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Abstract
In this paper, we discuss the connection between concepts of robustness for
multi-objective optimization problems and set order relations. We extend some of
the existing concepts to general spaces and cones using set relations. Furthermore,
we derive new concepts of robustness for multi-objective optimization problems. We
point out that robust multi-objective optimization can be interpreted as an
application of set-valued optimization. Furthermore, we develop new algorithms for
solving uncertain multi-objective optimization problems. These algorithms can be
used in order to solve a special class of set-valued optimization problems.
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1 Introduction
Dealing with uncertainty in multi-objective optimization problems is very important in
many applications. On the one hand, most real world optimization problems are contam-
inated with uncertain data, especially traffic optimization problems, scheduling problems,
portfolio optimization, network flow and network design problems. On the other hand,
many real world optimization problems require the minimization of multiple conflicting
objectives (see []), e.g. the maximization of the expected return versus the minimization
of risk in portfolio optimization, the minimization of production time versus the mini-
mization of the cost of manufacturing equipment, or the maximization of tumor control
versus the minimization of normal tissue complication in radiotherapy treatment design.
For an optimization problem contaminated with uncertain data it is typical that at the

time it is solved these data are not completely known. It is very important to estimate the
effects of this uncertainty and so it is necessary to evaluate how sensitive an optimal solu-
tion is to perturbations of the input data. One way to deal with this question is sensitivity
analysis (for an overview see []). Sensitivity analysis is an a posteriori approach and pro-
vides ranges for input data within which a solution remains feasible or optimal. It does
not, however, provide a course of action for changing a solution should the perturbation
be outside this range. In contrast, stochastic programming (see e.g. Birge and Louveaux
[] for an introduction) and robust optimization (see e.g. [, ] for an overview) take the
uncertainty into account during the optimization process.While stochastic programming
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assumes some knowledge about the probability distribution of the uncertain data and the
objective usually is to find a solution that is feasible with a certain probability and that op-
timizes the expected value of some objective function, robust optimization hedges against
the worst case. Hence robust optimization does not require any probabilistic information.
Depending on the concrete application one can decide whether robust or stochastic opti-
mization is the more appropriate way of dealing with uncertainty.
Robust optimization is usually applied to problems where a solution is required which

hedges against all possible scenarios. For example, the emergency department with land-
ing place for rescue helicopters in a ski resort should be chosen in such a way that the flight
time to all ski slopes in the resort that are to be protected is minimized in the worst case,
even though flight times are uncertain due to unknown weather conditions. Similarly, if
an aircraft schedule of an airline is to be determined, one would want to be able to provide
service to asmany passengers as possible in a cost-effectivemanner, even though the exact
number of passengers is not known at the time the schedule is fixed.
Generally, in the concept of robustness it is not assumed that all data are known, but

one allows different scenarios for the input parameters and looks for a solution that works
well in every uncertain scenario.
Unfortunately, at the time the uncertain optimization problem has to be solved, it is not

known which scenario is going to be realized. Therefore, a definition of a ‘good’ (or robust
against the perturbations in the uncertain parameter) solution is necessary.
Robust optimization is a growing field of research, we refer to Ben-Tal, El Ghaoui, Ne-

mirovski [], Kouvelis and Yu [] for an overview of results and applications for the most
prominent concepts. Several other concepts of robustness were introducedmore recently,
e.g. the concept of light robustness by Fischetti andMonaci [] or the concept of recovery-
robustness in Liebchen et al. [], for a unified approach, see []. A scenario-based approach
is suggested in Goerigk and Schöbel []. In all these approaches, the uncertain optimiza-
tion problem is replaced by a deterministic version, called the robust counterpart of the
uncertain problem.
One of the most common approaches is the concept of minmax robustness, introduced

by Soyster [] and studied e.g. by Ben-Tal and Nemirovski []. Here, a solution is said to
be robust, if it minimizes the worst case of the objective function over all scenarios. We
do not go into detail here as for this paper we mostly consider concepts of robustness for
multi-objective optimization problems.
Now, if we consider the objective function in the problem definition to be not a single-

objective, but a multi-objective function, the concepts of robustness do not apply natu-
rally anymore. The problem obviously is that there is no total order on Rk and the ro-
bustness concepts for uncertain single-objective optimization problems rely on the total
order of R. Therefore, new definitions of what is seen as a robust solution to an uncertain
multi-objective optimization problem are necessary.
The first approach to handle uncertainty for multi-objective optimization problems was

presented by Deb and Gupta [] who extended the concept Branke [] introduced for
single-objective functions.Here each objective function is replaced by theirmean function
and an efficient solution of the resulting multi-objective optimization problem is called a
robust solution. The authors also presented a second definition where the uncertainty is
modeled into the constraintswhich restrict the variation of the original objective functions
to their means. Barrico and Antunes [] extended the concept of Deb and Gupta and
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introduced the degree of robustness as a measure how much a predefined neighborhood
of the considered solution can be extended without containing solutions whose function
values are too bad. An overview of the existing concepts of robustness for multi-objective
optimization problems can be found in [] and [].
A first approach to extending the concept ofminmax robustness tomulti-objective opti-

mization was presented by Kuroiwa and Lee []. Here, the worst case in each component
is calculated separately, and an efficient solution to the problem of minimizing the vec-
tor of worst cases is then called a robust solution to the original problem. This definition
has been extended by Ehrgott, et al. [], where the authors replace the objective function
by a set-valued objective function. Furthermore, the authors present solution algorithms
for calculatingminmax-robust efficient solutions, one of which is closely connected to the
concept of robustness presented by Kuroiwa and Lee []. Furthermore, in [] the authors
present solution concepts for obtaining robust points of uncertain multi-objective opti-
mization problems and study optimality conditions for the special case of convex objective
functions in [].
Set-valued optimization deals on the other handwith the problem ofminimizing a func-

