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Abstract
Let C be a ρ-bounded, ρ-closed, convex subset of a modular function space Lρ . We
investigate the problem of constructing common fixed points for asymptotic
pointwise nonexpansive semigroups of mappings Tt : C → C, i.e. a family such that
T0(f ) = f , Ts+t(f ) = Ts ◦ Tt(f ), and ρ(T (f ) – T (g)) ≤ αt(f )ρ(f – g), where
lim supt→∞ αt(f )≤ 1, for every f ∈ C.
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1 Introduction
In , Kirk and Xu [] studied existence of fixed points of asymptotic pointwise nonex-
pansive mappings T : C → C, i.e.

∥∥Tn(x) – Tn(y)
∥∥ ≤ αn(x)‖x – y‖,

where lim supn→∞ αn(x)≤ , for all x, y ∈ C. Theirmain result (Theorem.) states that ev-
ery asymptotic pointwise nonexpansive self-mapping of a nonempty, closed, bounded and
convex subsetC of a uniformly convex Banach spaceX has a fixed point. As pointed out by
Kirk and Xu, asymptotic pointwise mappings seem to be a natural generalization of non-
expansive mappings. The conditions on αn can be for instance expressed in terms of the
derivatives of iterations of T for differentiable T . In , these results were generalized
by Hussain and Khamsi to metric spaces []. In , Khamsi and Kozlowski [] extended
their result proving the existence of fixed points of asymptotic pointwise ρ-nonexpansive
mappings acting in modular function spaces. The existence of common fixed points of
semigroups of nonexpansive (in a modular sense) mappings acting in modular function
spaces was first established by Kozlowski in [] and then extended to the semigroups of
asymptotic pointwise nonexpansive mappings by the authors in []. The proof of this im-
portant theorem is of the existential nature and does not describe any algorithm for con-
structing a common fixed point of an asymptotic pointwise ρ-nonexpansive semigroup.
The current paper aims at filling this gap. The results of this paper generalize the conver-
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gence of generalized Mann processes to common fixed points of semigroups of nonex-
pansive semigroups studied in the recent paper by Bin Dehaish and Kozlowski [].
Let us recall that modular function spaces are a natural generalization of both function

and sequence variants of many spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz,
Orlicz-Lorentz, Calderon-Lozanovskii spaces and many others, important from an appli-
cations perspective; see the book by Kozlowski [] for an extensive list of examples and
special cases. There exists an extensive literature on the topic of the fixed point theory in
modular function spaces; see e.g. [, –] and the references therein. It is also worthwhile
mentioning a growing interest in applications of the methods of the fixed point theory to
semigroups of nonlinear mappings and applications to the area of differential and integral
equations (see e.g. [, , ]).
It is well known that the fixed point construction iteration processes for generalized

nonexpansivemappings have been successfully used to develop efficient and powerful nu-
merical methods for solving various nonlinear equations and variational problems, often
of great importance for applications in various areas of pure and applied science. There ex-
ists an extensive literature on the subject of iterative fixed point construction processes for
asymptotically nonexpansive mappings in Hilbert, Banach, and metric spaces; see e.g. [,
–] and the references therein. Kozlowski proved convergence to a fixed point of some
iterative algorithms of asymptotic pointwise nonexpansive mappings in Banach spaces
[] and the existence of common fixed points of semigroups of pointwise Lipschitzian
mappings in Banach spaces []. Recently, the weak and strong convergence of such pro-
cesses to common fixed points of semigroups of mappings in Banach spaces was demon-
strated by Kozlowski and Sims [] and by Kozlowski in [].
We would like to emphasize that all convergence theorems proved in this paper define

constructive algorithms that can be actually implemented.When dealing with specific ap-
plications of these theorems, one should take into consideration how additional properties
of the mappings, sets, and modulars involved can influence the actual implementation of
the algorithms defined in this paper.

2 Preliminaries
Let us introduce basic notions related to modular function spaces and related notation
which will be used in this paper. For further details we refer the reader to preliminary
sections of the recent articles [, , ] or to the survey article []; see also [, , ] for
the standard framework of modular function spaces.
Let � be a nonempty set and � be a nontrivial σ -algebra of subsets of �. Let P be a

δ-ring of subsets of �, such that E ∩ A ∈ P for any E ∈ P and A ∈ �. Let us assume that
there exists an increasing sequence of sets Kn ∈ P such that � =

⋃
Kn. By E we denote

the linear space of all simple functions with supports from P . ByM∞ we will denote the
space of all extended measurable functions, i.e. all functions f : � → [–∞,∞] such that
there exists a sequence {gn} ⊂ E , |gn| ≤ |f | and gn(ω) → f (ω) for all ω ∈ �. By A we denote
the characteristic function of the set A.

