Wei and Tan Fixed Point Theory and Applications 2014, 2014:77 ® Fixed Point Theory and Applications
http://www_fixedpointtheoryandapplications.com/content/2014/1/77 a SpringerOpen Journal

RESEARCH Open Access

Strong and weak convergence theorems for
common zeros of finite accretive mappings

Li Wei" and Ruilin Tan

Dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday

“Correspondence:
diandianba@yahoo.com
School of Mathematics and
Statistics, Hebei University of
Economics and Business,
Shijiazhuang, 050061, China

@ Springer

Abstract
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1 Introduction and preliminaries
Let H be a real Hilbert space with the inner product (-,-) and norm || - ||, respectively.
Then for Vx,y € H, and X € [0,1],

200+ (L= 1)y ||* = Alcll? + (1= 2yl = A0 = W)l =y (11)

We write x, — x to indicate that the sequence {x,} converges weakly to x, and x, — x
implies that {x,} converges strongly to x.

Let C be a closed and convex subset of H. Then, for every point x € H, there exists a
unique nearest point in C, denoted by Pcx, such that ||x — Pcx|| < |lx—y| forally € C. Pc is
called the metric projection of H onto C. It is well known that Pc : H — C is characterized
by the properties:

(i) (x—Pcx,Pcx—y)>0,forallye Candx e H;
(ii) For everyx,y € H, ||Pcx — Pcyl||* < (x -y, Pcx — Pcy);

(i) |[Pcx —Pcyll < llx -y, for every x,y € H;

(iv) x, — xo and Pcx, — yo imply that Pcxg = yo.

A mapping f : C — C is called a contraction if there exists a constant k € (0,1) such
that ||f(x) = f()Il < kllx -y, for Va,y € C. We use ) to denote the collection of map-
pings f verifying the above inequality. That is, ) . := {f : C — C|f is a contraction with
constant k}.

A mapping T : C — C is said to be nonexpansive if | Tx — Ty|| < ||x — y||, for Vx,y € C.
We use F(T) to denote the fixed point set of T, that is, F(T) := {x € C: Tx = x}.

A mapping A : H D D(A) — R(A) C H is called accretive if (x—y, Ax— Ay) > 0, for Vx,y €
D(A) and it is called m-accretive if R(I + LA) = H, for VA > 0. An m-accretive mapping A
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is demi-closed, that is, if {x,} C D(A) such that x, — x and Ax,, — y, then x € D(A) and
y = Ax. Let A0 denote the set of zeros of A, that is, A710 := {x € D(A) : Ax = 0}. We denote
by J4 (for r > 0) the resolvent of A, that is, /4 := (I + rA)™ . Then /4 is nonexpansive and
F(J4) = A70.

Interest in accretive mappings, which is an important class of nonlinear operators, stems
mainly from their firm connection with equations of evolution. It is well known that many
physically significant problems can be modeled by initial value problems of the form

x'(t) + Ax(t) = 0, %(0) = xo, 1.2)

where A is an accretive mapping. Typical examples where such evolution equations occur
can be found in the heat, wave or Schrodinger equations. If x(£) is dependent on ¢, then
(1.2) is reduced to

Au =0, (1.3)

whose solutions correspond to the equilibrium of the system (1.2). Consequently, within
the past 40 years or so, considerable research efforts have been devoted to methods for
finding approximate solutions of (1.3). An early fundamental result in the theory of accre-
tive operators, due to Browder [1]. One classical method for studying the problem 0 € Ax,
where A is an m-accretive mapping, is the following so-called proximal method (cf [2]):

x0 €H, Xy Q’]r,,,xru n>0, (L.4)

where J,, := (I +r,A)™!. It was shown that the sequence generated by (1.4) converges weakly
or strongly to a zero point of A under some conditions.
Recall that the following normal Mann iterative scheme to approximate the fixed point

of a nonexpansive mapping T : C — C was introduced by Mann [3]:
%0 €C, xy=0-a,)x, +a,Tx,, n>0. 1.5)

It was proved that under some conditions, the sequence {x,} produced by (1.5) converges
weakly to a point in F(T).