tion where the image of a point is in fact a set. Minimizing a set is not totally intuitive since
on a power set there is no total order as well as on Rk . Therefore, a definition of what can
be seen as an optimal solution to minimizing a set-valued objective function is neces-
sary. In order to compare sets, several preorders have been introduced (see e.g. [–]).
With these preorders it is then possible to formulate set-valued optimization problems
related to robustness for multi-objective optimization problems, especially, we show that
the concept of minmax-robust efficiency (see []) is closely connected to a certain set
order relation, introduced by Kuroiwa [, ], namely the upper-type set relation. We
derive our results in general spaces using arguments from nonlinear and convex analysis
(see Takahashi [, ]), for methods from numerical analysis in general spaces, see e.g.
Aoyama, Kohsaka, Takahashi [], Takahashi [].
Replacing the set order relation implicitly used in the definition of minmax-robust ef-

ficiency, Ide and Köbis [] presented various other concepts of robustness for multi-
objective optimization, derived by replacing the upper-type set relation with another set
ordering from the literature.
Now, this paper is structured as follows: After fixing the notation and recalling the def-

initions of set order relations in Section , in Section  we introduce several concepts of
robustness for multi-objective optimization problems based on set order relations. We
show some characterizations for robust solutions in the sense of set-valued optimization
that are important for deriving solution procedures using the ideas given in []. A lot of
the results presented in [] can be extended to our general setting. Using this informa-
tion, we extend the algorithms presented in [] to concepts for robustness and then we
use these algorithms in order to solve a certain class of set-valued optimization problems.
We conclude the paper with some final remarks and an outlook to future research.

2 Preliminaries
Throughout the paper, let Y be a linear topological space partially ordered by a proper
closed convex and pointed (i.e., C ∩ (–C) = {}) cone C. The ordering relation on Y is
described by y ≤C y if and only if y – y ∈ C for all y, y ∈ Y . The dual cone to C is
denoted by C∗ := {y∗ ∈ Y ∗ | ∀y ∈ C : y∗(y) ≥ } and the quasi-interior of C∗ is defined by

http://www.fixedpointtheoryandapplications.com/content/2014/1/83


Ide et al. Fixed Point Theory and Applications 2014, 2014:83 Page 4 of 20
http://www.fixedpointtheoryandapplications.com/content/2014/1/83

C# := {y∗ ∈ C∗ | ∀y ∈ C \ {} : y∗(y) > }. Furthermore, let X be a linear space, F : X ⇒ Y
(with the ‘⇒’-notation we denote that F is a set-valued objective function whose function
values are sets in Y ), and X a subset of X. As usual, we denote the graph of the set-valued
map F by graphF := {(x, y) ∈ X ×Y | y ∈ F(x)}. Furthermore, we define F(X ) :=

⋃
x∈X F(x).

In set optimization, the following set relations play an important role; see Young [],
Nishnianidze [], Kuroiwa [, , ], Jahn and Ha [] and Eichfelder and Jahn [].
We will use these set relations to introduce several concepts of robustness.

Definition  (Set less order relation [, , ]) Let C ⊂ Y be a proper closed convex
and pointed cone. Furthermore, let A,B ⊂ Y be arbitrarily chosen sets. Then the set less
order relation is defined by

A	s
C B :⇐⇒ A⊆ B –C and A +C ⊇ B.

Remark  Of course, we have

A⊆ B –C ⇐⇒ ∀a ∈ A ∃b ∈ B : a≤C b

and

A +C ⊇ B⇐⇒ ∀b ∈ B ∃a ∈ A : a≤C b.

Definition  (Upper-type set relation [, ]) Let A,B ⊂ Y be arbitrarily chosen sets and
C ⊂ Y a proper closed convex and pointed cone. Then the u-type set relation	u

C is defined
by

A	u
C B :⇐⇒ A⊆ B –C ⇐⇒ ∀a ∈ A ∃b ∈ B : a≤C b.

Another important set order relation is the lower-type set relation:

Definition  (Lower-type set relation [, ]) Let A,B ⊂ Y be arbitrarily chosen sets and
C ⊂ Y a proper closed convex and pointed cone. Then the l-type set relation	l

C is defined
by

A	l
C B :⇐⇒ A +C ⊇ B ⇐⇒ ∀b ∈ B ∃a ∈ A : a ≤C b.

Remark  Note that the conditions
(i) A⊂ B – intC,
(ii) A +N ⊂ B –C for some neighborhood N of the zero vector Y in Y

are not equivalent when A is not compact. Clearly (ii) implies (i) if intC �= ∅. From a theo-
retical viewpoint, (ii) may, in some cases, be more appropriate for describing solutions.
Taking into account this property we suppose in Section  that the set-valued map fU in

the formulation of the concepts of robustness for multi-objective optimization problems
is compact-valued. This is important in the case where we are dealing with intC in the
definition of robustness.
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Remark  There is the following relationship between the l-type set relation 	l
C and the

u-type set relation 	u
–C :

A	l
C B :⇐⇒ A +C ⊇ B ⇐⇒ B ⊆ A – (–C) ⇐⇒: B	u

–C A.

To conclude the notation, we introduce a set-valued optimization problem: Consider
F : X ⇒ Y , and X a subset of X. Furthermore, let 	 be a preorder on the power set of Y
given by Definition , , , respectively. Then a set-valued optimization problem (SP –	)
is given by

(SP –	) 	-minimize F(x), subject to x ∈X ,

where minimal solutions of (SP –	) are defined in the following way:

Definition  (Minimal solutions of (SP – 	) w.r.t. the preorder 	) Given a set-valued
optimization problem (SP –	), an element x ∈X is called aminimal solution to (SP –	)
if

(
F(x)	 F(x) for some x ∈X

) �⇒ F(x) 	 F(x).