Definition . [] Let ρ :M∞ → [,∞] be a nontrivial, convex and even function. We
say that ρ is a regular convex function pseudomodular if

(i) ρ() = ;
(ii) ρ is monotone, i.e. |f (ω)| ≤ |g(ω)| for all ω ∈ � implies ρ(f ) ≤ ρ(g), where

f , g ∈M∞;
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(iii) ρ is orthogonally subadditive, i.e. ρ(f A∪B)≤ ρ(f A) + ρ(f B) for any A,B ∈ � such
that A∩ B �= ∅, f ∈M;

(iv) ρ has the Fatou property, i.e. |fn(ω)| ↑ |f (ω)| for all ω ∈ � implies ρ(fn) ↑ ρ(f ),
where f ∈M∞;

(v) ρ is order continuous in E , i.e. gn ∈ E and |gn(ω)| ↓  implies ρ(gn) ↓ .

Similarly to the case of measure spaces, we say that a set A ∈ � is ρ-null if ρ(gA) = 
for every g ∈ E . We say that a property holds ρ-almost everywhere if the exceptional set
is ρ-null. As usual we identify any pair of measurable sets whose symmetric difference is
ρ-null as well as any pair of measurable functions differing only on a ρ-null set. With this
in mind we define M = {f ∈ M∞; |f (ω)| < ∞ ρ-a.e.}, where each element is actually an
equivalence class of functions equal ρ-a.e. rather than an individual function.

Definition . [] We say that a regular function pseudomodular ρ is a regular convex
function modular if ρ(f ) =  implies f =  ρ-a.e. The class of all nonzero regular convex
function modulars defined on � will be denoted by �.

Definition . [, , ] Let ρ be a convex function modular. A modular function space
is the vector space Lρ = {f ∈M;ρ(λf ) →  as λ → }. In the vector space Lρ , the following
formula:

‖f ‖ρ = inf

{
α > ;ρ

(
f
α

)
≤ 

}

defines a norm, frequently called the Luxemburg norm.

The following notions will be used throughout the paper.

Definition . [] Let ρ ∈ �.
(a) We say that {fn} is ρ-convergent to f and write fn → f (ρ) if and only if ρ(fn – f ) → .
(b) A sequence {fn}, where fn ∈ Lρ , is called ρ-Cauchy if ρ(fn – fm) →  as n,m → ∞.
(c) We say that Lρ is ρ-complete if and only if any ρ-Cauchy sequence in Lρ is

ρ-convergent.
(d) A set B⊂ Lρ is called ρ-closed if for any sequence of fn ∈ B, the convergence

fn → f (ρ) implies that f belongs to B.
(e) A set B⊂ Lρ is called ρ-bounded if sup{ρ(f – g); f ∈ B, g ∈ B} <∞.

Since ρ fails in general the triangle identity, many of the known properties of limit may
not extend to ρ-convergence. For example, ρ-convergence does not necessarily imply the
ρ-Cauchy condition.However, it is important to remember that the ρ-limit is uniquewhen
it exists. The following proposition brings together a few facts, which will be often used
in the proofs of our results.

Proposition . [] Let ρ ∈ �.
(i) Lρ is ρ-complete.
(ii) ρ-Balls Bρ(f , r) = {g ∈ Lρ ;ρ(f – g) ≤ r} are ρ-closed.
(iii) If ρ(αfn) →  for an α >  then there exists a subsequence {gn} of {fn} such that

gn →  ρ-a.e.
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(iv) ρ(f ) ≤ lim infn→∞ ρ(fn) whenever fn → f ρ-a.e. (note: this property is equivalent to
the Fatou property).

Let us recall the definition of an asymptotic pointwise nonexpansive mapping acting in
a modular function space.

Definition . [] Let ρ ∈ � and let C ⊂ Lρ be nonempty and ρ-closed. A mapping T :
C → C is called

(i) a pointwise Lipschitzian mapping if there exists α : C → [,∞) such that

ρ
(
T(f ) – T(g)

) ≤ α(f )ρ(f – g) for any f , g ∈ C;

(ii) an asymptotic pointwise nonexpansive if there exists a sequence of mappings
αn : C → [,∞) such that

ρ
(
Tn(f ) – Tn(g)

) ≤ αn(f )ρ(f – g) for any f , g ∈ C.

and lim supn→∞ αn(f ) ≤  for any f ∈ Lρ .
A point f ∈ C is called a fixed point of T whenever T(f ) = f . The set of fixed points of T
will be denoted by F(T).

Define bn(f ) = an(f ) – , where an(f ) = max{αn(f ), }, for any f ∈ C and n ∈ N. Clearly
then

lim
n→∞bn(f ) = . (.)

Definition. Define Tr(C) as a class of all asymptotic pointwise nonexpansivemappings
T such that

∞∑
n=

bn(f ) < ∞ for every f ∈ C, (.)

an is a bounded function for every n≥ . (.)

The notion of the asymptotic pointwise nonexpansiveness will be now extended to a
one-parameter family of mappings. Throughout this paper J will be the semigroup of all
nonnegative numbers, that is, J = [,∞) with normal addition.

