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Abstract

Let C be a closed and convex subset of a real Hilbert space H. Let T be a Lipschitzian
pseudocontractive mapping of C into itself, A be a y-inverse strongly monotone
mapping of C into H and let B be a maximal monotone operator on H such that the
domain of Bis included in C. We introduce an iteration scheme for finding a
minimum-norm point of F(T) N (A + B)~'(0). Application to a common element of the
set of fixed points of a Lipschitzian pseudocontractive and solutions of variational
inequality for a-inverse strongly monotone mappings is included. Our theorems
improve and unify most of the results that have been proved in this direction for this
important class of nonlinear mappings. To the best of our knowledge,
approximating a common fixed point of pseudocontractive mappings with explicit
scheme has not been possible and our result is even the first result that states the
solution of a variational inequality in the set of fixed points of pseudocontractive
mappings. Our scheme which is explicit is the best to use for the problem under
consideration.
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1 Introduction

Let C be a closed convex subset of a real Hilbert space H. A mapping 7': C — H is called a
contraction mapping if there exists L € [0,1) such that | Tx — Ty|| < L||x—y|| forallx,y € C.
If L = 1then T is called nonexpansive. T is called quasi-nonexpansive if || Tx— Tp|| < ||x—pl||
for all x € C and p € F(T), where F(T) := {x € C: Tx = x}, the set of fixed points of T.
A mapping T is called y-strictly pseudocontractive [1] if and only if there exists y € [0,1)
such that

ITx— Tyl* < lx=yI* +y |- T)x— (- T)y|*, forallx,yeC, 1.1)
and T is called pseudocontractive if

ITx— Ty|* < |lx—y* + | = T)x— (I - T)y|*, forallx,yeC, (1.2)

©2014 Shahzad and Zegeye; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.


http://www.fixedpointtheoryandapplications.com/content/2014/1/85
mailto:nshahzad@kau.edu.sa
http://creativecommons.org/licenses/by/2.0

Shahzad and Zegeye Fixed Point Theory and Applications 2014, 2014:85 Page 2 of 15
http://www.fixedpointtheoryandapplications.com/content/2014/1/85

where [ is the identity mapping. We note that inequalities (1.1) and (1.2) can be equivalently

written as

(=9, Tx—Ty) < llx =y = 1| U - Dx— (I - Dyy|)%, (1.3)
for some A > 0, and

(x—y, Tx—Ty) < |x—y||>, forallx,yeC, (1.4)

respectively.

Clearly, the class of nonexpansive mappings is a subset of the class of y -strictly pseu-
docontractive mappings and the class of y -strictly pseudocontractive is contained in the
class of pseudocontractive mappings. Moreover, this inclusion is strict due to the following
example in [2].

Take X =R%, B={x € R?: ||x[| <1}, Bi={x € B:|lx| < 3}, Bo={x € B: 1 < |lx| <1}.1f
x = (a,b) € X we define x L to be (b, —a) € X. Define T : B— B by

X + xJ_, ifxe Blr
Tx = (1.5)

”;—” —x+xl, ifxeB,.

Then T is a Lipschitzian and pseudocontractive mapping but not a strictly pseudocon-
tractive mapping.

Closely related to the class of pseudocontractive mappings is the class of monotone map-
pings. A mapping A : C — H is called monotone if

(x—y,Ax—Ay) >0, forallx,yeC, (1.6)

and A is called y-inverse strongly monotone if there exists a positive real number y such
that

(x—y,Ax — Ay) > y||Ax - Ay||?>, forallx,ye C. 1.7)

If A is y-inverse strongly monotone, then inequality (1.7) implies that A is Lipschitzian
with constant L := %, that is, ||[Ax — Ay|| < %Hx —y|, forallx,y € C.

We remark the T is y-strictly pseudocontractive if and only if A := (I — T) is y-inverse
strongly monotone and T is pseudocontractive if and only if A := (/ — T) is monotone.
Clearly, the class of monotone mappings includes the class of y -inverse strongly monotone
mappings. We note that the inclusion is proper. This can be seen from the example in [2].
Take A := (I - T), where T is as in (1.5). Then we see that A is monotone but not y -inverse
strongly monotone as 7 is not strictly pseudocontractive.