Remark  If we use the set relation 	l
C introduced in Definition  in the formulation of

the solution concept, i.e., we study the set-valued optimization problem of (SP – 	l
C),

we observe that this solution concept is based on comparisons among sets of minimal
points of values of F . Furthermore, considering the u-type set relation 	u

C (Definition ),
i.e., considering the problem (SP –	u

C) we recognize that this solution concept is based
on comparisons among sets of maximal points of values of F . When x ∈ X is a minimal
solution of problem (SP –	l

C) there does not exist x ∈X such that F(x) is strictly smaller
than F(x) with respect to the set order 	l

C .

Furthermore, the following definition of a minimizer of a set-valued optimization prob-
lem is very often used in the theory of set optimization and given below. However, the
solution concept introduced in Definition  is more natural and useful as we can see in
Example .
In the next definition we use the set of minimal elements of a nonempty subset A of Y

with respect to C:

Min(A,C) :=
{
y ∈ A | A∩ (y –

(
C \ {}) = ∅}

.

Definition  (Minimizer of a set-valued optimization problem) Let x ∈ X and (x, y) ∈
graphF . The pair (x, y) ∈ graphF is called a minimizer of F : X ⇒ Y over X with respect to
C if y ∈Min(F(X ),C).

For our approach to robustness of uncertain multi-objective optimization problems,
minimal solutions in the sense of Definition  are useful and therefore, when consider-
ing robustness concepts, we will deal with this solution concept in the following.
In order to get an insight to the issue of set-valued optimization problems, we give two

examples (see Kuroiwa []) of set-valued optimization problems.
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Figure 1 Feasible solution sets of F1, F2, described in Examples 1 and 2.

Example  Consider the set-valued optimization problem

(SP –	l
C) 	l

C-minimize F(x), subject to x ∈X ,

with X =R, Y =R, C =R
+, X = [, ] and F :X ⇒ Y is given by

F(x) :=

{
[(, ), (, )] if x = ,
[( – x,x), (, )] if x ∈ (, ],

where [(a,b), (c,d)] is the line segment between (a,b) and (c,d). Only the element x =  is
a minimal solution of (SP –	l

C). However, all elements (x, y) ∈ graphF with x ∈ [, ], y =
( – x,x) for x ∈ (, ] and y = (, ) for x =  are minimizers of the set-valued optimization
problem in the sense of Definition . This example shows that the solution concept with
respect to the set relation 	l

C (see Definitions  and ) is more natural and useful than the
concept of minimizers introduced in Definition .

Example  In this example we are looking forminimal solutions of a set-valued optimiza-
tion problem with respect to the set relation 	u

C introduced in Definition .

(SP –	u
C) 	u

C-minimize F(x), subject to x ∈X ,

with X =R, Y =R, C =R
+, X = [, ] and F :X ⇒ Y is given by

F(x) :=

{
[[(, ), (, )]] if x = ,
[[(, ), (, )]] if x ∈ (, ],

where [[(a,b), (c,d)]] := {(y, y) | a ≤ y ≤ c,b ≤ y ≤ d}. Then the only minimal solution
of (SP –	u

C) in the sense of Definition  is x = .

A visualization of both above discussed examples is given in Figure .
In Section , we will apply the preorders introduced in Definitions , ,  in order to de-

fine several concepts of robustness for uncertain multi-objective optimization problems.

3 Concepts of robustness for multi-objective optimization problems based on
set relations and corresponding algorithms

Talking about an uncertain optimization problem, we consider the uncertain data to be
given as a parameter (also called scenario) ξ ∈ U whereU ⊆Rm is the so-calleduncertainty
set. For each realization of this parameter ξ ∈ U we obtain a single optimization problem

http://www.fixedpointtheoryandapplications.com/content/2014/1/83
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(P(ξ ))
f (x, ξ )→min

s.t. x ∈X ,

where f : X × U �→ Y is the objective function and X ⊆ X is the set of feasible solutions
(note that we assume the feasible set to be unchanged for every realization of the uncertain
parameter). We use the notation

fU (x) :=
{
f (x, ξ ) | ξ ∈ U

}
()

for the image of the uncertainty set U and x under f (note that fU (x) in general is a set and
not a singleton).
Taking into account the discussion in Remark  we assume that the set-valued map fU

is compact-valued.
Now, when searching for an optimal solution, one has to overcome the problem that we

do not know anything about the different scenarios, e.g., which one is most likely to occur,
any kind of probability distribution and so on. Therefore, an uncertain (multi-objective)
optimization problem is defined as the family of optimization problems

(P(U ))
(
P(ξ ), ξ ∈ U

)
.

Now it is not clear what solution to this problem (P(U )) would be seen as desirable.
Throughout the paper we discuss several concepts of robustness and derive new ap-
proaches to robustness for multi-objective optimization problems.
In this section we extend the robustness concepts presented in [] to general spaces

using the preorders introduced in Definitions , , . In particular, we are interested in
extending the theorems which provide the foundation for the algorithms for calculating
the respective robust solutions. We shortly repeat the various concepts which relate to
different set orderings, extend the theorems and then formulate the algorithms.With this,
we present some ideas for solving special set-valued optimization problems in our paper
(see Section ).

3.1 �u
C-Robustness

Weextend the definitions and results presented by Ehrgott et al. [] aboutminmax-robust
efficiency.
Here, a feasible solution x ∈X to (P(U )) is calledminmax-robust efficient if there is no

other feasible solution x ∈X \ {x}, such that

fU (x)⊆ fU (x) –Rk
�

where Rk
� := {λ ∈Rk : λi ≥  ∀i = , . . . ,k}.