Definition . A one-parameter family F = {Tt : t ∈ J} of mappings from C into itself is
said to be an asymptotic pointwise nonexpansive semigroup on C ifF satisfies the follow-
ing conditions:

(i) T(f ) = f for f ∈ C;
(ii) Tt+s(f ) = Tt(Ts(f )) for f ∈ C and t, s ∈ [,∞);
(iii) for each t ≥ , Tt is an asymptotic pointwise nonexpansive mapping, i.e. there

exists a function αt : C → [,∞) such that

ρ
(
Tt(f ) – Tt(g)

) ≤ αt(f )ρ(f – g) for all f , g ∈ C, (.)

such that lim supt→∞ αt(f ) ≤  for every f ∈ C;

http://www.fixedpointtheoryandapplications.com/content/2015/1/3
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(iv) for each f ∈ C, the mapping t → Tt(f ) is ρ-continuous.
For each t ∈ J let F(Tt) denote the set of its fixed points. Define then the set of all common
fixed points set for mappings from F as the following intersection:

F(F ) =
⋂
t∈J

F(Tt).

The commonfixed points are frequently interpreted as the stationary points of the semi-
group F . Note that without loss of generality we may assume αt(f ) ≥  for any t ∈ J and
f ∈ C and lim supt→∞ αt(f ) = limt→∞ αt(f ) = .
Denoting a ≡  and at(f ) =max(αt(f ), ) for t > , we note that without loss of generality

we can assume that F is asymptotically nonexpansive if

ρ
(
Tt(f ) – Tt(g)

) ≤ at(f )ρ(f – g) for all f , g ∈ C, t ∈ J , (.)

lim
t→∞at(f ) = , at(f ) ≥  for all f ∈ C and t ∈ J . (.)

Define bt(f ) = at(f ) – . Note that

lim
t→∞bt(f ) = . (.)

The above notation will be consistently used throughout this paper.

Definition . By S(C) we will denote the class of all asymptotic pointwise nonexpansive
semigroups on C such that

Mt = sup
{
at(f ) : f ∈ C

}
< ∞ for every t ∈ J , (.)

lim sup
t→∞

Mt = . (.)

Note that we do not assume that all functions at are bounded by a common constant.
Therefore, we do not assume that F is uniformly Lipschitzian.

Definition . We will say that a semigroup F ∈ S(C) is ρ continuous if

lim
t→t

ρ
(
Tt(f ) – Tt (f )

)
= 

for any f ∈ C and t ∈ [, +∞).

The concept ρ-type is a powerful technical tool which is used in the proofs of many
fixed point results. The definition of a ρ-type is based on a given sequence. In this work,
we generalize this definition to be adapted to one-parameter family of mappings.

Definition . Let K ⊂ Lρ be convex and ρ-bounded.
() A function τ : K → [,∞] is called a ρ-type (or shortly a type) if there exists a

one-parameter family {ht}t≥ of elements of K such that for any f ∈ K we have

τ (f ) = inf
M>

(
sup
t≥M

ρ(ht – f )
)
.

http://www.fixedpointtheoryandapplications.com/content/2015/1/3
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() Let τ be a ρ-type. A sequence {gn} is called a minimizing sequence of τ if

lim
n→∞ τ (gn) = inf

{
τ (f ) : f ∈ K

}
.

Note that τ is convex provided ρ is convex.
Let us recall the modular equivalents of uniform convexity introduced in [].

Definition . Let ρ ∈ �. We define the following uniform convexity (UC) type proper-
ties of the function modular ρ :

(i) Let r > , ε > . Define

D(r, ε) =
{
(f , g) : f , g ∈ Lρ ,ρ(f ) ≤ r,ρ(g)≤ r,ρ(f – g) ≥ εr

}
.

Let

δ(r, ε) = inf

{
 –


r
ρ

(
f + g


)
: (f , g) ∈D(r, ε)

}
, if D(r, ε) �= ∅,

and δ(r, ε) =  if D(r, ε) = ∅. We say that ρ satisfies (UC) if for every r > , ε > ,
δ(r, ε) > . Note that for every r > , D(r, ε) �= ∅, for ε >  small enough.

(ii) We say that ρ satisfies (UUC) if there exists η(s, ε) > , for every s ≥ , and ε > 
such that

δ(r, ε) > η(s, ε) >  for r > s.

We will need the following result, being a modular equivalent of a norm property in
uniformly convex Banach spaces; see e.g. [].

Lemma . [] Let ρ ∈ � be (UUC) and let {ck} ⊂ (, ) be bounded away from  and .
If there exists R >  such that

lim sup
n→∞

ρ(fn) ≤ R, lim sup
n→∞

ρ(gn) ≤ R, (.)

lim
n→∞ρ

(
cnfn + ( – cn)gn

)
= R, (.)

then

lim
n→∞ρ(fn – gn) = .