Later, many mathematicians tried to combine the ideas of proximal method and Mann
iterative method to approximate the zeros of m-accretive mappings; see, e.g. [4—11] and
references therein.

Especially, in 2007, Qin and Su [4] presented the following iterative scheme:

X1 € C,
Yn = Bun + (1- ﬁn)]rnxn: (1.6)
X1 = ot + (1 — 0t)Ys

where J,, = (I + r,A)™!. They showed that {x,} generated by the above scheme converges
strongly to a zero of A.
Based on iterative schemes (1.4) and (1.5), Zegeye and Shahzad extended their discussion

to the case of finite m-accretive mappings. They presented in [12] the following iterative
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scheme:
% €C, xp=o,u+1-0,)Sx, n=>0, 1.7)

where S, = aol + ala, + asJa, + -+ + aJa, with Ju, = (I + A and Zf:o a;, = 1. If
ﬂizlAi‘l(O) # (J, they proved that {x, } generated by (1.7) converges strongly to the common
zeros of A; (i=1,2,...,1) under some conditions.

Later, their work was extended to the following one presented by Hu and Liu in [13]:
%0 €C, Xy =ulh+ BuXy + 04S,, %0, n=0, (1.8)

where S, = aol + all;il + azlf,\f oot al];z’ with /'ffj = + r,A)! and Zﬁ:o a; = 1.
{o,}, {Bu}, {00} C (0,1) and )y + B, + 0, = 1. If ﬂleAi‘l(O) # (), they proved that {x,} con-
verges strongly to the common zeros of A; (i =1,2,...,[) under some conditions.

In this paper, based on the work of (1.6), (1.7), and (1.8), we present the following iterative

scheme:

X1 € C,

= Baf () + (L= BS54t i,
Uy = Opf ) + 1= 0) Wi, 9,

K1 = f () + (1 — )ity

(A)

AmAm-1--A Ap— A
where Sr,,m m-1""A1 ::];4:;,” m-1 . anx Wr

'n n

=al+aJP v a2 v v agl T = (L4 r,A) 7
and rnj = (I+r,,Bj)‘1, fori=1,2,...,m;j=1,2,...,1. Zi:o ar =1,f: C— Cisacontraction,
both {A;}%, and {B,'}]l‘:1 are finite families of m-accretive mappings. More details of iterative
scheme (A) will be presented in Section 2. We shall prove a weak convergent theorem and
a strong convergent theorem under different assumptions on {o,}, {8,}, {#}, and {r,},
respectively.

In order to prove our main results, we need the following lemmas.

By using the properties of the metric projection and m-accretive mappings, we can easily

prove the following two lemmas.
Lemma 1.1 ForVx € H and ¥y € C, |[Pcx —y||? + ||Pcx — x| < |ly — x>

Lemma 1.2 ForVy€ A™0,Vx € H andr >0,
||(I+ rA)‘]x—y”2 + ||(I+ rA)_lx—x”2 <Ily-x|*

Lemma 1.3 ([14]) Let {a,} and {b,} be two sequences of nonnegative real numbers satisfy-
ing

Aps1 = ap + bm Vn > 1.

IfY 02 by < +00, then lim,,_, o a,, exists.
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Lemma 1.4 ([15]) Let H be a real Hilbert space and A be an m-accretive mapping. For
A >0 and x € H, we have

]fx =]lf (%x + (1 - %)]fx),

where J{ = (I + MA)™ and J§; = (I + pA)™.

