
Cho et al. Fixed Point Theory and Applications 2014, 2014:94
http://www.fixedpointtheoryandapplications.com/content/2014/1/94

RESEARCH Open Access

Strong convergence of a splitting algorithm
for treating monotone operators
Sun Young Cho1, Xiaolong Qin2,3 and Lin Wang4*

*Correspondence:
wl64mail@aliyun.com
4College of Statistics and
Mathematics, Yunnan University of
Finance and Economics, Kunming,
650221, China
Full list of author information is
available at the end of the article

Abstract
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1 Introduction and preliminaries
In this article, we always assume thatH is a real Hilbert space with inner product 〈· , ·〉 and
norm ‖ · ‖ and C is a nonempty, closed, and convex subset of H .
Let S : C → C be a mapping. F(S) stands for the fixed point set of S. S is said to be

contractive iff there exists a constant α ∈ (, ) such that

‖Sx – Sy‖ ≤ α‖x – y‖, ∀x, y ∈ C.

It is well known that every contractive mapping has a unique fixed point in metric spaces.
S is said to be nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

If C is a bounded, closed, and convex subset of H , then F(S) is not empty, closed, and
convex; see [] and the references therein. S is said to be strictly pseudocontractive iff there
exists a constant κ ∈ [, ) such that

‖Sx – Sy‖ ≤ ‖x – y‖ + κ‖x – y – Sx + Sy‖, ∀x, y ∈ C.

The class of strictly pseudocontractivemappingwas introduced byBrowder andPetryshyn
[]. It is clear that the class of strictly pseudocontractive mappings include the class of
nonexpansive mappings as a special case. It is also not hard to see that strictly pseudocon-
tractive mapping is continuous.
Let A : C →H be a mapping. Recall that A is said to bemonotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.
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A is said to be strongly monotone iff there exists a constant κ >  such that

〈Ax –Ay,x – y〉 ≥ κ‖x – y‖, ∀x, y ∈ C.

A is said to be inverse-strongly monotone iff there exists a constant κ >  such that

〈Ax –Ay,x – y〉 ≥ κ‖Ax –Ay‖, ∀x, y ∈ C.

A is inverse-strongly monotone iff the inverse of A is strongly monotone. It is not hard to
see that every inverse-strongly monotone mapping is monotone and continuous. Let I be
the identity mapping on H . From [], we know that I – S is inverse-strongly monotone iff
S is strictly pseudocontractive; for more details, see [] and the references therein.
The classical variational inequality problem is formulated as finding a point x ∈ C such

that

〈y – x,Ax〉 ≥ , ∀y ∈ C.

Such a point x ∈ C is called a solution of the variational inequality. In this paper, we use
VI(C,A) to denote the solution set of the variational inequality. It is known that x is a
solution of the variational inequality iff x is a fixed point of the mapping ProjC(I – rA),
where ProjC is the metric projection from H onto C, I is the identity and r is some posi-
tive real number. Recently, many authors studied solutions of inverse-strongly monotone
variational inequalities based on the equivalence; see [–].
Recall that a set-valued mapping B : H ⇒ H is said to be monotone iff, for all x, y ∈ H ,

f ∈ Bx and g ∈ By imply 〈x – y, f – g〉 > . In this paper, we use B–() to stand for the zero
point of B. A monotone mapping B : H ⇒ H is maximal iff the graph Graph(B) of B is
not properly contained in the graph of any other monotone mapping. It is known that a
monotone mapping B is maximal if and only if, for any (x, f ) ∈ H × H , 〈x – y, f – g〉 ≥ ,
for all (y, g) ∈ Graph(B) implies f ∈ Bx. For a maximal monotone operator B on H , and
r > , we may define the single-valued resolvent Jr : H → Dom(B), where Dom(B) denote
the domain of B. It is known that Jr is firmly nonexpansive, and B–() = F(Jr).
One of the most important techniques for solving zero point problem of monotone op-