The following property plays in the theory of modular function space a role similar to
the reflexivity in Banach spaces; see e.g. [].

Definition . We say that Lρ has property (R) if and only if every nonincreasing se-
quence {Cn} of nonempty, ρ-bounded, ρ-closed, and convex subsets of Lρ has nonempty
intersection.

Similarly to the Banach space case, themodular uniform convexity implies property (R).

http://www.fixedpointtheoryandapplications.com/content/2015/1/3
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Theorem . [] Let ρ ∈ � be (UUC) then Lρ has property (R).

The next lemma is a generalization of the minimizing sequence property for types de-
fined by sequences in Lemma . in [] to the one-parameter semigroup case.

Lemma . [] Assume ρ ∈ � is (UUC). Let C be a nonempty, ρ-bounded, ρ-closed, and
convex subset of Lρ . Let τ be a type defined by a one-parameter family {ht}t≥ in C.

(i) If τ (f) = τ (f) = inff∈C τ (f ), then f = f.
(ii) Any minimizing sequence {fn} of τ is ρ-convergent.Moreover, the ρ-limit of {fn} is

independent of the minimizing sequence.

Using Lemma ., the authors proved the following common fixed point result for
asymptotic pointwise nonexpansive semigroups.

Theorem . [] Assume ρ ∈ � is (UUC). Let C be a ρ-closed, ρ-bounded, convex, and
nonempty subset. Let F = {Tt : t ∈ J} be an asymptotic pointwise nonexpansive semigroup
on C.ThenF has a common fixed point and the set F(F ) of common fixed points is ρ-closed
and convex.

3 The demiclosedness principle
In this section we will use the notion the uniform continuity of the function modular ρ in
the sense of the following definition (see e.g. []).

Definition . We say that ρ ∈ � is uniformly continuous if for every ε >  and L > ,
there exists δ >  such that

∣∣ρ(g) – ρ(g + h)
∣∣ ≤ ε, (.)

provided ρ(h) < δ and ρ(g)≤ L.

Let us mention that the uniform continuity holds for a large class of function modulars.
For instance, it can be proved that in Orlicz spaces over a finite atomless measure [] or
in Orlicz sequence spaces [] the uniform continuity of the Orlicz modular is equivalent
to the 
-type condition. Recall that ρ satisfies the 
-type condition if and only if there
exists K >  such that ρ(f )≤ Kρ(f ), for any f ∈ Lρ .
Let us recall the definition of the Opial property and the strong Opial property in mod-

ular function spaces [, ].

Definition . We say that Lρ satisfies the ρ-a.e. Opial property if for every {fn} ∈ Lρ

which is ρ-a.e. convergent to  such that there exists a β >  for which

sup
n

{
ρ(βfn)

}
<∞, (.)

the following inequality holds for any g ∈ Eρ not equal to :

lim inf
n→∞ ρ(fn) ≤ lim inf

n→∞ ρ(fn + g). (.)

http://www.fixedpointtheoryandapplications.com/content/2015/1/3
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Definition . We say that Lρ satisfies the ρ-a.e. strong Opial property if for every {fn} ∈
Lρ which is ρ-a.e. convergent to  such that there exists a β >  for which

sup
n

{
ρ(βfn)

}
<∞, (.)

the following equality holds for any g ∈ Eρ :

lim inf
n→∞ ρ(fn + g) = lim inf

n→∞ ρ(fn) + ρ(g). (.)

Remark . Note that the ρ-a.e. strong Opial property implies the ρ-a.e. Opial prop-
erty [].

Remark . Also, note that, by virtue of Theorem . in [], every convex, orthogonally
additive function modular ρ has the ρ-a.e. strong Opial property. Let us recall that ρ is
called orthogonally additive if ρ(f ,A∪B) = ρ(f ,A)+ρ(f ,B) wheneverA∩B = ∅. Therefore,
all Orlicz and Musielak-Orlicz spaces must have the strong Opial property.

Note that the Opial property in the norm sense does not necessarily hold for several
classical Banach function spaces. For instance the norm Opial property does not hold for
Lp spaces for ≤ p �= , while the modular strong Opial property holds in Lp for all p ≥ .

Lemma . [] Let ρ ∈ �. Assume that Lρ has the ρ-a.e. strong Opial property. Let C ⊂
Eρ be a nonempty, strongly ρ-bounded, and ρ-a.e. compact convex set. Then any ρ-type
defined in C attains its minimum in C.

To begin our discussion of the demiclosedness principle, let us quote the following ver-
sion of this theorem applied to the asymptotic pointwise nonexpansive mappings [, The-
orem .].

Theorem . (Demiclosedness principle) Let ρ ∈ �. Assume that
() ρ is (UUC),
() ρ has the strong Opial property,
() ρ has the 
 property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, convex, strongly ρ-bounded, and ρ-closed, and let T ∈ Tr(C). Let
{xn} ⊂ C, and x ∈ C. If xn → x ρ-a.e. and ρ(T(xn) – xn) → , then x ∈ F(T).