With the definitions of upper-type set relation, see Definition , and minmax-robust
efficiency inmind we can see the close connection betweenminmax-robust efficiency and
the upper-type set relation, since a solution x ∈X to (P(U )) is minmax-robust efficient if
there is no other feasible solution x ∈X \ {x}, such that

fU (x)	u
C fU (x),

where Y =Rk and C =Rk
�.

http://www.fixedpointtheoryandapplications.com/content/2014/1/83
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Since all the concepts considered in this paper are closely related to a set order relation	,
in order to keep the names of the concepts readable we call the respective solution 	-
robust.
In the following definition we use a preorder 	u

Q like in Definition  with Q = C, Q =
C \ {} and Q = intC, respectively, instead of 	u

C :

A	u
Q B :⇐⇒ A⊆ B –Q,

where A,B ⊂ Y are arbitrarily chosen sets. If we are dealing with Q = intC we suppose
intC �= ∅.
Using this notation, the concept of minmax-robust efficiency can be redefined as a con-

cept of robustness in the sense of set optimization in the following way.

Definition Given an uncertainmulti-objective optimization problem (P(U )), a solution
x ∈ X is called 	u

Q-robust for (P(U )) with Q = C, Q = C \ {} and Q = intC, respectively,
if there is no solution x ∈X \ {x} such that

fU (x)	u
Q fU

(
x

)
.

Note that the definition of	u
Q-robustness is valid for general spaces and general conesC,

while the definition of minmax-robust efficiency in [] is for Y =Rk and C =Rk
� only.

The motivation behind this concept is the following: When comparing sets with the
u-type set-relation, the upper bounds of these sets, i.e., the ‘worst cases’, are considered.
Minimizing these worst cases is closely connected to the concept of minmax-robust ef-
ficiency where one wants to minimize the objective function in the worst case. This risk
averse approach would reflect a decision-makers strategy to hedge against a worst case
and is rather pessimistic.

Remark  The first scenario-based concept to uncertain multi-objective optimization,
or minmax-robustness adapted to multi-objective optimization, has been introduced by
Kuroiwa and Lee [] and studied in []. In [, ] robust solutions ofmulti-objective op-
timization problems are introduced in the following way. The authors propose to consider
the robust counterpart to (P(U ))

Min
(
f URC(X ),Rk

≥
)
, ()

where the objective vector for x ∈X is given by

f URC(x) :=

⎛
⎜⎝
maxξ∈U f(x, ξ)

· · ·
maxξk∈Uk fk(x, ξk)

⎞
⎟⎠ , ()

with functionals fi : Rn × Ui → R for i = , . . . ,k and the convex and compact uncertainty
sets U := (U, . . . ,Uk) (Ui ⊆Rm, i = , . . . ,k). In [], solutions to () are called robust.

http://www.fixedpointtheoryandapplications.com/content/2014/1/83
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Note that in [] the authors pointed out that this concept differs from the concept of
minmax-robust efficiency.

With the definition of 	u
C-robustness, we can generalize algorithms for computing

minmax-robust efficient solutions which is an extension of the well-known weighted sum
scalarization technique for calculating efficient solutions of multi-objective optimization
problems (compare e.g. Ehrgott []).
The general idea is to form a scalar optimization problem by multiplying each objective

function with a positive weight and summing up the weighted objectives. The resulting
(single-objective) problem in a more general setting is

(P(U )y∗ ) min
x∈X

sup
ξ∈U

y∗ ◦ f (x, ξ ),

where f : X × U → Y and y∗ ∈ C∗ \ {}, i.e., y∗ : Y →R.
Now, solving this problem one can obtain 	u

C-robust solutions as shown in Theorem
. in []. Before extending this theorem, we need a lemma which will help during the
proofs.

Lemma  Consider the uncertain multi-objective optimization problem (P(U )). Then we
have for all x′,x ∈X and for Q = intC (Q = C \ {}, Q = C, respectively),

fU
(
x′) ⊆ fU (x) –Q⇐⇒ ∀ξ ∈ U ∃η ∈ U : f

(
x′, ξ

) ∈ f (x,η) –Q. ()

Proof ‘�⇒’: Suppose the contrary. Then

∃ξ ∈ U ∀η ∈ U : f
(
x′, ξ

)
/∈ f (x,η) –Q �⇒ ∃ξ ∈ U : f

(
x′, ξ

)
/∈ fU (x) –Q

�⇒ fU
(
x′)� fU (x) –Q.

‘⇐�’: Suppose the contrary. Then

∃ξ ∈ U : f
(
x′, ξ

)
/∈ fU (x) –Q �⇒ ∃ξ ∈ U ∀η ∈ U : f

(
x′, ξ

)
/∈ f (x,η) –Q. �

With this, we can extend Theorem . from [] in the following way.

Theorem  Consider an uncertain multi-objective optimization problem (P(U )). The fol-
lowing statements hold:
(a) If x ∈X is a unique optimal solution of (P(U )y∗ ) for some y∗ ∈ C∗ \ {}, then x is a

	u
C-robust solution for (P(U )).

(b) If x ∈X is an optimal solution of (P(U )y∗ ) for some y∗ ∈ C# and maxξ∈U y∗ ◦ f (x, ξ )
exists for all x ∈X , then x is a 	u

C\{}-robust solution for (P(U )).
(c) If x ∈X is an optimal solution of (P(U )y∗ ) for some y∗ ∈ C∗ \ {} and

maxξ∈U y∗ ◦ f (x, ξ ) exists for all x ∈X , then x is a 	u
intC-robust solution for (P(U )).

Proof Suppose that x is not 	u
Q-robust for Q = C, Q = (C \ {}), Q = intC, respectively.

Then there exists an element x ∈X \ {x} such that

fU (x)⊆ fU
(
x

)
–Q, ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/83
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for Q = C (Q = (C \ {}), Q = intC, respectively).
This implies

∀ξ ∈ U ∃η ∈ U : f (x, ξ ) ∈ f
(
x,η

)
–Q,

taking into account Lemma .
Choose now y∗ ∈ C∗ \ {} for Q = C (y∗ ∈ C# for Q = C \ {}, y∗ ∈ C∗ \ {} for Q = intC,

respectively) arbitrary but fixed.