A mapping A is called maximal monotone if it is monotone and R(I + rA), the range of
(I +rA),is H for all » > 0. If A is maximal monotone, then to each r > 0 and x € H, there
corresponds a unique element x, € D(A) satisfying

X € X, + rAX,.

We denote the resolvent of A by J,x = x,. Thatis, ], = (I +rA)™ forall r > 0. If A is monotone
then J, := (I + rA)~! is nonexpansive single valued mapping from R(I + rA) into D(A) and
F(J;) = N(A) (see [3]).
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Itis now well known (see e.g. [4]) that if A is monotone then the solutions of the equation
Ax = 0 correspond to the equilibrium points of some evolution systems. Consequently,
considerable research efforts, especially within the past 20 years or so, have been devoted
to iterative methods for approximating the zeros of monotone mapping A or fixed point
of pseudocontractive mapping 7 (see, for example, [5-11]).

Let A be a nonlinear mapping on H. Consider the problem of finding

u € Csuch that 0 € Au. (1.8)

When A is a maximal monotone mapping, a well-known methods for solving (1.8) is the
proximal point algorithm: x, = x € H, and

Xn+l =]r,,,xny n=1,2,3,...,

where J,, = (I + r,A)™! and {r,} C (0, 00), then Rockafellar [12] (also see [13]) proved that
the sequence {x,} converges weakly to an element of A71(0).

In [14], Kamimura and Takahashi investigated the problem of finding a zero point of a
maximal monotone mapping by considering the following iterative algorithm:

X0 € H! Xpsl = OpXy + (1 - an)])tylx}’l} n=0,1,..., (1'9)

where {«,} is a sequence in (0,1), {1,} is a positive sequence, A : H — H is a maximal
monotone, and J;,, = (I + A,A)~". They showed that the sequence {x,} generated by (1.9)
converges weakly to some z € A71(0) in the framework of real Hilbert spaces, provided
that the control sequences satisfy some restrictions.

Let C be a nonempty, closed and convex subset of H and A : C — H be a nonlin-
ear mapping. The variational inequality problem which was introduced and studied by
Stampacchia [15] is to:

find u € C such that (Au,v—u) >0, VveC. (1.10)

The set of solutions of the variational inequality problem is denoted by VI(C, A).

Variational inequality theory has emerged as an important tool in studying a wide class
of numerous problems in physics, optimization, variational inequalities, minimax prob-
lems, and the Nash equilibrium problems in noncooperative games (see, for instance, [16—
22)).

In [23], Takahashi and Toyoda investigated the problem of finding a common point of
solutions of the variational inequality problem (1.10) for A : C — H a y-inverse strongly
monotone mapping and fixed points of a nonexpansive mapping 7' : C — C by considering
the following iterative algorithm:

xo € H, x,,1=aux,+1-a,TPc(x, - r,Ax,), n=0,1,..., (1.11)
where {o,} is a sequence in (0,1), {X,} is a positive sequence. They proved that the se-

quence {x,} generated by (1.11) converges weakly to some z € VI(C,A) N F(T) provided
that the control sequences satisfy some restrictions.
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It is worth to mention that the methods studied above give weak convergence theorems
in the framework of Hilbert spaces.

Regarding iterative method for a common point of fixed points of nonexpansive and
zeros of sum of two monotone mappings, Takahashi et al. [24] proved the following the-

orem.

Theorem TT [24] Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let A be a y -inverse strongly monotone mapping of C into H and let B be a maximal mono-
tone mapping on H such that the domain of B is included in C. Let ], = (I + AB)™ be the
resolvent of B, for A > 0, and let T be a nonexpansive mapping of C into itself such that
F(T)N(A +B) ' #0. Let x; = x € C and let {x,)} C C be a sequence generated by

X+l = ﬁnxn + (1 - ﬂn)T(anx + (1 - an)])m (xn - )\nAxn))x n= 1: 27 e

where {A,}, {B,} and {a,} satisfy certain conditions. Then {x,} converges strongly to a point
of F(T) N (A + B)™(0).