We will need a version of the above theorem without assuming that T ∈ Tr(C). This will
require a different proof, which is sketched below.

Theorem . Let ρ ∈ �. Assume that
() ρ is (UUC),
() ρ has the strong Opial property,
() ρ has the 
 property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, convex, strongly ρ-bounded, and ρ-closed. Let T : C → C be an
asymptotic pointwise nonexpansive mapping such that

ρ
(
Tn(f ) – Tn(g)

) ≤ αn(f )ρ(f – g) for any f , g ∈ C,

http://www.fixedpointtheoryandapplications.com/content/2015/1/3
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and lim supn→∞ αn(f ) ≤  for any f ∈ Lρ . We will assume the functions {αn} are bounded
on C, i.e. T is uniformly ρ-Lipschitzian mapping. Let {fn} ⊂ C, and f ∈ C. If fn → f ρ-a.e.
and ρ(T(fn) – fn) → , then f ∈ F(T). In particular, we have f ∈ ⋂

n≥ F(Tn).

Proof Define the ρ-type function

τ (g) = lim sup
n→∞

ρ(fn – g), g ∈ C.

Note that

lim
n→∞ρ

(
Tm(fn) – fn

)
= , m = , , . . . .

Indeed, we have

ρ

(
Tm(fn) – fn

m

)
≤ 

m

k=m–∑
k=

ρ
(
Tk+(fn) – Tk(fn)

)
,

which implies

ρ

(
Tm(fn) – fn

m

)
≤ 

m

k=m–∑
k=

αk(fn)ρ
(
T(fn) – fn

)

≤
(

sup
g∈C,k∈[,m–]

αk(g)
)
ρ
(
T(fn) – fn

)

for any n≥ , where α = . Hence

lim
n→∞ρ

(
Tm(fn) – fn

m

)
= , m = , , . . . .

Since ρ has the 
 property, we get

lim
n→∞ρ

(
Tm(fn) – fn

)
= , m = , , . . . .

Since ρ is uniformly continuous, we get

τ (g) = lim sup
n→∞

ρ(fn – g) = lim sup
n→∞

ρ
(
Tm(fn) – g

)

for any g ∈ C andm ≥ . In particular, we have

lim sup
n→∞

ρ
(
Tm(fn) – Tm(f )

) ≤ αm(f ) lim sup
n→∞

ρ(fn – f ), m = , , . . . .

In other words, we have τ (Tm(f ))≤ αm(f )τ (f ), for anym ≥ . Since ρ has the Opial prop-
erty, it is easy to prove that

τ (f ) = inf
{
τ (g) : g ∈ C

}
.
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Since T is an asymptotic pointwise nonexpansive mapping, we get

lim
m→∞ τ

(
Tm(f )

)
= τ (f ).

Since ρ is (UUC), then arguing similarly to the proof of Theorem . in [], we have

lim
m→∞ρ

(
Tm(f ) – f

)
= .

Since T is ρ-continuous, we get T(f ) = f , i.e. f ∈ F(T). �

As a corollary to this result, we get the following important result.

Corollary . Let ρ ∈ �. Assume that
() ρ is (UUC),
() ρ has the strong Opial property,
() ρ has the 
 property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, convex, strongly ρ-bounded, and ρ-closed. Let T ,S : C → C be
asymptotic pointwise nonexpansive mappings such that

ρ
(
Tn(f ) – Tn(g)

) ≤ αn(f )ρ(f – g) and ρ
(
Sn(f ) – Sn(g)

) ≤ βn(f )ρ(f – g)

for any f , g ∈ C, with lim supn→∞ αn(f ) ≤ , and lim supn→∞ βn(f ) ≤ , for any f ∈ Lρ . We
will assume the functions {αn} and {βn} are bounded on C. Let {fn} ⊂ C, and f ∈ C. If fn → f
ρ-a.e. and

lim
n→∞ρ

(
T(fn) – fn

)
= lim

n→∞ρ
(
S(fn) – fn

)
= ,

then f ∈ F(T)∩ F(S). In particular, we have f ∈ ⋂
n,m≥ F(Tn ◦ Sm).

The above results lead us to the following version of the demiclosedness principle for
semigroup of mappings.

Theorem . (Demiclosedness principle) Let ρ ∈ �. Assume that
() ρ is (UUC),
() ρ has the strong Opial property,
() ρ has the 
 property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, convex, strongly ρ-bounded, and ρ-closed, and let F ∈ S(C) be
continuous. Let {fn} ⊂ C, and f ∈ C.Assume fn → f ρ-a.e. If there exist t, t ∈ [, +∞) such
that t

t
is irrational and

lim
n→∞ρ

(
Tt (fn) – fn

)
= lim

n→∞ρ
(
Tt (fn) – fn

)
= ,

then f ∈ F(F ).

