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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H. Let A: C — H be
a single-valued nonlinear mapping and B : H — 2’ be a multi-valued mapping. The ‘so

called’ quasi-variational inclusion problem is to find an « € 2/ such that
0 € Au + Bu. (1.1)

The set of solutions of (1.1) is denoted by (4 + B)™1(0). A number of problems arising in
structural analysis, mechanics, and economics can be studied in the framework of this
kind of variational inclusions; see for instance [1-4]. For related work, see [5-10]. The
problem (1.1) includes many problems as special cases.

(1)IfB=0¢ : H — 2, where ¢ : H — RU+00 is a proper convex lower semi-continuous
function and 9¢ is the subdifferential of ¢, then the variational inclusion problem (1.1) is

equivalent to finding u € H such that
(Au,y—u) + ¢(y) —p(u) =0, VyeH,

which is called the mixed quasi-variational inequality (see [11]).
(2) If B = 38¢, where C is a nonempty closed convex subset of H and 8¢ : H — [0,00] is

the indicator function of C, i.e.,

0, xeC,
Sc=
+00, x¢C,
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then the variational inclusion problem (1.1) is equivalent to finding u € C such that
(Au,v—u)>0, VveC.

This problem is called the Hartman-Stampacchia variational inequality (see [12]).
Let T: C — C be a nonlinear mapping. The iterative scheme of Mann’s type for approx-
imating fixed points of T is the following: xy € C and

Xn+l = OpXy + (1 - an)Txm

for all n > 1, where {o,} is a sequence in [0,1]; see [13]. For two nonlinear mappings S
and T, Takahashi and Tamura [14] considered the following iteration procedure: xy € C
and

Xns1 = Xy + (1= an)S(ﬂnxn +(1- ﬁn)Txn)r

for all n > 1, where {«,} and {B,} are two sequences in [0,1]. Algorithms for finding the
fixed points of nonlinear mappings or for finding the zero points of maximal monotone
operators have been studied by many authors. The reader can refer to [15-19]. Especially,
Takahashi et al. [20] recently gave the following convergence result.

Theorem 1.1 Let C be a closed and convex subset of a real Hilbert space H. Let A be an «-
inverse strongly monotone mapping of C into H and let B be a maximal monotone operator
on H, such that the domain of B is included in C. Let J® = (I + AB)™* be the resolvent of B for
A >0 and let T be a nonexpansive mapping of C into itself, such that F(T) N (A + B)™10 #@.
Let x, =x € C and let {x,} C C be a sequence generated by

KXn+l = ;ann + (1 - ﬂn)T(anx + (1 - an)])lfn (xn - )"nAxn))y

forall n> 0, where {)\,} C (0,2), {a,,} C (0,1) and {B,} C (0,1) satisfy

O<a<i,<b<2a, O<c<B,<d<1l,
lim (A1 — An) =0, lim o, =0 and Zan = 00.
n— 00 n—00

n

Then {x,} converges strongly to a point of F(T) N (A + B)™10.

Recently, Zhang et al. [21] introduced a new iterative scheme for finding a common
element of the set of solutions to the inclusion problem and the set of fixed points of
nonexpansive mappings in Hilbert spaces. Peng et al. [22] introduced another iterative
scheme by the viscosity approximate method for finding a common element of the set
of solutions of a variational inclusion with set-valued maximal monotone mapping and
inverse strongly monotone mappings, the set of solutions of an equilibrium problem, and
the set of fixed points of a nonexpansive mapping.

Motivated and inspired by the works in this field, the purpose of this paper is to con-
sider the quasi-variational inclusions and fixed point problems of pseudocontractions. An
iterative algorithm is presented. A strong convergence theorem is demonstrated.
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2 Notations and lemmas
Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let C
be a nonempty closed convex subset of H. It is well known that in a real Hilbert space H,
the following equality holds:

e+ =)y = tlxl® + A = Olyl> = £ - ) — y])? 21)

forallx,y € H and ¢ € [0,1].
Recall that a mapping 7': C — C is called

(Dy) L-Lipschitzian = there exists L > 0 such that || Tx — Ty|| < L||x — y|| for all x,y € C; in
the case of L =1, T is said to be nonexpansive;

(Dy) Firmly nonexpansive = || Tx — Ty||> < |lx —y||> = |(I = T)x — (I = T)y||* <= || Tx —
T? < (Tx— Ty,x —y) forallx,y € C;

(D3) Pseudocontractive = (Tx — Ty,x —y) < |x —y||> = || Tx - Ty||> < lx = y|1® + | (I -
T)x—(I - T)y|? forall x,y € C;

(Dy) Strongly monotone —> there exists a positive constant y such that (Tx — Ty,x — y) >
ylx—y| forall x,y € C;

(Ds) Inverse strongly monotone => (Tx — Ty,x — y) > a|| Tx — Ty||* for some « > 0 and for
allx,y e C.