Lemma 1.5 ([16]) Let H be a real Hilbert space and C be a closed convex subset of H. Let
T : C — C be a nonexpansive mapping with F(T) # ), and f € Y. Then z,, defined by

zi=tf(z))+ 1 -t)Tz;, 2z €C,

converges strongly to a point in F(T). If one defines Q: ) . — F(T) by Q(f) := lim;_,¢ 2,
f € ¢ then Q(f) solves the following variational inequality:

(T-HQ(N, Q) -p) <0, VpeF(T).

Lemma 1.6 ([17]) Let {a,}, {b,}, and {c,} be three sequences of nonnegative real numbers

satisfying
Aps1 = (1 - Cn)ﬂn + bncn; Vn>1,

where {c,} C (0,1) such that
(i) ¢n—> 0andy 2 cy=+00,
(ii) either limsup,_, . by, <0 0r Y o2 |bycyl < +00.

Then lim,—, o a,, = 0.
Lemma 1.7 In a Hilbert space H, we can easily get the following inequality:
I+ 901> < llx1* + 2(p,2 +3), Vx,yeH.

2 Weak and strong convergence theorems

Lemma 2.1 Let H be a real Hilbert space, C be a nonempty closed and convex subset of
Hand A;,B;: C— C (i=1,2,...,m;j=1,2,...,1) be finitely many m-accretive mappings
such that D = (N, A7*0) N (ﬂjle/‘IO) # 0. Suppose ShmAm-1-AL ]fM]rAm-l TN and
W, = aol + aJP' + ayJ?? + -+ aJ)!, where Jo' = (I +rA:) ™ (i =1, 2,...,m),[fj = +rB)™
(G=12,....0),ar €(0,1), k=0,1,...,1, Zi:o ax =1, and r > 0. Then Semm1"41 . C 5 C

and W, : C — C are nonexpansive.

Lemma 2.1 can easily be obtained in view of the facts that (7 + rA;)™ and (I + rB,~)‘1 are

nonexpansive, i =1,2,...,m;j=1,2,...,1.

Theorem 2.1 Let H, C, D, and A;,B;: C — C (i=1,2,...,m; j =1,2,...,1) be the same as
those in Lemma 2.1. Suppose that D # (. Let {x,} be generated by the iterative scheme (A).
If {an), {Bu} and (9,,} are three sequences in [0,1) such thaty - a,y < +00, > o) Bu < +00,
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> B < +00, {1y} C (0, +00) with lim,_. e 1y = +00 and f : C — C is a contraction with
contractive constant k € (0,1). Then {x,} converges weakly to a point vy € D satisfying

lim ||x, — vo|l = min lim |x, - y|. (2.1)
n—00 yeD n—o00

Proof We split our proof into five steps.

Step 1. {x,}, {u,} and {y,} are all bounded.

We can easily know that (), A;7'0 C F(Sp ), and ﬂ;zl B;'0 C F(W,,,). Then for
Vp € D, from Lemma 2.1, we have

S iz = p|| = | Si i = SpAip | <l = - (2.2)
Based on (2.2), we know that

I9n =PIl < Ballf@n) = p| + A = B | S A%~ p|
< [1-B.A=B)]lxn - pll + Bu|f ) - p||- (2.3)

Then (2.3) and Lemma 2.1 imply that

= Il < 0| f ) =f @) + 4| f @) = P + A= D) llyn - Pl
<[1-B,0-0)][1-9.0-0)]lx. —pl
+ [0 + Bu = 9uBu(L = O] |f(p) - |- (2.4)

Using (2.4), we know that

%1 = Il < ot |[f W) —FP)|| + etu|[f @) = p| + (L = )t — pl
<[1-B(1-K)][1-a,(1-R][1- 9,0 -K)]lx, - pll
{1 =@ = B[00+ Bu = 9uBu(l = 0] + au} [f(0) - |
< l%n =Pl + @n + Bu + ) [f(0) - |- (2.5)

Then Lemma 1.3 implies that lim,,_, «, ||, — p|| exists, which ensures that {x,} is bounded.
Combining with the fact that f is a contraction and noticing (2.2), (2.3), and (2.4), we can
easily know that {f(x,,)}, {u.}, (¥}, {f @)}, {f )}, {S’,‘L""'Alx,,} (i=1,2,...,m), and {]ffx,,}
(=1,2,...,1) are all bounded.