Proof In view of Corollary ., we know that

f ∈ F(Tt )∩ F(Tt ).
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Let us denote G+(t, t) = {nt +mt ≥  : n,m ∈N∪ {}}. Note that for any n,m ∈N∪ {}
we have

F(Tt )∩ F(Tt ) ⊂ F(Tnt+mt ).

Combining the above we get

f ∈ F(Tt )∩ F(Tt ) ⊂
⋂

t∈G+(t,t)

F(Tt).

Since t
t
is irrational, then the set G+(t, t) is dense in [,+∞) []. Since F is continuous

and ρ is uniformly continuous, we have

F(F ) =
⋂

t∈G+(t,t)

F(Tt).

Hence f ∈ F(F ) as desired. �

4 Convergence of generalized Krasnosel’skii-Mann iteration processes
Let us start with the precise definition of the generalized Krasnosel’skii-Mann iteration
process for semigroups of nonlinear mappings.

Definition . Let F ∈ S(C), {tk} ⊂ J and {ck} ⊂ (, ). The generalized Krasnosel’skii-
Mann iteration process gKM(F , {ck}, {tk}) generated by the semigroup F , the sequences
{ck} and {tk}, is defined by the following iterative formula:

xk+ = ckTtk (xk) + ( – ck)xk , where x ∈ C is chosen arbitrarily (.)

and
() {ck} is bounded away from  and ,
() limk→∞ tk =∞,
()

∑∞
n= btn (x) < ∞ for every x ∈ C.

Definition . We say that a generalized Krasnosel’skii-Mann iteration process gKM(F ,
{ck}, {tk}) is well defined if

lim sup
k→∞

atk (xk) = . (.)

Arguing exactly like in the proof of Lemma . in [] (see also Lemma . in []), we
get the following result.

Lemma. Let ρ ∈ � be (UUC).Let C ⊂ Lρ be a ρ-closed, ρ-bounded, and convex set.Let
F ∈ S(C), w ∈ F(F ), and let {xk} be a sequence generated by a generalized Krasnosel’skii-
Mann process gKM(F , {ck}, {tk}).Then there exists an r ∈R such that limk→∞ ρ(xk –w) = r.

We will prove now a generic version of the convergence theorem for the sequences {xk}
which are generated by the Krasnosel’skii-Mann iteration process and are at the same time
approximate fixed point sequences.
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Theorem . Let ρ ∈ �. Assume that
() ρ is (UUC),
() ρ has the strong Opial property,
() ρ has the 
 property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, ρ-a.e. compact, convex, strongly ρ-bounded, and ρ-closed, and let
F ∈ S(C). Assume that gKM(F , {ck}, {tk}) is a well defined Krasnosel’skii-Mann iteration
process. If for the sequence {xk} generated by gKM(F , {ck}, {tk}) we have

ρ
(
Ts (xk) – xk

) → , ρ
(
Ts (xk) – xk

) → , (.)

where s, s ∈ [, +∞) are such that s
s
is irrational, then {xk} converges ρ-a.e. to a common

fixed point w ∈ F(F ).

Proof Observe that by Theorem . the set of fixed points F(F ) is nonempty, convex and
ρ-closed. Consider y, z ∈ C, two ρ-a.e. cluster points of {xk}. There exits then {yk}, {zk} sub-
sequences of {xk} such that yk → y ρ-a.e., and zk → z ρ-a.e. It follows from Theorem .
that Ts (y) = y and Ts (z) = z. By Lemma ., there exist ry, rz ∈R such that

ry = lim
k→+∞

ρ(xk – y), rz = lim
k→+∞

ρ(xk – z). (.)

We claim that y = z. Assume to the contrary that y �= z. Then by the Opial property we
have

ry = lim inf
k→∞

ρ(yk – y) < lim inf
k→∞

ρ(yk – z)

= lim inf
k→∞

ρ(zk – z) < lim inf
k→∞

ρ(zk – y) = ry. (.)

The contradiction implies that y = z. Therefore, {xk} has at most one ρ-a.e. cluster point.
Since C is ρ-a.e. compact it follows that the sequence {xk} has exactly one ρ-a.e. clus-
ter point w ∈ C, which means that xk → w ρ-a.e. Applying the demiclosedness princi-
ple again, we get Ts (w) = w. By the same argument, we get Ts (w) = w (observe that the
construction of w did not depend on the selection of si). From the density of G+(t, t) in
J = [,+∞), we conclude that Tt(w) = w for any t ∈ J , as claimed. �

Let us apply the above result to some more specific situations. First we need to prove a
series of axillary results. Let us start with the following elementary lemma.

Lemma . [] Suppose {rk} is a bounded sequence of real numbers and {dk,n} is a double
index sequence of real numbers which satisfy

lim sup
k→∞

lim sup
n→∞

dk,n ≤  and rk+n ≤ rk + dk,n

for each k,n≥ . Then {rk} converges to an r ∈R.