�⇒ ∀ξ ∈ U ∃η ∈ U : y∗ ◦ f (x, ξ )≤ (<, <, respectively) y∗ ◦ f (x,η)
�⇒ ∀ξ ∈ U : y∗ ◦ f (x, ξ ) ≤ (<, <, respectively) sup

η′∈U
y∗ ◦ f (x,η′)

�⇒ sup
ξ ′∈U

y∗ ◦ f (x, ξ ′) ≤ (<, <, respectively) sup
η′∈U

y∗ ◦ f (x,η′).
The last inequalities hold because for (b) and (c) maxξ ′∈U y∗ ◦ f (x, ξ ′) exists. But this

means that x is not the unique optimal (an optimal, an optimal, respectively) solution of
(P(U )y∗ ) for y∗ ∈ C∗ \ {} (y∗ ∈ C#, y∗ ∈ C∗ \ {}, respectively). �

Remark  In Theorem (b) we consider y∗ ∈ C#. Under our assumptions concerning
the cone C and if we assume additionally Y = Rq we have C# �= ∅ (compare [, The-
orem ..], [, Example ..]). Moreover, if Y is a Hausdorff locally convex space,
C ⊂ Y is a proper convex cone and C has a base Bwith  /∈ clB, then C# �= ∅ (compare [,
Theorem ..]).

With this theorem we can now formulate a first algorithm for finding 	u
Q-robust solu-

tions for Q = C, Q = C \ {}, Q = intC, respectively.

Algorithm  Deriving (	u
C ,	u

C\{},	u
intC)-robust solutions to (P(U )) based on

weighted sum scalarization:

Input: Uncertain multi-objective problem P(U ), solution sets OptC =OptC\{} =OptintC =
∅.

Step : Choose a set C ⊂ C∗ \ {}.
Step : If C = ∅: STOP. Output: Set of 	u

C-robust solutions OptC , set of 	u
C\{}-robust

solutions OptC\{}, set of 	u
intC-robust solutions OptintC .

Step : Choose y∗ ∈ C. Set C := C \ {y∗}.
Step : Find an optimal solution x of (P(U )y∗ ).

(a) If x is a unique optimal solution of (P(U )y∗ ), then x is 	u
C-robust for

(P(U )), thus

OptC :=OptC ∪{
x

}
.

(b) If maxξ∈U y∗ ◦ f (x, ξ ) exists for all x ∈X and y∗ ∈ C#, then x is
	u

C\{}-robust for (P(U )), thus

OptC\{} :=OptC\{} ∪{
x

}
.
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(c) If maxξ∈U y∗ ◦ f (x, ξ ) exists for all x ∈X , then x is 	u
intC-robust for (P(U )),

thus

OptintC :=OptintC ∪{
x

}
.

Step : Go to Step .

Remark  In Step  of Algorithm  the scalar optimization problem (P(U )y∗ ) is to be
solved such that the effectiveness of Algorithm  depends from the properties of the algo-
rithm for solving (P(U )y∗ ). An interesting question is how to choose the set C in Step  of
the algorithm. The decision maker could be involved to choose a finite set C in Step . If
this set C is finite the algorithm stops after finitely many steps.

Furthermore, we present an interactive algorithm for finding (	u
C ,	u

C\{},	u
intC)-robust

solutions to the uncertain multi-objective optimization problem (P(U )). This algorithm
uses the input of the decision maker who either accepts the calculated solution or not.

Algorithm  Deriving a single accepted (	u
C ,	u

C\{},	u
intC)-robust solution to (P(U ))

based on weighted sum scalarization:

Input: Uncertain vector-valued problem (P(U )).
Step : Choose a nonempty set C ⊂ C∗ \ {}.
Step : Choose ȳ∗ ∈ C.
Step : Find an optimal solution x of (P(U )ȳ∗ ).

(a) If x is a unique optimal solution of (P(U )ȳ∗ ), then x is 	u
C-robust for (P(U )).

(b) If maxξ∈U ȳ∗ ◦ f (x, ξ ) exists for all x ∈ S and ȳ∗ ∈ C#, then x is 	u
C\{}-robust

for (P(U )).
(c) If maxξ∈U ȳ∗ ◦ f (x, ξ ) exists for all x ∈ S, then x is 	u

intC-robust for (P(U )).
If x is accepted by the decision-maker, then Stop. Output: x. Otherwise, go to
Step .

Step : Put k = , t = . Choose ŷ∗ ∈ C, ŷ∗ �= ȳ∗. Go to Step .
Step : Choose tk+ with tk < tk+ ≤  and compute an optimal solution xk+ of

(P(U )ȳ∗+tk+(ŷ∗–ȳ∗)) min
x∈S sup

ξ∈U

(
ȳ∗ + tk+

(
ŷ∗ – ȳ∗)) ◦ f (x, ξ )

and use xk as starting point. If an optimal solution of (P(U )ȳ∗+tk+(ŷ∗–ȳ∗)) cannot be
found for t > tk , then go to Step . Otherwise, go to Step .

Step : The point xk+ is to be evaluated by the decision-maker. If it is accepted by the
decision-maker, then Stop.Output: xk+. Otherwise, go to Step .

Step : If tk+ = , then go to Step . Otherwise, set k = k +  and go to Step .

Remark  In the interactive procedure in Algorithm we use a surrogate one-parametric
optimization problem. So a systematic generation of solutions is possible.

3.2 �l
C-Robustness

In this section we use the l-type set-relation	l
Q like in Definition  withQ = C,Q = C \{}

and Q = intC, respectively, instead of 	l
C :

A	l
Q B :⇐⇒ A +Q ⊇ B,

http://www.fixedpointtheoryandapplications.com/content/2014/1/83
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Figure 2 x is �l
C -robust.

where A,B ⊂ Y are arbitrarily chosen sets. If we are dealing with Q = intC we suppose
intC �= ∅. Using this notation we derive the new concept of 	l

Q-robustness, defined anal-
ogously to 	u

Q-robustness (Definition ).