erators goes back to the work of Browder []. Many important problems have reformula-
tions which require finding zero points, for instance, evolution equations, complementar-
ity problems, mini-max problems, variational inequalities and fixed point problems. It is
well known that minimizing a convex function f can be reduced to finding zero points of
the subdifferentialmappingA = ∂f . One of the basic ideas in the case of aHilbert spaceH is
reducing the above inclusion problem to a fixed point problem of the operator RA defined
by RA = (I +A)–, which is called the classical resolvent of A. If A has some monotonicity
conditions, the classical resolvent of A is with full domain and firmly nonexpansive. The
property of the resolvent ensures that the Picard iterative algorithm xn+ = RAxn converge
weakly to a fixed point of RA, which is necessarily a zero point ofA. Rockafellar introduced
this iteration method and call it the proximal point algorithm (PPA); for more details, see
[] and [] and the references therein.
It is known that PPA is only convergent and it was also pointed in [] that it is often im-

practical since, in many cases, to solve the fixed point problem exactly is either impossible
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or of the same difficult as the original zero point problem. Therefore, one of themost inter-
esting and important problems in the theory of monotone operators is to find an efficient
iterative algorithm to compute their zero points. Inmany disciplines, including economics
[], image recovery [], quantum physics [], and control theory [], problems arises
in infinite dimension spaces. In such problems, strong convergence (norm convergence) is
oftenmuchmore desirable than weak convergence, for it translates the physically tangible
property that the energy ‖xn – x‖ of the error between the iterate xn and the solution x
eventually becomes arbitrarily small. The important of strong convergence is also under-
lined in [], where a convex function f is minimized via the proximal point algorithm:
it is shown that the rate of convergence of the value sequence {f (xn)} is better when {xn}
converges strongly that it converges weakly. Such properties have a direct impact when
the process is executed directly in the underlying infinite dimensional space.
To improve the weak convergence of PPA, many authors considered lots of different

modifications; see [–] the references therein. One of the classic results was estab-
lished by Solodov and Svaiter []. They obtained strong convergence theorems in Hilbert
space without any compact assumption but with the aid of the metric projection.
In this paper, we are concerned with the problem of finding an element in the zero

point set of the sum of two operators which are inverse-strongly monotone and a maxi-
mal monotone and in the fixed point set of a mapping which is strictly pseudocontractive.
Strong convergence theorems are established without the aid of the metric projections.
The organization of this paper is as follows. In Section , we provide an introduction and
some necessary preliminaries. In Section , a regularization iterative algorithm is investi-
gated. A strong convergence theorem is established without the aid of metric projections.
In Section , applications of the main results are discussed.
In order to prove our main results, we also need the following lemmas.

Lemma . [] Let A : C → H be a mapping, and B :H ⇒H amaximal monotone oper-
ator. Then F(Jr(I – rB)) = (A + B)–().

Lemma . [] Let E be a Banach space and let A be an m-accretive operator. For λ > ,
μ > , and x ∈ E,we have Jλx = Jμ(μ

λ
x+(– μ

λ
)Jλx),where Jλ = (I +λA)– and Jμ = (I +μA)–.

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space E, and {βn}
be a sequence in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =
( – βn)yn + βnxn, ∀n≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Let {an} be a sequence of nonnegative numbers satisfying the condition
an+ ≤ ( – tn)an + tnbn + cn, ∀n ≥ , where {tn} is a number sequence in (, ) such that
limn→∞ tn =  and

∑∞
n= tn = ∞, {bn} is a number sequence such that lim supn→∞ bn ≤ ,

and {cn} is a positive number sequence such that
∑∞

n= cn < ∞. Then limn→∞ an = .

Lemma . [] Let S : C → C be a strictly pseudocontractive mapping with the constant
κ ∈ [, ). Then S is Lipschitz continuous and I – S is demiclosed at zero. Define a mapping
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T : C → C by Tx := ax+(–a)Sx for each x ∈ C. Then, as a ∈ [κ , ), T is nonexpansive such
that F(S) = F(T).