For other related results, we refer to [25-30].

A natural question arises: can we obtain an iterative scheme which converges strongly
to a common point of fixed points of the pseudocontractive mapping T and zeros of two
monotone mappings?

It is our purpose in this paper to introduce an iterative scheme which converges strongly
to a common minimum-norm point of fixed points of a Lipschitzian pseudocontractive
mapping and zeros of sum of two monotone mappings. Application to a common element
of the set of fixed points of a Lipschitzian pseudocontractive mapping and solutions of
variational inequality for y-inverse strongly monotone mapping is included. The results
obtained in this paper improve and extend the results of Kamimura and Takahashi [14],
Takahashi and Toyoda [23], Takahashi et al. [24] and some other results in this direction.

2 Preliminaries
In what follows we shall make use of the following lemmas.

Lemma 2.1 [31] Let C be a convex subset of a real Hilbert space H. Let x € H. Then x =
Pcx if and only if

(z—x0,x~x0) <0, VzeC.
We also remark that in a real Hilbert space H, the following identity holds:
lx+ylI* < lxl* +2(r,x +y), VxyeH. (2.1)

Lemma 2.2 [32] Let{a,} be a sequence of nonnegative real numbers satisfying the following
relation:

an < (1 —oy)ay + 0,d,, 1> no,

where {a,} C (0,1) and {8,} C R satisfying the following conditions: lim,_,a, = 0,

Yoy =00, and limsup,,_, 8, <0. Then lim,_, a, = 0.
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Lemma 2.3 [33] Let H be a real Hilbert space, C a closed convex subset of Hand T : C — C
be a continuous pseudocontractive mapping, then

(i) F(T) is closed convex subset of C;

(i) (I —T) is demiclosed at zero, i.e., if {x,} is a sequence in C such that x, — x and

Tx, —x, — 0, as n — o0, then x = T(x).

Lemma 2.4 [34] Let {a,} be sequences of real numbers such that there exists a subsequence
{n;} of {n} such that a,, < a,,. for all i € N. Then there exists a nondecreasing sequence
{my} C N such that m; — oo and the following properties are satisfied by all (sufficiently
large) numbers k € N:

Ay < Ayl ANA - A < Ay 1.
In fact, my = max{j < k:a; < aj..1}.

Lemma 2.5 [35] Let H be a real Hilbert space. Then for all x; € H and «; € [0,1] for i =
1,2,...,nsuch that oy + oy + - - - + o, = 1 the following equality holds:

n
2 2 2
lloroko + oty + -+ + ctunl® = D evillail* = D eyl — 1%
i=0 0<ij<n

Lemma 2.6 [36] Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let A : C — E be y-inverse strongly monotone mapping. Then, for 0 < u < 2y, the mapping

Aux = (x — LAX) is nonexpansive.

Lemma 2.7 [37] Let H be a Hilbert space. Let A : D(A) C H — 2" and B: D(B) C H —
211 be maximal monotone mappings. Suppose that D(A) NintD(B) # ). Then A + B is a

maximal monotone mapping.

3 Main result

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real Hilbert space H.

Let T : C — C be a Lipschitzian pseudocontractive mapping with Lipschitz constant L.

Let A: C — H be a y-inverse strongly monotone mapping and B be a maximal monotone

mapping on H such that the domain of B is subset of C. Assume that F = F(T)N (A +B)™(0)

is nonempty. Let {x,} be the sequence generated from an arbitrary x, € C by
{yn = (1= By + B T 31)

%1 = Pl = o0) (0pn + 8nTyn + VuTh,%n)]s

where T, (%) := (I + 1,B) ™ (I = 1, A)x,, and {1} C (a,b) C (@,2y), {64}, {84}, {yu} C (c,d) C
(0,1), {a,} C (0,e) C (0,1), for some a,b,c,d,e > 0, satisfying the following conditions:
(i) 6, + 8, + v = 1, (ii) lim, oy = 0, Y, = 00; (i) 8, + ¥ < By < B < ﬁ Vn > 1.
Then {x,} converges strongly to the minimum-norm point x* of F.