Let B be a mapping of H into 27, The effective domain of B is denoted by dom(B), that
is, dom(B) = {x € H : Bx # (}}. A multi-valued mapping B is said to be a monotone operator
on H iff

x-yu-v)>0

for all x,y € dom(B), u € Bx, and v € By. A monotone operator B on H is said to be maximal
iff its graph is not strictly contained in the graph of any other monotone operator on H.
Let B be a maximal monotone operator on H and let B0 = {x € H: 0 € Bx}.

For a maximal monotone operator B on H and X > 0, we may define a single-valued
operator ]f = ([ + AB)"!': H — dom(B), which is called the resolvent of B for X. It is known
that the resolvent /2 is firmly nonexpansive, i.e.,

VEx— T2y |* < (FBx ~ Ty x— )

forall x,y € C and B10 = Fix(]f) forall A > 0.

Usually, the convergence of fixed point algorithms requires some additional smoothness
properties of the mapping T such as demi-closedness.

Recall that a mapping T is said to be demiclosed if, for any sequence {x,} which weakly
converges to x, and if the sequence {7 (x,)} strongly converges to z, then T'(x) = z. For the
pseudocontractions, the following demiclosed principle is well known.

Lemma 2.1 ([23]) Let H be a real Hilbert space, C a closed convex subset of H. Let U :
C — C be a continuous pseudo-contractive mapping. Then

(i) Fix(U) is a closed convex subset of C,

(it) (I = U) is demiclosed at zero.
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Lemma 2.2 ([24]) Let {r,} be a sequence of real numbers. Assume {r,} does not decrease
at infinity, that is, there exists at least a subsequence {ry, } of {r,} such that r,, <r, .1 for
all k > 0. For every n > N, define an integer sequence {t(n)} as

t(n)=max{i <m:r, <ry.a}
Then t(n) — 0o as n — 00, and for alln > N
max{7c(u, 'n} < re(uy+l-
Lemma 2.3 ([25]) Assume {a,} is a sequence of nonnegative real numbers such that

ni1 < (L= Yu)ay + 8u¥ns

where {y,} is a sequence in (0,1) and {3,} is a sequence such that
(1) Z:o:l VYn = 005
(2) limsup,_, o, 8, <0 or Y o2 18,¥ul < 0.

Then lim,,_, o a, = 0.

In the sequel we shall use the following notations:

1. wy(u,)={x: Juy, —> x weakly} denote the weak w-limit set of {u,};
2. u, — x stands for the weak convergence of {u,} to x;

3. u, — x stands for the strong convergence of {u,} to x;

4. Fix(T) stands for the set of fixed points of T.

3 Main results
In this section, we consider a strong convergence theorem for quasi-variational inclusions
and fixed point problems of pseudocontractive mappings in a Hilbert space.

Algorithm 3.1 Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let A be an a-inverse strongly monotone mapping of C into H and let B be a maximal
monotone operator on H, such that the domain of B is included in C. Let J? = (I + AB)™!
be the resolvent of B for \. Let F : C — H be an Ly-Lipschitzian and ¢ strongly monotone
mapping and f : C — C be a p-contraction such that p <max{l,5/2}. Let T : C — C be an
Ly(>1)-Lipschitzian pseudocontraction. For xo € C, define a sequence {x,} as follows:

Zn =])]?(I - )“A)xm
Vn =2y + 1 =)T((1 = §)zn + § Tzy), (3.1)
K1 = iy + (1 - an)(ﬂnf(xn) +( - lgnF)yn)r

foralln € N, where A, v and ¢ are three constants, {«,} and {B,} are two sequences in [0,1].
Now, we demonstrate the convergence analysis of the algorithm (3.1).