2 Convergence analysis
Theorem . Let A : C → H be an α-inverse-strongly monotone mapping and let B be a
maximal monotone operator on H . Let S : C → C be a strictly pseudocontractive mapping
with the constant κ ∈ [, ) and let f : C → C be a contractive mapping with the constant
β ∈ [, ).Assume thatDom(B) ⊂ C and F(S)∩ (A+B)–() is not empty. Let Jrn = (I+rnB)–

and let {xn} be a sequence generated in the following process: x ∈ C and

⎧⎪⎪⎨
⎪⎪⎩
zn = αnf (xn) + ( – αn)xn,

yn = Jrn (zn – rnAzn + en),

xn+ = βnxn + ( – βn)(γnyn + ( – γn)Syn), ∀n≥ ,

where {αn}, {βn} and {γn} are real number sequences in (, ) and {rn} is a positive real
number sequence in (, α). Assume that the control sequences satisfy the following restric-
tions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c) κ ≤ γn ≤ a < , limn→∞ |γn+ – γn| = ;
(d)  < b≤ rn ≤ c < α and

∑∞
n= |rn – rn–| < ∞;

(e)
∑∞

n= ‖en‖ <∞,
where a, b and c are three real numbers. Then {xn} converges strongly to a point x̄ ∈ F(S)∩
(A + B)–(), where x̄ = ProjF(S)∩(A+B)–() f (x̄).

Proof First, we show that {xn} is bounded. Notice that I – rnA is nonexpansive. Indeed, we
have

∥∥(I – rnA)x – (I – rnA)y
∥∥

= ‖x – y‖ – rn〈x – y,Ax –Ay〉 + rn‖Ax –Ay‖

≤ ‖x – y‖ – rn(α – rn)‖Ax –Ay‖.

In view of the restriction (d), we find that I – rnA is nonexpansive. Fixing p ∈ F(S) ∩ (A +
B)–(), we find that

‖zn – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + ( – αn)‖xn – p‖
≤ (

 – αn( – β)
)‖xn – p‖ + αn

∥∥f (p) – p
∥∥.

Putting Tnx := γnx + ( – γn)Sx for each x ∈ C, we see from Lemma . that Tn is nonex-
pansive with F(Tn) = F(S) for each n≥ . It follows that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)
∥∥TnJrn (zn – rnAzn + en) – p

∥∥
≤ βn‖xn – p‖ + ( – βn)‖zn – p‖ + ( – βn)‖en‖
≤ βn‖xn – p‖ + (

 – αn( – β)
)
( – βn)‖xn – p‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/94
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+ αn( – βn)
∥∥f (p) – p

∥∥ + ‖en‖
≤ (

 – αn( – β)( – βn)
)‖xn – p‖ + αn( – βn)

∥∥f (p) – p
∥∥ + ‖en‖

≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – β

}
+ ‖en‖

≤ max

{
‖xn– – p‖, ‖f (p) – p‖

 – β

}
+ ‖en–‖ + ‖en‖

...

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – β

}
+

n∑
i=

‖ei‖

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – β

}
+

∞∑
i=

‖ei‖ <∞.

This proves that the sequence {xn} is bounded, so are {yn} and {zn}. Notice that

‖zn – zn–‖ ≤ (
 – αn( – β)

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – xn–

∥∥.
Putting ρn = zn – rnAzn + en, we find that

‖ρn – ρn–‖ ≤ ‖zn – zn–‖ + ‖rn – rn–‖‖Azn–‖ + ‖en‖ + ‖en–‖
≤ (

 – αn( – β)
)‖xn – xn–‖ + |αn – αn–|

∥∥f (xn–) – xn–
∥∥

+ |rn – rn–|‖Azn–‖ + ‖en‖ + ‖en–‖.