Proof From Lemma 2.6 and the fact that ], , is nonexpansive we see that T, , is nonexpan-
sive. Let p € F. Then from (3.1), (1.2), Lemma 2.5 and using the fact that p = T, ,(p) we
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have

i1 =PI = | Pe[(L = 0tn)Outn + 85Ty + vu T - 1|

< |0 = @)@ + 85Ty + v T,n) — p|°

< aullpl? + (U = ) ]| 6an = ) + 84(T = ) + Y Tr 0 = )|

< aullpl® + (=) [Oulln =PI + 8ull Ty — pII?
+ Yl Toyen = 21| = = )80 | Ty — %1
= (1= )0Vl T 6n — %>

< aullpll® + A=) (O + y) s = PI* + A = )8, | Ty — pII?
— (1= )80l Ty = 21> = (A = )0V ll Ty — %l

and hence

%01 = pI* < anllpll® + (1= )0 + v) 1% — pII* + (L= )80 lys — pII*
+ 11y = Tyull*] = A = )80l Ty — 2>
— (1= )0Vl Ty — %ll*
= au[pl* + (A= )0 + vu)ll%n — pII* + (1 = 0,)8, [l — pII*
+ (1= )80 = Tyanll® = (1 = )80l Ty — x>

-Q1- ‘Xn)enyn I Tknxn —Xn ”2 (3.2)
In addition, from (3.1), Lemma 2.5, and (1.2) we get

lyn = 2I% = |~ B) (6w = 1) + Bu( T2 — )|
= (1= B)llxn = pII* + Bull Tx - p|I*
= Bu(1 = B) I — Tull®
< (1= Bl%n = pI* + Bullln = pII* + 12, — T 1*]
= Bu( = Bu) 1% — Teull®

= lloen = pII* + B2 lI%n — Txnll? (3.3)
and

lyn = Trall® = | (L= B) @ = i) + Bu(Ttn = Tya) |
= (1= B)llxn = Tyull® + Bull Tt — Tyull®
= Bu(1 = B)lltn — Teull®
< (= B)lltn = Tyull® + BaL* % — yull’
= Bu(L = Bu) 1w — T |1?
= (1= Bu)llxn — Tyull® + BYL? 1% — Toxu)?

Page 6 of 15
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= Bu(1—B)llxn — Tx,,||2

= (1= Bu)1%n = Tyall* = Bu(1 = L*BE — Bu) lxn — Tl (3.4)
Substituting (3.3) and (3.4) into (3.2) we obtain

41 =PI < @ullpl® + @ = ) O + yi) 1% = pI* + (1 = )8, 1% = pII?
+ ﬂﬁ”xn - Tx,,,||2] + (1= )y [(1 = Bu)llxn — Tyn||2
—Bu(1=L?B2 = Bu) 1w — Txull*] = (1 = ) 8,0l Ty — %1

— (1= )0Vl T — %01

= aullpl? + (L= ) ln = pII* = (1 = )8, B4 (1 = (L*B2 +2B4))
X ”xn - Tx,,||2 + (1 - (X,,)(S,,(l - 9n - ,Bn)” Tyn - xn||2

-Q1- an)enyn I Tknxn —Xn ”2,
and hence

%561 =PI < nllpll? + (L= ) 1% — plI* = (1 = )8y
X (1 - (Lzﬁi + 2:371)) ”xn - TanZ
+ (1 - (X,,)Sn((?n +Vn— ﬁn)” Tyn _xn”z

= (1= )0Vl T n = 6| (3.5)
Now, from (iii) of the hypotheses we have
1-28,-L*82>1-2-1*>>0 (3.6)
and
8y +vu)—Pn =<0, foralmn=>1. (3.7)
Thus, inequality (3.5) implies that
%1 = Pl < @ullpl® + (1 - )%, - 1. (3.8)
Thus, by induction,
%1 — plI> < max{lIpll*, 0 — plI*}, ¥n >0,
which implies that {x,} and hence {y,} are bounded.
Let wy := (1 — ap)(0u%n + 8, TV + Y Ta,%n). Then we see that x,,.; = Pcw,,. Let x* = Px(0).