Theorem 3.2 Suppose I := Fix(T) N (A + B)™1(0) # 0. Assume the following conditions are
satisfied:
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(C1) a, €[a,b] C(0,1);
(C2) limy—0 By =0and ), Bu = 00;
(C3) r€(0,20) and 0 <1—v <& < ———

1341

Then the sequence {x,} defined by (3.1) converges strongly to u = Pr(I — F + f)u.

Proof Let x* € Fix(T) N (A + B)™1(0). Then, we get x* = J3(I - 2A)x* = Tx*. From (3.1), we

have
|20 —&||” = T2 = 2A)x,, - BT - 2A)x* ||
< |lon = x* = A (Ax, — Ax*) ||2
= ”x,, —x* ”2 - 2A(Axn —Ax*,x, — x*) + A2 HAx,, - Ax* ||2
< ||xn —x* ||2 -2\ ||Ax,, — Ax* ||2 +22 ||Ax,, —Ax* ||2
= ”xn -x* ||2 - 2Q2a - 1) ”Ax,, - Ax* ”2
< [l - [ (3.2)
It follows that
l2n 2] < [l - 27 (3.3)

Since x* € Fix(T), we have from (D3) that
| T — | < o= 2| > + 1 T - %)%, (3.4)

forallx € C.
Thus,

||T((1—§)I+ {T)zy, —x*”2 < ||(1—§)(zy, —x*) + {(Tzn —x*) ||2

+ (A= + ¢ Tz = T(A- O+ £ Tz (3.5)
By (3.4), (3.5), and (2.1), we obtain

| T(1=-0)1+¢T)z, -2
< [a-)(e—x) + ¢ (Tzn =) |
+ (A= O1+¢T)z, - T(A- O+ 2Tz
= =)z = T(A= O +£T)z,) + £ (T2w = T(1- O + £ T)z,) ||
=) e =) + ¢ (Tan =) |
(=02 - T(A= O+ T)z|* + || T2 = T((1= ) + £ Tz ||
— e =Ollzy = Tanll® + 0= 0) |z = 2" |+ £ T2w = 6 [” - £ (1= Oz - Tz

= (1_§)||Zn -x" H2 + ;(”Zn -x" ”2 + |z - TZn”z)
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201 = Oz = Tzal® + A=) |24 = T(A= ) + £ T)z, |

+ || T2 - T(L= ) + £ T) .
Noting that T is L,-Lipschitzian and z, — (1 — ¢)I + ¢ T)z, = ¢ (2, — TZzy,), we have

| T(1=0)1+¢T)z, -2
<@1- {)”Zn —x* ”2 + C(”Zn —x* ”2 +lzn = Tzn”z)
—20(1= 2w = Tzal® + A=) |20 = T(A= O + £ Tz ||* + ¢3L2 )12 — T2

=z + A= 0)|zu - T(A= O + ¢ T)z”

—£(1-2¢ = ¢*L3) 2w — Tzl (3.6)
Since ¢ < \/11? - we have 1 -2¢ - ¢%L% > 0. From (3.6), we can deduce
+L5+

IT(@-2)+¢T)z —x* ||2 <||lzn - x* ||2 +(1=0)|zn - T(A =) +¢T)z, ||2 (3.7)
Hence,

Iy =2 |” = |[vzu + A= 0)T (A= O + ¢ T)z, - 5|
= V(2 —2") + A=) (T(A - O + L Tz — %) |
=]z =&+ A=) | T(A- )+ LTz —*|?
—v(A-V)| T(A =0 +¢T)z, - 24|
<)z =% > + A=) |20 =" + A=) |2 = (A=) + £ T)z,|*]
(A=) T(A =) +¢T)z, - 24|

=z + A= )A=¢ =) | T(A= O + ¢ T)zn -2 (3.8)
By (C3) and (3.8), we obtain
Iy =] < lew-°]. (9)
Let 4, = B,f (%) + (I = B,F)y, for all n > 0. Then, we have

ot = 2| = | Baf @) + (L = BuF)yu — 5"
< BullfGen) = Bx* || + | (I = BuE)yn — (I = BuF)x*
< Bullf Gen) = f () || + Bullf (") - Fx*|
+ | = BuF)yn — (I - BuE)x*||
< Buplu=s*] + Bulf ) - B |

+ || (I - ﬁnF)yn - (1 - ﬂnF)x* || (310)