It follows from Lemma . that

‖yn – yn–‖ =
∥∥∥∥Jrn–

(
rn–
rn

ρn +
(
 –

rn–
rn

)
Jrnρn

)
– Jrn–ρn–

∥∥∥∥
≤

∥∥∥∥ rn–rn
(ρn – ρn–) +

(
 –

rn–
rn

)
(Jrnρn – ρn–)

∥∥∥∥
≤

∥∥∥∥(ρn – ρn–) +
(
 –

rn–
rn

)
(Jrnρn – ρn)

∥∥∥∥
≤ ‖ρn – ρn–‖ + |rn – rn–|

b
‖Jrnρn – ρn‖

≤ (
 – αn( – β)

)‖xn – xn–‖ + fn

≤ ‖xn – xn–‖ + fn,

where

fn = |αn – αn–|
∥∥f (xn–) – xn–

∥∥ + |rn – rn–|
(

‖Azn–‖ + ‖Jrnρn – ρn‖
b

)
+ ‖en‖ + ‖en–‖.

This implies that

‖Tnyn – Tn–yn–‖ ≤ ‖Tnyn – Tnyn–‖ + ‖Tnyn– – Tn–yn–‖
≤ ‖xn – xn–‖ + fn + |γn – γn–|‖Syn– – yn–‖.
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In view of the restrictions (a), (c), (d), and (e), we find that

lim sup
n→∞

(‖Tnyn – Tn–yn–‖ – ‖xn – xn–‖
) ≤ .

It follows from Lemma . that

lim
n→∞‖Tnyn – xn‖ = . (.)

This in turn implies that

lim
n→∞‖xn+ – xn‖ = . (.)

Notice that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖TnJrnρn – p‖

≤ βn‖xn – p‖ + ( – βn)
∥∥Jrn (zn – rnAzn + en) – p

∥∥

≤ βn‖xn – p‖ + ( – βn)
∥∥(zn – rnAzn) – (I – rnA)p

∥∥

+ ‖en‖
(‖en‖ + 

∥∥(zn – rnAzn) – (I – rnA)p
∥∥)

≤ βn‖xn – p‖ + ( – βn)‖zn – p‖ – rn( – βn)(α – rn)‖Azn –Ap‖

+ ‖en‖
(‖en‖ + 

∥∥(zn – rnAzn) – (I – rnA)p
∥∥)

≤ βn‖xn – p‖ + αn( – βn)
∥∥f (xn) – p

∥∥ + ( – βn)( – αn)‖xn – p‖

– rn( – βn)(α – rn)‖Azn –Ap‖ + gn,

where gn = ‖en‖(‖en‖ + ‖(zn – rnAzn) – (I – rnA)p‖). It follows that

rn( – βn)(α – rn)‖Azn –Ap‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + αn( – βn)
∥∥f (xn) – p

∥∥ + gn

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖ + αn
∥∥f (xn) – p

∥∥ + gn.

In view of the restrictions (a), (b), (c), (d), and (e), we find from (.) that

lim
n→∞‖Azn –Ap‖ = . (.)

Since Jrn is firmly nonexpansive, we find that

‖Jrnρn – p‖ ≤ 〈
Jrnρn – p, (zn – rnAzn + en) – (p – rnAp)

〉

=


(‖Jrnρn – p‖ + ∥∥(zn – rnAzn + en) – (p – rnAp)

∥∥

–
∥∥(Jrnρn – p) –

(
(zn – rnAzn + en) – (p – rnAp)

)∥∥)

≤ 

(‖Jrnρn – p‖ + ∥∥(I – rnA)zn – (I – rnA)p

∥∥ + gn

http://www.fixedpointtheoryandapplications.com/content/2014/1/94
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– ‖Jrnρn – zn – en + rnAzn – rnAp‖
)

≤ 

(‖Jrnρn – p‖ + ‖zn – p‖ + gn – ‖Jrnρn – zn – en‖

– ‖rnAzn – rnAp‖ + rn‖Azn –Ap‖‖Jrnρn – zn – en‖
)
.

