1 — qlI* = “ (1 - Buo)xn + ﬂn,ot— / d(un,s)ds—q
n JO

2

= ” (L= Buno)xn —gq) + ﬁn,Otl (/0 ' (¢(un: 5) - q) ds)

2
= (1 - ,Bn,O)Hxn - q||2 + ,Bn,O

1
E/o (P (ttnss) — q) ds

2

- :3;1,0 (1 - ﬂn,O)

1 [
Xp— — / ¢(unr5) dS
ty 0

=< (1 - ,Bn,O)”xn - CI||2 + ﬁn,Olzllun - 61||2
2

- ﬂn,O (1 - Ign,O)

1 [t
X — —/ O(uy,8)ds
tn 0

1- n n— > n 12 1 o n = > o
=< @ = Buo)llxn =gl + Buo [( +k0+1)llx gl il

2

1 [
ol ) f $(1tr5) s
n J0

(2.12)
Then

%1 = q||2 =< [(1 — Bum) + ,Bn,mpmﬂn] ll,, — 61||2 + Bum(OmMn + Om). (2.13)

Since limy,_, 00 Bum = 0 and limy,— 00 Brm(0mMNn + 0m) = 0, by Lemma 1.3 we deduce that
lim,; - o (% — 61|| =0. 0

3 Some examples

In this section, we consider the following examples to illustrate the theoretical results.

Example 3.1 Let H = R be the set of real numbers and B = [0, o0). For each x € B, we
define

ksinx 1
mr e ifx e [0, 5],
T(x) — 1+x [ 2]

(3.1)
0 ifx e (%,oo),

where 0 < k < % Set B; = [0,1]and B, = (%,oo). Then, forall x,y € By and n > 1,

ksi ksi
|Tx — Ty| = Mx Lty < k|sinx —siny| < k|x -y,
1+x 1+y
and
kTx KTy
T?x - T%y| = - <k|Tx - Ty| < K|x -yl
| * y| ‘1+Tx 1+Ty‘_ [ Tx— Tyl < Kolx -y

thenforalln > 1, |T"x — T"y| < k"|x — y|.

Page 11 of 17
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Forallx,ye Byandn>1, |T"x - T"y| =0 < |x — y|.
Forallx € B, and y € By, | Tx — Ty| = |X8% _ 0| < |kx - 0],

1+x

’T"x— T”y’2 < ‘k”x—O‘2
= |k”(x—y)+k”y|2

(k”-lpc —y| + k" )y )2
2

<

=

ikz("*l)lx -yl + %/(2(14—1) |(y+x - T"x) - (x = T") |2

<lx—y*+ %max{’x— T"x—(y-T")|,

|x = T"x +y - T"y| }2 + %kz(”‘l).

Therefore T': B — B is an asymptotically %—strict pseudocontractive type mapping in the

intermediate sense.

Example 3.2 Let H = R be the set of real numbers and B = [0, 00). For each x € B, we
define

ke 1
T = | ifx €0, 3],

(3.2)
0 ifxe(s,00),

where 0 < k < %. Therefore T : B — B is an asymptotically %—strict pseudocontractive type

mapping in the intermediate sense.

Example 3.3 [13] Let H = R be the set of real numbers and B = [0, 00). Suppose that
T : B — Bis defined by [13]

kx ifx€[0,1],
T(x) = (3.3)
0 ifxe(l,00),

where 0 < k < i. Then T : B — B is an asymptotically i—strict pseudocontractive type

mapping in the intermediate sense.

Example 3.4 Let H{ = R be the set of real numbers and B = [0, 00). Consider the following

conditions:
_ X _x ___sinx _ x .
(1) Tox = 155, T1¥ = 5550 To* = 55015 and Ts% = 50555
(2) ¥ (x) = 155, therefore ¥ is a contraction mapping with constant A = ﬁ;

- _n_ - - _n_ -
(3) Bno = toust> Bt = 355510 P2 = 35,51 20 Bus = qg,575

(4) ¢(s)=e*and t, = n.
Let {x,} be the sequence defined by (2.1). So
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n Xn n Xn
1 1 11  7.875 x 1074
2 0.009876 12 7.678 x 10723
3 9.634x10° 13 7.478x107%
4 9395x1077 14 73x107%
5 9162x10° 15 7.118 x107%°
6 8934x1071 16 6.94 x 1073
7 8711x1071 17 6.767 x 103
8 8494 x107° 18 6.598 x 1073
9 8283x107 19 6.433 x107%
10 8.076 x107® 20 6.273 x107%°
1 T T T T
0.9+ i
0.8 i
0.7+ -
Sosaf B
g
§ o5t 4
%DA + i
0.3+ i
02+ i
01F -
D L 1 1 1
u] 5] 10 15 20 25
iteration steps
Figure 1 The iteration chart with initial value x; = 1.

= 51 L0 o

Xnl = 190;;—11196" + ﬁ(%)un,
%12 = Jodn + ToeT 007l
%3 = 51 + o L3 %n2s
Xn+l = % ﬁxn + ﬁT;xn,&

and Fix(¢) N Fix(y) N, Fix(T;) = {0}. Set x; = 1 (see Figure 1).