Then, using (3.1), (2.1) and following the methods used to get (3.5), we obtain

||xn+1 - x" ”2 = ”PC[(l =) (Onn + 8 Tyn + VnT)»nxn)] —x* H2

< ot (=5") + (1 = ) [0 + 8, Ty + Y Ty %on — %] ||2
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< (1= 0) |85 Ty + Otn + Y Toytn — x|
+ 200", Wy, — x*)
< (= e)dy | Ty —#* | + (1 = )y |, — 2
+ (U= 0| Toptn =2 [* = (1 = 008 l| Ty — 20

— (1= )0Vl T, %0 — 21> + 2an(—x*,wn —x*)
and so

[t = * = @ = )8l [ = [ + 1y = T3]
+ (L= ) O + i) |20 — |
— (1= )08 | Ty — %1
= (1= )0 ¥ull T, 2 — %[> + 200 (—", w — %)
< (1= at)u[ o0 — || * + B2l — Ttll?]
+ (1= 0)8,[ (1= B)1%n = Tyull> = Bu(1—L* B} — Bn)
X 11 = T 7] + (1= 00) 0 + ¥ |30 — 2|
— (1= )08l T = 2 1* = (U= )0l T, 60 — 21>

+ 2a,,<—x*, W, — x*),
which implies that

”xn+1 - ”2 <(1-a,) ”xn —-x" ”2 —(1—an)8,pn [1 - L2’3n2 - 2/3;1]
X ln — Txn”2 + (1= 04)8,(8n + Vi — Bu) 1% — Tyn”2
- (1 - Oln)J/onn - T)\nxn”Z + 2“71(_36*: Wy _x*> (39)

<(1-a,) ”x,, —x* ”2 + 20[,,(—96*, W, — x*) (3.10)
Now, we consider two cases.
Case 1. Suppose that there exists ny € N such that {||x,, —x*||} is decreasing for all n > ny.
Then we see that {||x,, — x*||} is convergent. Thus, from (3.9) and (3.6) we have
%, — Tx, — 0, %y — Ty, %y — 0 asn— oo. (3.11)
Moreover, from (3.1) and (3.11) we obtain
71 = %ull = Bullxy — Txyll = 0 as n— o0, (3.12)

and hence Lipschitz continuity of 7', (3.12), (3.11) imply that

1TYn = %ull < 1 Tyn = Txull + | T — x|

<L|ly,—xqll + | Txy, —x,]| > 0 asn— o0. (3.13)
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In addition, from (3.13) and (3.11) we have

Wy — x4l = ” (1 = n)(Onxn + 8u Ty + VT, %n) = %n ”
< (L= )8l Tyn = xnll + (L= ) Yl T, %0 — %l

+ayllx,.]l = 0 asn— oo. (3.14)

Furthermore, since {w,} is bounded subset of H which is reflexive, we can choose a subse-
quence {wy,} of {w,} such that w,, — wand limsup,,_, .. (—x*, w, —x*) = lim;_, oo (—x*, W, —
x*). It follows from (3.14) that x,, — w. Then, from (3.11) and Lemma 2.3, we have
we F(T).