It follows that

‖Jrnρn – p‖ ≤ ‖zn – p‖ + gn – ‖Jrnρn – zn – en‖

– ‖rnAzn – rnAp‖ + ‖en‖‖Jrnρn – zn + rnAzn – rnAp‖
≤ αn

∥∥f (xn) – p
∥∥ + ( – αn)‖xn – p‖ + gn – ‖Jrnρn – zn – en‖

+ rn‖Azn –Ap‖‖Jrnρn – zn – en‖.

This implies that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖TnJrnρn – p‖

≤ βn‖xn – p‖ + ( – βn)‖Jrnρn – p‖

≤ ‖xn – p‖ + αn
∥∥f (xn) – p

∥∥ + gn – ( – βn)‖Jrnρn – zn – en‖

+ rn‖Azn –Ap‖‖Jrnρn – zn – en‖.

It follows that

( – βn)‖Jrnρn – zn – en‖ ≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn
∥∥f (xn) – p

∥∥

+ gn + rn‖Azn –Ap‖‖Jrnρn – zn – en‖.

In view of the restrictions (a), (b), and (e), we find from (.) and (.) that limn→∞ ‖Jrnρn–
zn – en‖ = . This in turn implies that

lim
n→∞‖Jrnρn – zn‖ = . (.)

Notice that

‖yn – xn‖ ≤ ‖yn – zn‖ + ‖zn – xn‖
≤ ‖yn – zn‖ + αn

∥∥f (xn) – xn
∥∥.

It follows from (.) that

lim
n→∞‖yn – xn‖ = . (.)

On the other hand, we have

‖Tnxn – xn‖ ≤ ∥∥(
γnxn + ( – γn)Sxn

)
–

(
γnyn + ( – γn)Syn

)∥∥
+

∥∥(
γnyn + ( – γn)Syn

)
– xn

∥∥
≤ γn‖yn – xn‖ + ( – γn)‖Syn – Sxn‖ + ‖Tnyn – xn‖.

http://www.fixedpointtheoryandapplications.com/content/2014/1/94
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Since S is Lipschitz continuous, we find from (.) and (.) that

lim
n→∞‖Tnxn – xn‖ = . (.)

Notice that

‖Syn – yn‖ ≤ ‖Syn – Tnyn‖ + ‖Tnyn – Tnxn‖ + ‖Tnxn – xn‖ + ‖xn – yn‖
≤ γn‖yn – Syn‖ + ‖yn – xn‖ + ‖Tnxn – xn‖.

That is,

( – γn)‖Syn – yn‖ ≤ ‖yn – xn‖ + ‖Tnxn – xn‖.

In view of (.) and (.), we find from the restriction (c) that

lim
n→∞‖Syn – yn‖ = . (.)

Since ProjF(S)∩(A+B)–() f is contractive, we see that there exists a unique fixed point, say x̄.
Next, we show that lim supn→∞〈f (x̄) – x̄, zn – x̄〉 ≤ . To show it, we can choose a subse-
quence {zni} of {zn} such that

lim sup
n→∞

〈
f (x̄) – x̄, zn – x̄

〉
= lim

i→∞
〈
f (x̄) – x̄, zni – x̄

〉
.

Since {zni} is bounded, we can choose a subsequence {znij } of {zni}which converges weakly
to some point x. Wemay assume, without loss of generality, that zni converges weakly to x.
In view of (.), we find that yni also converges weakly to x. It follows from Lemma . that
x ∈ F(S).
Now, we are in a position to show that x ∈ (A + B)–(). Notice that yn = Jrn (zn – rnAzn +

en). It follows that

zn – rnAzn + en ∈ (I + rnB)yn.

That is,

zn – yn
rn

–Azn + en ∈ Byn.

Since B is monotone, we get, for any (μ,ν) ∈ B,

〈
yn –μ,

zn – yn
rn

–Azn + en – ν

〉
≥ .