Page 6 of 14
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Since F is L;-Lipschitzian and ¢ strongly monotone, we have

| = BuF)yn — I - puF)x*|*
= | (n = 2*) = Bu(Fyu - Ex*) |
= 9 =% = 2Bl By — By — ) + B2 Eyu — Ex* |
<y =2"" = 2805 [ - |+ B2L2 |3 - 57

= (1=2Bus + B2L2) |y — x| . (3.11)

Noting that L; > ¢ and lim,_. B, = 0, without loss of generality, we assume that g, <

ﬁ forall m > 0. Thus, 1 - 28,6 + 7L} < (1- B,5)*. So,
2

| = BuE)yu— I - BuB)"| < (1 _ ﬂ%) Iy — . (3.12)

We have from (3.9), (3.10), and (3.12)

o, =1 = Buplls =+ 8Ly () = B+ (1- 85 ) ]
_ [1 _ (g . p) ,sn] ot =7 + Bulf (%) - B (313)
From (3.1) and (3.13), we have

Jemer =" = fleva Gn = 27) + (1 = eva) (1 = 57) |

<a-a([1-(5-0)8n |l -+ b))

+a, Hx,, —x* ”

_ [1 - (% _ p) (1- an),B,,] ot =" + (L= @) B [F() - E . (314)
By the definition of x,,, we have

Xl = Xn = Xy + (1 - an)(ﬁr(f(xn) + (- ,BnF)yn) —Xn

=(1- an)[ﬂnf(xn) = BuEyn + Yn _xn]' (3.15)

Hence,

(xn+1 —XnyXn _x*> = <(1 - an)[ﬁnf(xn) - ﬂrszn +yr1 - xn]:xn - x*>
= (1= o) Bulf ), % — %) = (1 = @) Ba(FYns 0 — %)

+ (1= o) (¥ = Xs % — &), (3.16)
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Since 2 (X1 =% %y = &) = |1 = 2% = [l — 2% 1> = |61 — %4 1> and 2(y, — K, %, — %) =
1y — 1|12 = |2 — 2|2 = |ly, — %12, it follows from (3.16), (3.3), and (3.9) that
ot = * = o6m = | * = Women = 1>
= 2(1 = ) Bulf (), % — &%) = 2(1 = ) Bu{ Fys X — &)
+ =) gm =t |” = 20 = 2||* = 19— 211%]
< 2(1 = o) Bulf %)y 0 — &%) = 2(1 = ) B (Fys 0 — %7)

- —an)lly, —xu ”2 (3.17)
By (3.15), we obtain

%6241 _9‘:n”2 <(1- an)z [ﬂn Hf(xn) - Fyy ” + lyn _xn”]z
= (L= [B2f @) = Eyu|” + Ny —

+2B, Hf(xn) - Fy, H 1n — %4 ”] (3.18)
Combining (3.17) and (3.18) to deduce

e R T
< 21 = &) Bulf )y 0 — &%) = 2(1 = ) B (Fys 0 — %7)
— (L=t 9 = 2all? + (1= 00)2[ B2 () = Fya®
19 = 1> + 2Bl f o) = Fy | 170 = 1]
< 2(1 = ) Bulf (), 2 = &%) = 21 = ) B (s X = %) = (1 = @)ty [y — %l

+ (=) [ B @) = Eya|” + 2Bu[f @) = By llyn — 2.
Hence, we obtain

|1 = 2] = o0 — & |* + (1 = )ullyn — 2l
E 2(1 - an)ﬁn{f(xn):xn - x*> - 2(1 - an),Bn<Fynrxn - x*>

+(1- an)z [:3;42 “f(xn) - Fy, ”2 + 2By Hf(xn) - Fy, ” lyn _xn”]~
It follows that, hence, we obtain

(1 - ) llyn — %l
< [oen = | * = [Jer =2 + 201 = ) Bulf (), 20 — %)
- 2(1 - an)ﬂVI(Fymxn - x*)

+ (L= [B2f @) = Fyu|)* + 2B, [f @n) = Fy]| 17 — 2ll]. (3.19)

Next we divide our proof into two possible cases.
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Case 1. There exists an integer number m such that ||x,,; — x*|| < ||x, —«* for all n > m.
In this case, we have lim,,_, o, [|x, — x*|| exists. Since «,, € [a,b] C (0,1) and lim,,_,», B, = 0,
by (3.19), we derive
lim ||y, —x,| = 0. (3.20)
H—>0Q

This together with (3.18) implies that
lim ||x,41 =%, = 0. (3.21)
n—0oQ

Note that

ltn = yull = ”:Br(f(xn) +( - ,BnF)yn —Jn H
Sﬂn”f(xn)_Pyn”

So,
lim ||u, —y,|| =0. (3.22)
n— 00

By (3.20) and (3.22), we obtain
lim ||z, — %, = O. (3.23)
Hn—0Q

From (3.2) and (3.9), we have
=17 = = = o =[P - 222 - 2w, - A" .