Next, we show that w € (4 + B)™1(0). Let

Zp = ]An (I - )\nA)xn' (315)
Then from (3.11) we get z,, — x, — 0 as n — oo. In addition, for any p € F, we see that

2
Iz = pI* = ]2, (I = 2uA)xs = J3, (I = 2, A)p |
< ll%n = pI” = 22, (xy — p, Ax, — Ap) + 21| Ax,, - Apl|?
=< “xn —P||2 - /\n(ZV - )‘n)”Axn —AP||2-
This implies that
Mn(2y = M) A%, — Apll® < llxn — plI* = llzn — pII>
< (In = pll + 120 = 211 1% = 2,
and hence we get
Ax,—Ap—> 0 asn— oo. (3.16)
Now from (3.15) we obtain
X, — Any A%y, € (I + Xy, B)zy,.
That is,
Xy

-2z
T Ax,, € Bzy,.
s

i

Since B is monotone, we get for any (&, v) € G(B), where G(B) is the graph of B defined by
G(B)={(x,w) e H x H:x € D(A),w € Ax},

.= Zn.
<z,,l. _ 4, x”’X " Ay, — v> > 0. (3.17)

nj

On the other hand, since (x,, — w, Ax,,, — Aw) > y |Ax,, — Aw|?, x,,, = w and Ax,,, — Ap,
as n — oo we have Ax,, — Aw. Thus, letting i — 0o, we obtain from (3.17)

(W—u,-Aw—-v) > 0.
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Thus, maximality of B implies that —Aw € Bw, that is, 0 € (A + B)(w). Hence, we get w €
(A + B)Y71(0).

Therefore, by Lemma 2.1, we immediately obtain

lim sup(—x*, Wy — x*) = lim (—x*, Wy, — x*) = <—x*, w— x*> <0. (3.18)
=00 i—00
Then it follows from (3.10), (3.18), and Lemma 2.2 that ||x,, — x*|| — 0 as # — oo. Conse-
quently, x, — x* = Pr(0).
Case 2. Suppose that there exists a subsequence {#;} of {n} such that

Yy P

’

for all i € N. Then, by Lemma 2.4, there exists a nondecreasing sequence {m} C N such
that m; — oo, and

[ =] < P =" and =] < [ =] 619

for all k € N. Now, from (3.9) and (3.6) we get x,,,, — Tx,,, — 0, and x,,,, — Tkamk — 0as
k — oo. Thus, like in Case 1, we obtain w,,, —x,,, — 0 and

lim sup(—x*, Wiy, — x*) <0. (3.20)

k— o0
Now, from (3.10) we have
||xmk+1 —x* ||2 <(1- amk)mek —x* ||2 + 2amk<—x*, Wiy, — x*), (3.21)
and hence (3.19) and (3.21) imply that

o =" = o =7 = [teon =" |+ 20t (", Wi = %)

< —2amk<x*,wmk —x*).
But using the fact that «,,, >0 and (3.20) we obtain
||xmk —x* || —0 ask— oo.

This together with (3.21) implies that [|x,,, .1 —x* || = 0 as k — 00. But |lag —x* || < || 1 —
x*| for all k € N and hence we obtain x; — x*. Therefore, from the above two cases, we
can conclude that {x,} converges strongly to the minimum-norm point of F. The proof is
complete. d

If, in Theorem 3.1, we assume that A = 0, then we get T, (x,) := (I + A,,B)'x, and hence
we get the following corollary.

Corollary 3.2 Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Let T : C — C be a Lipschtzian pseudocontractive mapping with Lipschitz constant L and
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B: C — 2" be a maximal monotone mapping. Assume that F = F(T) NB~(0) is nonempty.
Let {x,} be the sequence generated from an arbitrary x, € C by

= (1= Bu)x, n T%Xu;

Y= (1= B + B T 52)
Xn+l = pC[(1 - an)(enxn + 8nTyn + VnTknxn)L

where T), (x,) := (I + 2,B) %, and {7,} C (a,1), {6,},{8u},{¥u} C (c,d) C (0,1), {en} C

(0,e) C (0,1), for some a,c,d,e > 0, satisfying the following conditions: (i) 0, + 8, + v, =1,

(i) limy— 00 0t = 0, Dty = 00; (ili) 8, + Y < B < B < ﬁ, Vn > 1. Then {x,} converges

strongly to the minimum-norm point x* of F.