Definition  Given an uncertainmulti-objective optimization problem (P(U )), a solution
x ∈X is called 	l

Q-robust if there is no x ∈X \ {x} such that

fU (x)	l
Q fU

(
x

)
.

The 	l
Q-robustness (with Q = C, Q = C \ {} and Q = intC, respectively) can be inter-

preted as an optimistic approach. The following example illustrates this concept for the
case Q = C.

Remark  In Figure , x is 	l
C-robust, while it is not 	u

C-robust.

The 	l
Q-robustness is an alternative tool for the decision maker for obtaining solutions

of another type to an uncertain multi-objective optimization problem. This rather opti-
mistic approach focuses on the lower bound of a set fU (x̄) for the comparison with an-
other set fU (x). In particular, in the case Q = C, a point x ∈ X is called a 	l

C-solution
if there is no other point x̄ ∈ X such that fU (x) is a subset of fU (x̄) + C. Contrary to the
	u

Q-robustness approach, the 	l
Q-robustness (with Q = C, Q = C \ {} and Q = intC, re-

spectively) is hence not a worst-case concept, thus the decision maker is not considered
to be risk averse but risk affine. This optimistic concept thus hedges against perturbations
in the best-case scenarios.
For calculating 	l

Q-robust solutions again the weighted sum scalarization is helpful, but
in order to later on compute 	l

Q-robust solutions to (P(U )), we define a new weighted
sum problem in a general setting:
Let y∗ ∈ C∗ \ {} (y∗ ∈ C#, respectively). Consider the weighted sum scalarization prob-

lem

(P(U )opty∗ ) min
x∈X

inf
ξ∈U

y∗ ◦ f (x, ξ ).

Theorem  Consider an uncertain multi-objective optimization problem (P(U )). The fol-
lowing statements hold.
(a) If x is a unique optimal solution of (P(U )opty∗ ) for some y∗ ∈ C∗ \ {}, then x is a

	l
C-robust solution for (P(U )).

(b) If x is an optimal solution of (P(U )opty∗ ) for some y∗ ∈ C# and minξ∈U y∗ ◦ f (x, ξ )
exists for all x ∈X , then x is a 	l

C\{}-robust solution for (P(U )).

http://www.fixedpointtheoryandapplications.com/content/2014/1/83
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(c) If x is an optimal solution of (P(U )opty∗ ) for some y∗ ∈ C∗ \ {} and minξ∈U y∗ ◦ f (x, ξ )
exists for all x ∈X , then x is a 	l

intC-robust solution for (P(U )).

Proof Suppose x is not 	l
Q-robust for Q = C (Q = C \ {}, Q = intC, respectively). Con-

sequently, there exists an x̄ ∈X \ {x} such that fU (x̄) +Q ⊇ fU (x) for Q = C (Q = C \ {},
Q = intC, respectively). That is equivalent to

∀ξ ∈ U ∃η ∈ U : f (x̄,η) +Q � f
(
x, ξ

)
⇐⇒ ∀ξ ∈ U ∃η ∈ U : f (x̄,η) ∈ f

(
x, ξ

)
–Q. ()

Now choose y∗ ∈ C∗ \ {} for Q = C (y∗ ∈ C# for Q = C \ {}, y∗ ∈ C∗ \ {} for Q = intC,
respectively) arbitrary, but fixed. Hence, we obtain from ()

�⇒ ∀ξ ∈ U ∃η ∈ U : y∗ ◦ f (x,η) ≤ (<, <, respectively) y∗ ◦ f (x, ξ)
�⇒ ∀ξ ∈ U : inf

η∈U
y∗ ◦ f (x,η) ≤ (<, <, respectively) y∗ ◦ f (x, ξ)

�⇒ inf
η∈U

y∗ ◦ f (x,η) ≤ (<, <, respectively) inf
ξ∈U

y∗ ◦ f (x, ξ)
,

in contradiction to the assumptions. �

Based on these results, we are able to present the following algorithm that computes
(	l

C /	l
C\{} /	l

intC)-robust solutions to P(U ).

Algorithm  Deriving (	l
C / 	l

C\{} / 	l
intC)-robust solutions for (P(U )) based on

weighted sum scalarization:

Input & Step -: Analogous to Algorithm , only replacing (P(U )y∗ ) by (P(U )opty∗ ) and
replacing maxξ∈U y∗ ◦ f (x, ξ ) by minξ∈U y∗ ◦ f (x, ξ ).

The next algorithm computes (	l
C / 	l

C\{} / 	l
intC)-robust solutions via weighted sum

scalarization by altering the weights:

Algorithm  Calculating a single desired (	l
C /	l

C\{} /	l
intC)-robust solution for (P(U ))

based on weighted sum scalarization:

Input & Step -: Analogous to Algorithm , only replacing (P(U )ȳ∗ ) by (P(U )optȳ∗ ),
maxξ∈U y∗ ◦ f (x, ξ ) by minξ∈U y∗ ◦ f (x, ξ ) and (P(U )ȳ∗+tk+(ŷ∗–ȳ∗)) by
(P(U )optȳ∗+tk+(ŷ∗–ȳ∗)).

3.3 �s
C-Robustness

Now, we use the set less order relation 	s
Q with Q = C, Q = C \ {} and Q = intC, respec-

tively (compare Definition ) for A,B ⊂ Y arbitrarily chosen sets:

A	s
Q B :⇐⇒ A⊆ B –Q and A +Q ⊇ B.

If we are dealing with Q = intC we suppose intC �= ∅. We can now introduce the concept
of 	s

Q-robustness (with Q = C, Q = C \ {} and Q = intC, respectively):

http://www.fixedpointtheoryandapplications.com/content/2014/1/83
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Figure 3 x is �s
C -robust.

Definition  A solution x of (P(U )) is called (	s
C / 	s

C\{} / 	s
intC)-robust if there is no

x̄ ∈X \ {x} such that

fU (x̄)	s
Q fU

(
x

)
for Q = C (Q = C \ {}, Q = intC, respectively).