Hence,

R ey e B

< 1t =yl (e =2 + 7 =27 )-
Therefore,
lim [|Ax, - Ax*| = 0. (3.24)
Since J? is firmly nonexpansive and A is monotone, we have

Jan = = 120 - 240, - 120 - 240"

< <(1 — M), — (I = A"z, — x*)

<zn — x5, %, —x*) - A(zy, —x*, Ax, —Ax*)
1
= Sz =17+ n =" =z = al?)

= My = x*, Ay — Ax*) = Mz — %4, A%,y — Ax™)
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1
< 5 (o =2 + e =2 = Nz )

+ Mz — x| | A — Ax* .
It follows that
|20 =2 ||” < |20 = %> = 120 = 2alI? + 2012 — 2, | Ak — Ax* . (3.25)
By (3.25) and (3.9), we deduce
s = 2% | < 2m = 5])” < oom = %) = 1z = 2all? + 22112 = 0l Ay — A"
Therefore,

12 = 22 < o6 =& |* = |y = & |* + 200120 — | | Ay — A

< 1t = yull (o0 = 2| + [l = 27[)) + 2212 = %l | A - A2 (3.26)
Equations (3.20), (3.24), and (3.26) imply that
lim ||z, —x,]|| =0. (3.27)
n—0oQ

Notice that F —f is (¢ — p) strongly monotone. Thus, the variational inequality of finding
y € I such that {((F - f)y,x —y) > 0 for all x € " has a unique solution, denoted by x*, that
is, x* = Pr(I — V + F)(x*). Next, we prove that

lim sup((f - F)x*,u, —x*) <0.

n—00

Since u, is bounded, without loss of generality, we assume that there exists a subsequence
{zy,;} of {u,} such that u,, — X for some X € H and

lim sup((f —-F)x*,u, — x*) =lim sup((f - F)x" ty; — x*)

n—00 i—o0

Thus, we have that x,, — ¥ and
lim | J2 (I = 2A)x,, — x| = 0.
11— 00

Therefore, x € Fix(J2(I — AA)) = (A + B)™1(0).

Next we show that x € Fix(T). First, we show that Fix(T) = Fix(T((1 - ¢)[ + ¢T)). As a
matter of fact, Fix(T) C Fix(T((1 — ¢)I + ¢ T)) is obvious. Next, we show that Fix(7T'((1 -
oI +¢T)) CFix(T).

Take any x* € Fix(T((1-¢)[+¢T)). Wehave T(Q1-¢)[+¢T)x* =x*.Set S=(1-¢)[+¢T.
We have TSx* = x*. Write Sx* = y*. Then, T¥* = x*. Now we show x* = y*. In fact,

e =y = |73 5] = | 75" - - 002 - £ 7|

=B - | = ¢ Lafly” -7

Page 10 of 14
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Since, ¢ < \/117 - < %, we deduce y* = x* € Fix(S) = Fix(T). Thus, x* € Fix(T). Hence,
+L5+

Fix(T((1 - ¢)I + ¢ T)) C Fix(T). Therefore, Fix(T((1 - ¢)I + ¢ T)) = Fix(T).
By (3.1), (3.20), and (3.27), we deduce

lim [ T((1 =) + ¢ T)xn — 2] = 0. (3.28)

Next we prove that T((1 — ¢)I + ¢T) — I is demiclosed at 0. Let the sequence {w,} C H,
satisfying w,, — x" and w,, — T((1-¢)I + ¢ T)w,, — 0. Next, we will show that x™ € Fix(T((1-
oI +¢T)) =Fix(T).