We also have the following theorem for two maximal monotone mappings.

Theorem 3.3 Let C be a nonempty, closed and convex subset of a real Hilbert space H
such that int(C) # (. Let A, B: C — H be maximal monotone mappings. Let T : C — C be
a Lipschitzian pseudocontractive mapping with Lipschitz constant L such that F = F(T) N
(A + B)™Y(0) is nonempty. Let {x,,} be the sequence generated from an arbitrary xo € C by

: Y = (1= Bu)y + BT (3.23)

Xn+l = PC[(l - an)(gnxn + SnTyn + Vn T)»y,xn)]:

where Ty, (x,) := (I + Ay (A + B)) Y%, and (A} C (a,1), {0}, {8}, {vu} C (c,d) € (0,1), {av,} C
(0,e) C (0,1), for some a,c,d,e > 0, satisfying the following conditions: (i) 6, + 8, + yu =1,
(i) lim,— oo 00, = 0, Y, = 00; (ili) 8, + yu < B < B < ﬁ, Vn > 1. Then {x,} converges
strongly to the minimum-norm point x* of F.

Proof From Lemma 2.7 we find that A + B is a maximal monotone and hence by Corol-
lary 3.2 we get the required assertion. O

If, in Theorem 3.3, we assume that T = I, the identity mapping on C, then we get the
following corollary.

Corollary 3.4 Let C be a nonempty, closed and convex subset of a real Hilbert space H
such that int(C) # (. Let A,B: C — H be maximal monotone mappings such that F =
(A + B)™X(0) is nonempty. Let {x,} be the sequence generated from an arbitrary x, € C by

Xntl = PC[(1 - an)((l ~= Yn)%n + Vn Tknxn)];

where T;,, (%) := (I + A,(A + B)) "%, and {1} C (a,1), {4} C (¢,d) C (0,1), {@,} C (0,€) C
(0,1), for some a, c,d, e > 0, satisfying the following conditions: lim,_. o, =0 and > a, =
00. Then {x,} converges strongly to the minimum-norm point x* of F.

4 Applications

We next study the problem of finding a solution of a variational inequality. Let C be a
nonempty closed convex subset of a real Hilbert space H. The normal cone for C at a
point x € C, denoted by N¢(x), is defined by

Nc(x) = {x* € H:(y—x,x*) <0,Vye C}. (4.1)
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Let f: H — (—00,00] be a proper lower semicontinuous convex function. Define the sub-
differential

of @) ={zeH:f(x) + (y—x2) <f(y),Vy e H},

for all x € H. Then from Rockafellar [38] we know that df is maximal monotone mapping
of H into itself. Let C be a nonempty closed convex subset of H and i¢ be the indicator
function of C, that is,

0, ifxeC,
() = 42
@ =1 o iftxeéc (42)

Then ic : H — (—00,00] is a proper lower semicontinuous convex function on H and di¢
is a maximal monotone mapping. Let /,x = (I + Adic) " for all » > 0 and x € H. From the
fact that dicx = Nex and x € C, we get

uelhx < xeu+rdicu < xcu+INcu
& x—-ueANcu < x-uy—-u)<0, VyeC

= u= ch,
Moreover,

x€(A+0ic)(0) & 0e(A+dic)x < —Axedicx
& (-Axy-x)<0, VyeC
& x e VI(C,A),

and hence x € (A + 3ic)™1(0) < x € VI(C,A). Thus, the following corollary holds. Now,
using Theorem 3.1, we obtain a strong convergence theorem for finding a common point
of fixed points of Lipschtzian pseudocontractive mapping and solutions of the variational
inequality problem for y -inverse monotone mapping.