Replacing n by ni and letting i→ ∞, we obtain from (.) that

〈x –μ, –Ax – ν〉 ≥ .
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This gives –Ax ∈ Bx, that is,  ∈ (A+B)(x). This proves that x ∈ (A+B)–(). This complete
the proof that x ∈ F(S)∩ (A + B)–(). It follows that

lim sup
n→∞

〈
f (x̄) – x̄, zn – x̄

〉 ≤ .

Finally, we show that xn → x̄. Notice that

‖zn – x̄‖ ≤ αn
〈
f (xn) – x̄, zn – x̄

〉
+ ( – αn)‖xn – x̄‖‖zn – x̄‖

≤ αn
∥∥f (xn) – f (x̄)

∥∥‖zn – x̄‖ + αn
〈
f (x̄) – x̄, zn – x̄

〉
+ ( – αn)‖xn – x̄‖‖zn – x̄‖

≤  – αn( – β)


(‖xn – x̄‖ + ‖zn – x̄‖) + αn
〈
f (x̄) – x̄, zn – x̄

〉
.

This implies that

‖zn – x̄‖ ≤ (
 – αn( – β)

)‖xn – x̄‖ + αn
〈
f (x̄) – x̄, zn – x̄

〉
.

It follows that

‖yn – x̄‖ ≤ ∥∥(zn – rnAzn) – (x̄ – rnAx̄) + en
∥∥

≤ ∥∥(zn – rnAzn) – (x̄ – rnAx̄)
∥∥ + ‖en‖

+ ‖en‖
∥∥(zn – rnAzn) – (x̄ – rnAx̄)

∥∥
≤ ‖zn – x̄‖ + hn

≤ (
 – αn( – β)

)‖xn – x̄‖ + αn
〈
f (x̄) – x̄, zn – x̄

〉
+ hn, (.)

where hn = ‖en‖(‖en‖ + ‖(zn – rnAzn) – (I – rnA)x̄‖). It follows from (.) that

‖xn+ – x̄‖ ≤ βn‖xn – x̄‖ + ( – βn)‖Tnyn – x̄‖

≤ βn‖xn – x̄‖ + ( – βn)‖yn – x̄‖

≤ (
 – αn( – βn)( – β)

)‖xn – x̄‖

+ αn( – βn)
〈
f (x̄) – x̄, zn – x̄

〉
+ hn.

In view of the restriction (a), (b), and (e), we find from Lemma . that xn → x̄. This com-
pletes the proof. �

If S is nonexpansive and γn ≡ , then we have the following result immediately.

Corollary . Let A : C → H be an α-inverse-strongly monotone mapping and let B be
a maximal monotone operator on H . Let S : C → C be a nonexpansive mapping and let
f : C → C be a contractive mapping with the constant β ∈ [, ). Assume that Dom(B)⊂ C
and F(S)∩ (A+B)–() is not empty. Let Jrn = (I+rnB)– and let {xn} be a sequence generated

http://www.fixedpointtheoryandapplications.com/content/2014/1/94
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in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)SJrn (yn – rnAyn + en), ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ) and {rn} is a positive real number
sequence in (, α). Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)  < b≤ rn ≤ c < α and

∑∞
n= |rn – rn–| < ∞;

(d)
∑∞

n= ‖en‖ <∞,
where b and c are two real numbers. Then {xn} converges strongly to a point x̄ ∈ F(S)∩ (A+
B)–(), where x̄ = ProjF(S)∩(A+B)–() f (x̄).

3 Applications
Many nonlinear problems arising in applied areas such as image recovery, signal process-
ing, and machine learning are mathematically modeled as a nonlinear operator equation
and this operator is decomposed as the sum of two nonlinear operators. The central prob-
lem is to iteratively find a zero point of the sum of two monotone operators, that is,

 ∈ (A + B)(x).