Since T is Lp-Lipschizian, we have

Wy = Twall < |wn = T(A =)+ ¢ T)wy| + | T(A =)+ T)wy = Tw, |

< [wa = T(= O + £ T)w, | + ELIw, - Tw, .
It follows that
Iy = Tyl < 1= [ = T(@ = O+ €T, .
Hence,
Tim |, — T | = 0.

Since T — I is demiclosed at 0 by Lemma 2.1, we immediately deduce x' € Fix(T) =
Fix(T((1 - ¢) + ¢T)). Therefore, T((1 - ¢)I + ¢T) — I is demiclosed at 0. By (3.28), we
deduce X € Fix(T). Hence, x € T". So,

lim sup((f - F)x*,u, —x*) = lim sup((f - F)x™*, uy, — x*)
n—00 i—00

= ((f - P)x*, % - x*)

<0. (3.29)
Note that

in =" = [ Balf @) =f (7)) + Balf () = Ex") + (T = B 3 —5") |
=< ”(1 - lgnF)(yn - x*) H2 + 2,3n(f(xn) _f(x*)’ Uy _x*>
+ Zﬁn(f(x*) - FEx*,u, — x*)
2
< (1-8.5) lsu=s 1 + 2600 50| =
+ 2Bulf (x*) — Fx*, uy, — x*)
2
* * 1 *
< (1-8.5 ) Iou=a [ 280k, + 3 -1

+ 2Bulf (x*) — Fx*, uy, — x*).
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It follows that

o= = [1-2( 5 =0 ) |+ 82 -
+ 4ﬁn{f(x*) - Fx*,u, —x*).

So,

Jsnss =" = flern (= 6") + 1 = ) (s =) |

< = + =)y = |

<[1-2(5 -0 )a-wp b+ s -t PR
+4(1- an)ﬂy,(f(x*) — Fx*,u, —x*)

= [1-(c—20) 1 - a)B,]|n -
2

o

(f(x*) - Fx*,u, —x*)}. (3.30)

+(5=2p)(1 - 0tn) By {,Bn

4
+
s—2p

Applying Lemma 2.3 to (3.30) we deduce x, — x*.

Case 2. Assume there exists an integer ny such that [|x,,, — x*|| < ||%,5+1 — *||. In this
case, we set w, = {|lx, —x*||}. Then, we have w,, < w,,+1. Define an integer sequence {7}
for all n > ng as follows:

t(n) =max{l € N|ng <l < n,0; < wp,1}.

It is clear that 7 () is a non-decreasing sequence satisfying
lim t(n) = o0
n—00

and
W1 (n) =< D1 (n)+1>

for all n > ny. From (3.19), we get

(1= o)) 1Yo = %o |12
< et = = et =+ 200 = atr) B f Gor)s e = 27)
= 2(1 = 0tz (n) Brin) (FY e (n)s %) — %)
+ (1= ote(w)*[ B2y If @) = Fyein | 2

+ 2B (n) |Lf(xr(n)) = Fyr(n ” ||yr(n) —Xz(n) H] (3.31)

Page 12 of 14


http://www.fixedpointtheoryandapplications.com/content/2014/1/82

Yao et al. Fixed Point Theory and Applications 2014, 2014:82
http://www.fixedpointtheoryandapplications.com/content/2014/1/82

It follows that

nlin;o ||yr(n) - xr(n)” =0.

By a similar argument to that of (3.29) and (3.30), we can prove that

lim sup((f — F)x™, te(n) — x*) =0,

n—00

and

S
W21 < |:1 - 2(5 - P) 1- aT(H))ﬁT(Vt)]wlz’(n)

S.2

2 2
+ (1 - aT(”l))lBr(n) Zwr(n)

+4(1 - ar(,,))ﬁf(y,)<f(x*) — Fx*, Ur(n) — x*)
Since wy(y) < Wr(my+1, we have from (3.33)

16
o = 4(s% ~2p) ~ 6*Br(w V) = B e l) =),

)

Combining (3.33) and (3.34), we have

limsup @,y <0,
n—0o0

and hence

lim Wr(n) = 0.
n— 00

From (3.33), we also obtain

lim sup @y ()1 < lim sup w; ().
n—00 n—00

This together with (3.35) imply that
nllg)lo Wr(n)+1 = 0.
Applying Lemma 2.2 to get

0<w, =< max{wr(n)r a)r(n)+1}-

Therefore, w, — 0. That is, x, — x*. This completes the proof.
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