Theorem 4.1 Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C — C be a Lipschitzian pseudocontractive mapping with Lipschitz constant L and let
A : C — H be a y-inverse strongly monotone mapping such that F = F(T) N VI(C,A) # 0.
Let {x,} be the sequence generated from an arbitrary x, € C by

Yn = (1 - ,Bn)xn + ﬂn Txy;

4.3
Xn+l = PC[(l - an)(enxn + SnT_yn + VnPC(xn - )\nAxn))]: ( )

where {L,} C (a,b) C (a,2y), {0}, {8u}, {yu} C (¢,d) C(0,1), {ax} C (0,€) C(0,1), for some
a,b,c,d,e > 0, satisfying the following conditions: (i) 6, + 8, + y, =1, (i) lim,— 0, = 0,
> a,=00; (iil) 8, + yu < Bu < B < ﬁ, Vn > 1. Then {x,} converges strongly to the
minimum-norm point x* of F.

If, in Theorem 4.1, we take T' = I, the identity mapping on C we have the following corol-
lary for a solution of variational inequality for a y -inverse strongly monotone mapping.
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Corollary 4.2 Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Let A : C — H be a y-inverse strongly monotone mapping with V1(C,A) # ). Let {x,} be
the sequence generated from an arbitrary xo € C by

Xnsl = PC[(1 - Ol,,)((l = VYn)%n + YnPc(xn — )\nAxn))]y

where {1,} C (a,b) C (a,2y), {yu} C (¢,d) C (0,1), {,} C (0,€e) C (0,1), for some a,b,c,
d, e > 0, satisfying the following conditions: lim,_, oo &, = 0, Y_ o0, = 00. Then {x,} converges
strongly to the minimum-norm point x* of VI(C, A).

If, in Theorem 4.1, we take A := (I - S), where S is a nonexpansive self mapping of C into
itself, then we get the following corollary.

Corollary 4.3 Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Let T : C — C be a Lipschitzian pseudocontractive mapping with Lipschitz constant L and
let S: C — C be a nonexpansive mapping such that F = F(T) N F(S) # (. Let {x,} be the
sequence generated from an arbitrary x, € C by

Yn = (1 - ,Bn)xn + ﬁn Txu;

4.4
Xn+l = PC[(1 - an)(enxn + 5nTyn + Vn((l - )‘n)xn + )Vnsxn))]r ( )

where {A,} C (a,b) C (@, 3), {0a}, {8}, {¥u} C (c.d) C (0,1), {as} C (0,€) C (0,1), for some
a,b,c,d,e > 0, satisfying the following conditions: (i) 6, + 8, + v, =1, (ii) lim,, @, = 0,
S, =005 (iil) 8, + Yy < Bu < B < ﬁ, Vn > 1. Then {x,} converges strongly to the
minimum-norm point x* of F(T) N F(S).

Proof Put A :=1-Sin Theorem 4.1. Then we see that A is a i-inverse strongly monotone

mapping. Furthermore, for x € C we have
Pc(x—AAx) = Pc(x—A(I - T)x) = (1 - A)x + ATx
and

x* e VI(C,A) & x*eVIC,I-S)
& (Sxf-ay-a")<0, VyeC

& PcSxt=x" &  Sx*=x". (4.5)
Thus, we obtain VI(C,A) = F(S). Therefore, the conclusion holds by Theorem 4.1 O

Remark 4.4 Theorem 3.1 provides convergence sequence to a common point of fixed
points of a Lipschitzian pseudocontractive mapping and zeros of two monotone mappings
in Hilbert spaces.

Remark 4.5 Theorem 3.1 improves Theorem 3.1 of Takahashi et al. [24] in the sense that
our convergence is to the common minimum-norm point of fixed points of a Lipschitzian
pseudocontractive mapping and zeros of sum of two monotone mappings. Corollary 3.4
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improves Theorem 1 of Kamimura and Takahashi [14] in the sense that our convergence
is for the a zero of sum of two maximal monotone mappings. Theorem 4.1 extends Theo-
rem 3.1 of Takahashi and Toyoda [23] in the sense that our convergence is to the common
minimum-norm point of fixed points of a Lipschitzian pseudocontractive mapping and
solutions of variational inequality for a y -inverse strongly monotone mapping.
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