Many real word problems can be formulated as a problem of the above form. For instance,
a stationary solution to the initial value problem of the evolution equation

⎧⎨
⎩
 ∈ Fu + ∂u

∂t ,

u = u()

can be recast as the inclusion problem when the governing maximal monotone F is of the
form F = A + B; for more details, see [] and the references therein.
First, we give the following result.

Theorem . Let A : C → H be an α-inverse-strongly monotone mapping and let B be
a maximal monotone operator on H . Let f : C → C be a contractive mapping with the
constant β ∈ [, ). Assume that Dom(B) ⊂ C and (A + B)–() is not empty. Let Jrn = (I +
rnB)– and let {xn} be a sequence generated in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)Jrn (yn – rnAyn + en), ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ) and {rn} is a positive real number
sequence in (, α). Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)  < b≤ rn ≤ c < α and

∑∞
n= |rn – rn–| < ∞;

(d)
∑∞

n= ‖en‖ <∞,

http://www.fixedpointtheoryandapplications.com/content/2014/1/94
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where b and c are two real numbers.Then {xn} converges strongly to a point x̄ ∈ (A+B)–(),
where x̄ = Proj(A+B)–() f (x̄).

Proof Put S = I , the identity on H . The desired conclusion can be obtained immediately.
Let H be a Hilbert space and f :H → (–∞, +∞] a proper convex lower semicontinuous

function. Then the subdifferential ∂f of f is defined as follows:

∂f (x) =
{
y ∈H : f (z) ≥ f (x) + 〈z – x, y〉, z ∈H

}
, ∀x ∈ H .

From Rockafellar [], we know that ∂f is maximal monotone. It is easy to verify that
 ∈ ∂f (x) if and only if f (x) =miny∈H f (y). Let IC be the indicator function of C, i.e.,

IC(x) =

⎧⎨
⎩
, x ∈ C,

+∞, x /∈ C.
(.)

Since IC is a proper lower semicontinuous convex function on H , we see that the subdif-
ferential ∂IC of IC is amaximalmonotone operator. Then y = (I +λ∂IC)–x⇐⇒ y = ProjC x,
∀x ∈H , y ∈ C. �

Theorem . Let A : C → H be an α-inverse-strongly monotone mapping. Let S : C → C
be a strictly pseudocontractive mapping with the constant κ ∈ [, ) and let f : C → C be a
contractive mapping with the constant β ∈ [, ).Assume that F(S)∩VI(C,A) is not empty.
Let {xn} be a sequence generated in the following process: x ∈ C and

⎧⎪⎪⎨
⎪⎪⎩
zn = αnf (xn) + ( – αn)xn,

yn = ProjC(zn – rnAzn + en),

xn+ = βnxn + ( – βn)(γnyn + ( – γn)Syn), ∀n≥ ,

where {αn}, {βn} and {γn} are real number sequences in (, ) and {rn} is a positive real
number sequence in (, α). Assume that the control sequences satisfy the following restric-
tions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c) κ ≤ γn ≤ a < , limn→∞ |γn+ – γn| = ;
(d)  < b≤ rn ≤ c < α and

∑∞
n= |rn – rn–| < ∞;

(e)
∑∞

n= ‖en‖ <∞,
where a, b, and c are three real numbers. Then {xn} converges strongly to a point x̄ ∈ F(S)∩
(A + B)–(), where x̄ = ProjF(S)∩(A+B)–() f (x̄).

Proof Put Bx = ∂IC . Next, we show that VI(C,A) = (A + ∂IC)–(). Notice that

x ∈ (A + ∂IC)–() ⇐⇒  ∈ Ax + ∂ICx

⇐⇒ –Ax ∈ ∂ICx

⇐⇒ 〈Ax, y – x〉 ≥ 

⇐⇒ x ∈ VI(C,A).

We can conclude the desired conclusion immediately. �
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If S = I , the identity on H , then we find from Theorem . the following result immedi-
ately.