Remark  Figure  shows an element x ∈ X that is 	s
C-robust, while it is not 	u

intC-
robust.

Remark  Note that a 	l
C-robust solution is as well 	s

C-robust by definition. The same
assertion holds for a 	u

C-robust solution.

The concept of 	s
C-robustness can be interpreted in the following way: In a situation

where it is not clear if one should follow a risk affine or risk averse strategy (e.g., the de-
cision maker is not at hand or wants to get a feeling for the variety of the solutions) this
concept might be helpful as it calculates solutions which reflect these different strategies.
Therefore, this concept can serve as a pre-selection before deciding a definite strategy.
Computing 	s

C-robust solutions is possible with the help of the following optimization
problem:

(P(U )biobjy∗ ) h(x) :=

(
infξ∈U y∗ ◦ f (x, ξ )
supξ∈U y∗ ◦ f (x, ξ )

)
→ v –min

x∈X

with y∗ ∈ C∗ \ {} (y∗ ∈ C#, respectively). For (P(U )biobjy∗ ), we use the solution concept of
weak Pareto efficiency: An element x ∈X is called weakly Pareto efficient for (P(U )biobjy∗ ),
if

h(X )∩ (
h
(
x

)
– intR

�
)
= ∅.

Furthermore, a point x ∈X is called strictly Pareto efficient for (P(U )biobjy∗ ), if

h
(
X \ {

x
}) ∩ (

h
(
x

)
–R

�
)
= ∅.

We prove the following theorem.

Theorem  Consider an uncertain multi-objective optimization problem (P(U )). The fol-
lowing statements hold.
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(a) If x is strictly Pareto efficient for problem (P(U )biobjy∗ ) for some y∗ ∈ C∗ \ {}, then x

is 	s
C-robust.

(b) If x is weakly Pareto efficient for problem (P(U )biobjy∗ ) for some y∗ ∈ C∗ \ {} and
minξ∈U y∗ ◦ f (x, ξ ) and maxξ∈U y∗ ◦ f (x, ξ ) exist for all x ∈X and the chosen weight
y∗ ∈ C∗ \ {}, then x is 	s

intC-robust.
(c) If x is weakly Pareto efficient for problem (P(U )biobjy∗ ) for some y∗ ∈ C# and

minξ∈U y∗ ◦ f (x, ξ ) and maxξ∈U y∗ ◦ f (x, ξ ) exist for all x ∈X and the chosen weight
y∗ ∈ C#, then x is 	s

C\{}-robust.

Proof Let x be strictly Pareto efficient (weakly Pareto efficient, weakly Pareto efficient)
for problem (P(U )biobjy∗ ) with some y∗ ∈ C∗ \ {} (y∗ ∈ C∗ \ {}, y∗ ∈ C#, respectively), i.e.,
there is no x̄ ∈X \ {x} such that

inf
ξ∈U

y∗ ◦ f (x, ξ ) ≤ (<, <, respectively) inf
ξ∈U

y∗ ◦ f (x, ξ)
and

sup
ξ∈U

y∗ ◦ f (x, ξ ) ≤ (<, <, respectively) sup
ξ∈U

y∗ ◦ f (x, ξ)
.

Now suppose x is not (	s
C /	s

intC /	s
C\{})-robust. Then there exists an x̄ ∈X \ {x} such

that

fU (x̄) +Q⊇ fU
(
x

)
and fU (x̄) ⊆ fU

(
x

)
–Q

for Q = C (Q = intC, Q = C \ {}). That implies

∃x̄ ∈X \ {
x

}
: ∀ξ, ξ ∈ U ∃η,η ∈ U : f (x̄,η) +Q � f

(
x, ξ

)
and

f (x̄, ξ) ∈ f
(
x,η

)
–Q ()

for Q = C (Q = intC, Q = C \ {}). Choose now y∗ ∈ C∗ \ {} (y∗ ∈ C∗ \ {}, y∗ ∈ C#) as in
problem (P(U )biobjy∗ ). We obtain from ()

∃x̄ ∈X \ {
x

}
: ∀ξ, ξ ∈ U ∃η,η ∈ U : y∗ ◦ f (x,η) ≤ (<, <, respectively) y∗ ◦ f (x, ξ)

and y∗ ◦ f (x, ξ) ≤ (<, <, respectively) y∗ ◦ f (x,η)
⇒ inf

ξ∈U
y∗ ◦ f (x, ξ ) ≤ (<, <, respectively) inf

ξ∈U
y∗ ◦ f (x, ξ)

and sup
ξ∈U

y∗ ◦ f (x, ξ )≤ (<, <, respectively) sup
ξ∈U

y∗ ◦ f (x, ξ)
.

The last two strict inequalities hold because the minimum and maximum exist. But this
is a contradiction to the assumption. �

Based on these observations, we can formulate the following algorithm for computing
	s

C-robust solutions to P(U ).

Algorithm Computing (	s
C /	s

C\{} /	s
intC)-robust solutions using a family of problems

(P(U )biobjy∗ ):

Input & Step -: Analogous to Algorithm .
Step : Find a set of weakly Pareto efficient solutions SOLwe(y∗) of (P(U )biobjy∗ ).
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Step : If SOLwe(y∗) = ∅, then go to Step .
Step : Choose x̄ ∈ SOLwe(y∗). Set SOLwe(y∗) := SOLwe(y∗) \ {x̄}.

(a) If x is a strictly Pareto efficient solution of (P(U )biobjy∗ ), then x is 	s
C-robust for

(P(U )), thus

OptC :=OptC ∪{x}.

(b) If x is weakly Pareto efficient for problem (P(U )biobjy∗ ) and y∗ ∈ C# and
minξ∈U y∗ ◦ f (x, ξ ) and maxξ∈U y∗ ◦ f (x, ξ ) exist for all x ∈X and the chosen weight
y∗ ∈ C#, then x is 	s

C\{}-robust for (P(U )), thus

OptC\{} :=OptC\{} ∪ {x}.