The following result provides an important technique which will be used in this pa-
per.

http://www.fixedpointtheoryandapplications.com/content/2015/1/3
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Lemma . Let ρ ∈ � be (UUC). Let C ⊂ Lρ be a ρ-closed, ρ-bounded, and convex set.
Let F ∈ S(C). Assume that w is a common fixed point of F . Let us denote by {xk} a se-
quence generated by the generalized Krasnosel’skii-Mann process gKM(T , {ck}, {tk}). Then
there exists r ∈ R such that

lim
k→∞

ρ(xk –w) = r. (.)

Proof Let w ∈ F(F ). Since

ρ(xk+ –w) ≤ ckρ
(
Ttk (xk) –w

)
+ ( – ck)ρ(xk –w)

= ckρ
(
Ttk (xk) – Ttk (w)

)
+ ( – ck)ρ(xk –w)

≤ ck
(
 + btk (w)

)
ρ(xk –w) + ( – ck)ρ(xk –w)

= ckbtk (w)ρ(xk –w) + ρ(xk –w)

≤ btk (w)diamρ(C) + ρ(xk –w),

it follows that for every n ∈N,

ρ(xk+n –w) ≤ ρ(xk –w) + diamρ(C)
k+n–∑
i=k

bti (w). (.)

Denote rp = ρ(xp – w) for every p ∈ N and dk,n = diamρ(C)
∑k+n–

i=k bti (w). Observe that
by the assumptions on the sequence {tn}, lim supk→∞ lim supn→∞ dk,n = . By Lemma .,
there exists an r ∈R such that limk→∞ ρ(xk –w) = r, as claimed. �

Lemma . Let ρ ∈ � be (UUC). Let C ⊂ Lρ be a ρ-closed, ρ-bounded, and convex set,
and F ∈ S(C). Let gKM(T , {ck}, {tk}) be a generalized Krasnosel’skii-Mann iteration pro-
cess. Then

lim
k→∞

ρ
(
Ttk (xk) – xk

)
=  (.)

and

lim
k→∞

ρ(xk+ – xk) = . (.)

Proof By Theorem ., F has at least one common fixed point w ∈ C. In view of Lem-
ma ., there exists r ∈R such that

lim
k→∞

ρ(xk –w) = r. (.)

Note that

lim sup
k→∞

ρ
(
Ttk (xk) –w

)
= lim sup

k→∞
ρ
(
Ttk (xk) – Ttk (w)

)

≤ lim sup
k→∞

atk (w)ρ(xk –w) ≤ r (.)

http://www.fixedpointtheoryandapplications.com/content/2015/1/3
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and that

lim
k→∞

ρ
(
ck

(
Ttk (xk) –w

)
+ ( – ck)(xk –w)

)
= lim

k→∞
ρ(xk+ –w) = r. (.)

Set fk = Ttk (xk) – w, gk = xk – w, and note that lim supk→∞ ρ(gk) ≤ r by (.), and
lim supk→∞ ρ(fk) ≤ r by (.). Observe also that

lim
k→∞

ρ
(
ckfk + ( – ck)gk

)

= lim
k→∞

ρ
(
ckTtk (xk) + ( – ck)xk –w

)

= lim
k→∞

ρ(xk+ –w) = r. (.)

Hence, it follows from Lemma . that

lim
k→∞

ρ
(
Ttk (xk) – xk

)
= lim

k→∞
ρ(fk – gk) = , (.)

which by the construction of the sequence {xk} is equivalent to

lim
k→∞

ρ(xk+ – xk) = , (.)

as claimed. �

Lemma . Let ρ ∈ � be (UUC) and have the 
 property. Let C ⊂ Lρ be a ρ-closed,
ρ-bounded, and convex set and let F ∈ S(C). Denote by {xk} the sequence generated by a
well defined generalized Krasnosel’skii-Mann process gKM(F , {ck}, {tk}). Let A ⊂ J be such
that for every s ∈ A there exists a strictly increasing sequence of natural numbers {jk} satis-
fying the following conditions:
(a) ρ(xk – xjk )→  as k → ∞,
(b) limk→∞ ρ(Tdk (xjk ) – xjk ) = , where dk = |tjk+ – tjk – s|.

Then {xk} is an approximate fixed point sequence for all mappings {Ts} where s ∈ A, that
is,

lim
k→∞

ρ
(
Ts(xk) – xk

)
=  (.)

for every s ∈ A.

Proof Let us fix s ∈ A. Note that

ρ(xjk – xjk+ ) →  as k → ∞. (.)