Example 3.5 Suppose that all of the conditions of Example 3.4 hold. Suppose that {x,} is

defined by the process
_ 9n+l n 1
1l = 10m:1%n T 0431 1007 X100
_ 19n+1 n 1
*n2 = 50m1%n t 30141 2007 ¥l

_ 29n+1 n n
13 = 30u+1%n t 30551 T2 Xn,2

_ 39n+l n n
Xnil = 40,41%n + 20ue1 T3 X3

and set x; =1 (see Figure 2).
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n Xn n Xn
1 1 11 0.77786
2 097572 12 0.75846
3 0.95163 13 0.73954
4 092804 14 0.72108
5 0.90498 15 0.70309
6 0.88247 16 0.68554
7 0.8605 17 0.66843
8 0.83906 18 0.65174
9 0.81815 19 0.63547
10 0.79775 20 0.6196
1 ; . . .
0.95f N
0.9k -
gy 0.85¢ N
[
B osp -
§ 075} -
07f -
D65} N
0 Is 1ID 1|5 2ID 25
iteration steps
Figure 2 The iteration chart with initial value x; = 1.

The rate of convergence of our approximation is faster than the corresponding one in [13].
Example 3.6 Let H = R be the set of real numbers and B = [0, 00). Consider the following
conditions:

(1) Tox= ﬁ, Tix = 555, Tox = —log‘a’ix and T3x = —1ooé+x)'

2) v(x) = 100, therefore v is a contraction mapping with constant / =

(3) Bro = ust> Bt = 355517 P2 = 35,51 a0d Bus = qg,515
(4) ¢(x,8) = 2% and ¢, = n.
Let {x,} be the sequence defined by the process

Un = ﬁ ;1*0 1)(?(1)/’

X1 = 1902111 Xn 10n+1(1 ) sinu,
Kn2 = %Zﬂxn ﬁwxn,b
Kn3 = §(2:ﬂxn 30n+1T Xn,2

Kl = 2?)23 100"x" 40n+1 T5%03,

and Fix(¢) NFix(y) ﬂio Fix(T;) = {0}. Set x1 = 1 (see Figure 3).
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n Xn n Xn
1 1 11 9.798 x 10711
2 0.0098 12 9.79 x 107133
3 9.863x1077 13 9.782 x 1077
4 9.855x107® 14 9.774 x 107183
5 9184 x10721 15 9.766 x 1072
6 9.839x1073 16 9.758 x 10724
7 9.831x10% 17 9.75x107%73
8 9.823x107%7 18 9.741 x 107397
9 9815%x107® 19 0.0000
10 9.806 x10™° 20 0.0000
1 T T T T
0.9+ -
0.8 -
0.7+ i
Sosaf B
g
§ o5t 4
%DA + i
0.3+ i
02+ -
01F -
D 1 1 1 1
u] 5] 10 15 20 25
iteration steps
Figure 3 The iteration chart with initial value x; = 1.

Example 3.7 Suppose that all of the conditions of Example 3.4 hold. Set 8,3 = ﬁ and let

{x,} be the sequence defined by the process

Uy = ﬁ ;‘1:0 %,

X1 = b, + ot (55w,
Xn2 = %xn + ﬁ ﬁxn,b
Xn3 = %xn + ﬁTgvxn,Z,
Xn+l = %ﬁxn + ﬁTgxn,?n

and Fix(¢) N Fix(yr) ﬂ?:o Fix(T;) = {0}. Suppose x; =1 (see Figure 4).

4 Conclusion
The stability of a fixed point iterative procedure was first studied by Ostrowski [17] in
the case of Banach contraction mappings, and this subject was later developed for certain
contractive definitions by several authors.

Let (X,d) be a complete metric space, T : X — X be a map and x,,; = f(T,x,) be an
iteration procedure. Suppose that T has at least one fixed point and that the sequence
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n Xn n Xn
1 1 11 9.4233 x 10711
2 0.00949 12 9.4204 x 107133
3 9468 x1077 13 9.4178 x 107157
4  9.4575x 107 14 9.4154 x 107183
5 94497 x10721 15 9.413 x 1072
6 9.4435x1073 16 9.4111 x 10724
7 94383 x107* 17 9.4091 x 107273
8 9.4338x107%7 18 9.4073 x 107397
9 9.4299x1077% 19 0.0000
10 9.4264 x10™°' 20 0.0000
1 T T T T
0.9+ i
0.8 i
0.7+ ~
Sosaf E
g
§ o5t 4
%DA + i
0.3+ i
02+ ~
01t -
D 1 1 1 1
u] 5] 10 15 20 25
iteration steps
Figure 4 The iteration chart with initial value x; = 1.

{x,,} converges to a fixed point x* € X. We denote the set of fixed points of the mapping T
by F(T). Let {y,} be an arbitrary sequence in X and ¢, = d(y,.+1,f(T,yy)). lf lim, o &, =0
implies that lim,,_, » y, = x*, then the iteration procedure x,,; = f(T,x,) is said to be T-
stable. If {y, } is a bounded sequence and lim,,_, , &, = 0 implies that lim,,_, » ¥, = #*, then
the iteration procedure x,,; = f(7T,x,) is said to be boundedly T-stable.

According to the above definition, Haghi et al. [18] studied the T-stability of Picard’s
iteration for generalized ¢-contraction mappings on a metric space. Also Olatinwo and
Postolache [19] studied the stability for Jungck-type iterative processes in convex metric
spaces.

Now, consider the modified iteration process (2.1), one interesting problem is studying

the stability of the iteration scheme {x,} generated by (2.1).
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