Corollary . Let A : C → H be an α-inverse-strongly monotone mapping. Let S : C → C
be a strictly pseudocontractive mapping with the constant κ ∈ [, ) and let f : C → C be a
contractive mapping with the constant β ∈ [, ).Assume that F(S)∩VI(C,A) is not empty.
Let {xn} be a sequence generated in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)ProjC(yn – rnAyn + en), ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ) and {rn} is a positive real number
sequence in (, α). Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)  < b≤ rn ≤ c < α and

∑∞
n= |rn – rn–| < ∞;

(d)
∑∞

n= ‖en‖ <∞,
where b and c are three real numbers. Then {xn} converges strongly to a point x̄ ∈ VI(C,A),
where x̄ = ProjVI(C,A) f (x̄).

Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Recall
the following equilibrium problem:

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C. (.)

In this paper, we use EP(F) to denote the solution set of the equilibrium problem (.).
To study the equilibrium problems (.), we may assume that F satisfies the following

conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semicontinuous.
Putting F(x, y) = 〈Ax, y – x〉 for every x, y ∈ C, we see that the equilibrium problem (.)

is reduced to a variational inequality.

Lemma . [, ] Let C be a nonempty closed convex subset of H and let F : C×C →R

be a bifunction satisfying (A)-(A). Then, for any r >  and x ∈ H , there exists z ∈ C such
that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, define

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)
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for all r >  and x ∈H . Then, the following hold:
(a) Tr is single-valued;
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(c) F(Tr) = EP(F);
(d) EP(F) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , F a
bifunction from C ×C to R which satisfies (A)-(A) and AF a multivalued mapping of H
into itself defined by

AFx =

⎧⎨
⎩

{z ∈H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.
(.)

Then AF is amaximalmonotone operator with the domain D(AF ) ⊂ C, EP(F) = A–
F () and

Trx = (I + rAF )–x, ∀x ∈H , r > ,

where Tr is defined as in (.).

Theorem . Let A : C → H be an α-inverse-strongly monotone mapping and let FB be a
bifunction fromC×C toRwhich satisfies (A)-(A). Let S : C → C be a strictly pseudocon-
tractive mapping with the constant κ ∈ [, ) and let f : C → C be a contractive mapping
with the constant β ∈ [, ). Assume that F(S)∩ EP(F) is not empty. Let {xn} be a sequence
generated in the following process: x ∈ C and

⎧⎪⎪⎨
⎪⎪⎩
zn = αnf (xn) + ( – αn)xn,

yn = Trn (zn – rnAzn + en),

xn+ = βnxn + ( – βn)(γnyn + ( – γn)Syn), ∀n≥ ,

where {αn}, {βn}, and {γn} are real number sequences in (, ) and {rn} is a positive real
number sequence in (, α). Assume that the control sequences satisfy the following restric-
tions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c) κ ≤ γn ≤ a < , limn→∞ |γn+ – γn| = ;
(d)  < b≤ rn ≤ c < α and

∑∞
n= |rn – rn–| < ∞;

(e)
∑∞

n= ‖en‖ <∞,
where a, b, and c are three real numbers. Then {xn} converges strongly to a point x̄ ∈ F(S)∩
EP(F), where x̄ = ProjF(S)∩EP(F) f (x̄).

If S = I , the identity on H , then we find from Theorem . the following result on the
equilibrium problem immediately.
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Corollary . Let A : C → H be an α-inverse-strongly monotone mapping and let FB be
a bifunction from C × C to R which satisfies (A)-(A). Let f : C → C be a contractive
mappingwith the constant β ∈ [, ).Assume that EP(F) is not empty.Let {xn} be a sequence
generated in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)Trn (yn – rnAyn + en), ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ) and {rn} is a positive real number
sequence in (, α). Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)  < b≤ rn ≤ c < α and

∑∞
n= |rn – rn–| < ∞;

(d)
∑∞

n= ‖en‖ <∞,
where b and c are two real numbers. Then {xn} converges strongly to a point x̄ ∈ EP(F),
where x̄ = ProjEP(F) f (x̄).
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