(c) If x is a weakly Pareto efficient solution of (P(U )biobjy∗ ) and maxξ∈U y∗ ◦ f (x, ξ ) and
minξ∈U y∗ ◦ f (x, ξ ) exist for all x ∈X , then x is 	s

intC-robust for (P(U )), thus

OptintC :=OptintC ∪{x}.

Step : Go to Step .

In the following we present an algorithm that computes	s
C-robust solutions while vary-

ing the weights in the vector of objectives of problem (P(U )biobjy∗ ).

Algorithm  Computing (	s
C / 	s

C\{} / 	s
intC)-robust solutions using a family of prob-

lems (P(U )biobjy∗ ):

Input & Step - & Step -: Analogous to Algorithm , only replacing (P(U )ȳ∗ ) by
(P(U )biobjȳ∗ ) and (P(U )ȳ∗+tk+(ŷ∗–ȳ∗)) by (P(U )biobjȳ∗+tk+(ŷ∗–ȳ∗)).

Step : Analogous to Step  of Algorithm .

3.4 Alternative set less ordered robustness
Another way of combining the u- and l-type set-relations is the alternative set less order
relation:

Definition  (Alternative set less order relation (compare Ide and Köbis [])) Let C ⊂
Y be a proper closed convex and pointed cone. Furthermore, let A,B ⊂ Y be arbitrarily
chosen sets. Then the alternative set less order relation is defined by

A	a
C B :⇐⇒ A	u

C B or A	l
C B.

Based on this definition we can now define the concept of 	a
C-robustness for general

cones:

Definition  A solution x of (P(U )) is called (	a
C / 	a

C\{} / 	a
intC)-robust if there is no

x̄ ∈X \ {x} such that

fU (x̄)	a
Q fU

(
x

)
for Q = C (Q = C \ {}, Q = intC, respectively).
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Figure 4 Both x and x are �a
C -robust.

The following example illustrates 	a
C-robust solutions.

Remark  In Figure , both x and x are 	a
C-robust.

The next lemma follows directly from the definitions.

Lemma  Note that a solution of (P(U )) is 	a
C-robust if and only if it is 	l

C-robust and
	u

C-robust.

As this lemma shows, the concept of 	a
C-robustness is rather restrictive as only solu-

tions which are 	u
C-robust and 	l

C-robust, thus reflect both a risk averse and a risk affine
strategy, are also 	a

C-robust. Therefore, this concept is fit for a decision maker who does
not want to make any mistake in terms of the best or worst cases. We can see easily that
such an approach would be very restrictive against the solutions and that only very few
solutions should fulfill these conditions.
Due to this Lemma , from Algorithms  and , we can deduce the following algorithm

for calculating 	a
C-robust solutions to (P(U )).

Algorithm  Deriving (	a
C /	a

C\{} /	a
intC)-robust solutions to (P(U )):

Input: Uncertain multi-objective problem (P(U )), solution sets OptaC = OptaC\{} =
OptaintC = ∅.

Step : Compute a set of (	l
C /	l

intC /	l
C\{})-robust solutions (Opt

l
C ,Opt

l
intC ,Opt

l
C\{}) us-

ing Algorithm  or .
Step : Compute a set of (	u

C /	u
intC /	u

C\{})-robust solutions (Opt
u
C ,Opt

u
intC ,Opt

u
C\{}) us-

ing Algorithm  or .
Output: Set of (	a

C /	a
intC /	a

C\{})-robust solutions

OptaC =OptuC ∩OptlC ,

OptaintC =OptuintC ∩OptlintC ,

OptaC\{} =OptuC\{} ∩OptlC\{} .

3.5 Further relationships between the concepts
From Remark  we can see that every 	u

C-robust solution and every 	l
C-robust solution

is also a 	s
C-robust solution. The inverse direction does not hold. The following example

in Figure  shows that a solution can be 	s
C-robust but neither 	u

C-robust nor 	l
C-robust.
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Figure 5 x is �s
C -robust, but neither �u

C -robust nor
�l

C -robust.

Figure 6 Scheme of solutions to an uncertain multi-objective optimization problem.

We summarize the relationship between the various robustness concepts in Figure .

4 Conclusions
In the following we will explain that our algorithms presented in Section  can be used for
solving special classes of set-valued optimization problems.
Having a close look at all the concepts of robustness from Section , we can see that in

fact all of these are set-valued optimization problems.
Consider a set-valued optimization problem of the form

(SP –	) 	-minimize F(x), subject to x ∈X ,

with some given preorder 	 and a set-valued objective map F : X ⇒ Y , we can see the
following.
If the preorder 	 is given by 	l

C , 	u
C , or 	s

C with some proper closed convex pointed
cone C ⊂ Y and F(x) can be parametrized by parameters ξ ∈ U with some set U in the
way that

F(x) := fU (x) for all x ∈X ,

where fU (x) = {f (x, ξ ) | ξ ∈ U} and f : X × U �→ Y , then the set-valued optimization prob-
lem (SP –	) is equivalent to finding 	-robust solutions to the uncertain multi-objective
problem (P(U )) and can therefore be solved by using one of the respective algorithms
presented in Section .
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We revealed strong connections between set-valued optimization and uncertain multi-
objective optimization. Furthermore, we derived our results in amore general setting than
in [] and []. In particular, we provided solution algorithms for a certain class of set-
valued optimization problems. It seems possible to extend this class of problems to amore
general one, but this is futurework and of interest for the next steps in this area of research.
Moreover, this paper makes very clear that finding robust solutions to uncertain multi-

objective optimization problems can be interpreted as an application of set-valued opti-
mization. Thus, robust solutions to uncertain multi-objective optimization problems can
be obtained by using the solution techniques from set-valued optimization. Formulating
concrete algorithms of this kind is another topic for future research.
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