By 
, it suffices to prove that

ρ

(
xjk – xjk+



)
→  as k → ∞. (.)
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To this end observe that

ρ

(
xjk – xjk+



)
≤ ρ(xjk – xk) + ρ(xk – xk+) + ρ(xk+ – xjk+ ) → , (.)

in view of the assumption (a) and by (.) in Lemma .. Observe that

ρ
(
xjk – Ts(xjk )

) →  as k → ∞. (.)

Indeed,

ρ

(
xjk – Ts(xjk )



)
≤ ρ(xjk – xjk+ ) + ρ

(
xjk+ – Ttjk+

(xjk+ )
)

+ ρ
(
Ttjk+

(xjk+ ) – Ttjk+
(xjk )

)
+ ρ

(
Ttjk+

(xjk ) – Ts+tjk
(xjk )

)
+ ρ

(
Ts+tjk

(xjk ) – Ts(xjk )
)

≤ ρ(xjk – xjk+ ) + ρ
(
xjk+ – Ttjk+

(xjk+ )
)
+ atjk+ (xjk+ )ρ(xjk+ – xjk )

+ as+tjk (xjk )ρ
(
Tdk (xjk ) – xjk

)
+ sup

x∈C
as(x)ρ

(
Ttjk

(xjk ) – xjk
)
,

which tends to zero as k → ∞ because of (.), Lemma ., the fact that the process is
well defined, assumptions (b) and (.), and the boundedness of each function as. This
convergence gives us, via 
, the required (.). On the other hand,

ρ

(
xk – Ts(xk)



)
≤ ρ(xk – xjk ) + ρ

(
xjk – Ttjk

(xjk )
)
+ ρ

(
Ttjk

(xjk ) – Ts+tjk
(xjk )

)

+ ρ
(
Ts+tjk

(xjk ) – Ts(xjk )
)
+ ρ

(
Ts(xjk ) – Ts(xk)

)
≤ ρ(xk – xjk ) + ρ

(
xjk – Ttjk

(xjk )
)
+ atjk (xjk )ρ

(
xjk – Ts(xjk )

)
+ as(xjk )ρ

(
Ttjk

(xjk ) – xjk
)
+ as(xk)ρ(xjk – xk),

which tends to zero as k → ∞ because of assumption (a), Lemma ., (.), the fact
that the process is well defined, and the fact that the semigroup is asymptotic pointwise
nonexpansive. Since ρ has the 
 property,

ρ
(
xk – Ts(xk)

) →  as k → ∞,

which completes the proof of the lemma. �

The following theorem is an immediate consequence of Lemma . and Theorem ..

Theorem . Let ρ ∈ � be uniformly continuous function modular satisfying (UUC).
Assume in addition that ρ satisfies 
 and has the strong Opial property. Let C ⊂ Lρ be a
ρ-closed, ρ-bounded, and convex set and let F ∈ S(C). Denote by {xk} the sequence gen-
erated by a well defined generalized Krasnosel’skii-Mann process gKM(F , {ck}, {tk}). Let
s, s ∈ J be such that s

s
is irrational and that there exists a strictly increasing sequence of

natural numbers {jk} satisfying the following conditions:
(a) ρ(xk – xjk )→  as k → ∞,
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(b) limk→∞ ρ(Tdk (xjk ) – xjk ) = , where dk = |tjk+ – tjk – s|,
(c) limk→∞ ρ(Tek (xjk ) – xjk ) = , where ek = |tjk+ – tjk – s|.

Then the sequence {xk} converges ρ-a.e. to a common fixed point w ∈ F(F ).

Remark . Observe that a sequence {tk} satisfying assumptions of Theorem . can
be always constructed. The main difficulty is in ensuring that the corresponding process
gKM(F , {ck}, {tk}) is well defined.

The next result answers the question when the sequence generated by the generalized
Krasnosel’skii-Mann process will converge strongly to a common fixed point. Not surpris-
ingly we need to add a compactness assumption.

Theorem . Under the assumptions of Theorem ., if in addition C is assumed to be
ρ-compact, then the sequence {xk} generated by gKM(F , {ck}, {tk}) converges strongly to a
common fixed point w ∈ F(F ), that is,

lim
k→∞

ρ(xk –w) = . (.)

Proof It follows from Theorem . that there exists a common fixed point w ∈ F(F ) such
that {xk} converges ρ-a.e. By ρ-compactness of C there exist x ∈ C and a subsequence
{xpk } of {xk} such that

lim
k→∞

ρ(xpk – x) = . (.)

By Proposition . there exists a subsequence {xpkn } of {xpk } such that

xpk → x ρ-a.e. (.)

By the uniqueness of the ρ-a.e. limit we get x = w. Hence

lim
k→∞

ρ(xpk –w) = . (.)

On the other hand, the limit limk→∞ ρ(xk –w) exists by Lemma ., which implies that

lim
k→∞

ρ(xk –w) = ,

as claimed. �

Remark . Observe that in view of the 
 assumption, the ρ-compactness of the set C
assumed in Theorem. is equivalent to the compactness in the sense of the normdefined
by ρ .
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