We may let M = max{sup{||x,|| : 7 > 1}, sup{||y,|l : = > 1}, sup{||u,|l : # > 1}, sup{|[f (x) | :
n = 1}, sup{Ilf )l : 1 = 1}, sup{|lf ()|l = 1 > 1}, sup{ISri el : 1 > 1L,i = 1,2,...,m),
sup{ [y, xnll : > 1,j=1,2,...,0}}.

Step 2. lim,—, oo ||Ppx, — %, || exists.

In fact, it follows from the property of Pp that

1Ppxps1 = Xnsill < 1Ppxn — X - (2.6)
In view of Lemma 1.1, we know that for Vv € D,

2 2 2 2
v = Ppxull” < [Iv—%ull” = [1Pp%n — %" < [l — VII% 2.7)

Page 5 of 17
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which implies that {Ppx,} is bounded since {x,} is bounded from step 1. Then {f(Ppx,)}
is also bounded.

Let M, = max{sup{[|Ppx, || : 1> 1}, sup{I[f (o) | : 7 > 1}}.
Noticing (2.5) and (2.6), we have
”xn+l _PDxn+l|| = ”xn - PDxn” + (ﬁn + ,Bn + an)“f(PDxn) _PDxn ”
< %y — Ppxull + 2(0, + Bu + aty) M.
Therefore, in view of Lemma 1.3, lim,,_, o ||Ppx,, — X, || exists.

Step 3. Ppx,, — vo, where vy € D satisfies (2.1), as n — o0.

We first claim that there exists a unique element vy € D such that
lim ||x, — vo| = min lim |x, —y||.
n—00 yeD n—o0

Infact,ifwelet i(y) = lim,,_.  ||%,— |, V¥ € D. Then we can easily find that 4(y) : D — R*
is proper, strictly convex and lower-semi-continuous and %(y) — +oo as ||y|| — +00. This
ensures that there exists a unique element vy € D such that /(vo) = minyep h(y).

From (2.7), we know that

. 2 . 2 2 2 . 2
lim [|vo - Ppx, |I* < 1im ([[vo —2,]1* = [|Ppx, —2,1) = B*(vo) = lim [|Ppx, —x,]|* < 0.
n—00 n— 00 n— 00

Therefore, Ppx, — vg, as n — 00.

Step 4. w(x,) C D, where w(x,) denotes the set consisting all of the weak limit points of
{%n}.

Since {x,} is bounded, then there exists a subsequence of {x,}, for simplicity, we still
denote it by {x,}, such that x,, — x, as # — oo.

Since | - || is convex, by using Lemma 1.2 and noticing (2.3), we have, for ¥p € D,
lyn = pI% < Bull f@n) = p|* + (1= B)|| S A, - p
< Ballf Gen) = p|* + 1 = B[ S2r1 41, — p®
_ ”S,rqnm...Alxn _ S;i’”’l"'Alxn HZ]
< Buklln —pII? + (L= B) [l = pI> = || S 4126, — Shm-1A1,|1*]
+ Ballf®) —p|” + 2B.klxs — pll [ (2) - p|
< (12 = pI% = (1= B) | Sz, — Shmi-Ar, |2

+Ballf®) - p||* + 2Bukln - pU | (0) - . (28)
Then using (2.8), we have
llun - pI?

<0 |f o) - 2| + A= 9) 1 Wi, 3, — W, I

< [1= 9.1 =K)]lyn - pI* + 20Ky, - pll |[f () - P + 0| f ) - |

Page 6 of 17
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< oy = pI? = (L= B,) | St Ay, — Shmt-Aiy, |2

+ @+ B |f®) - | + 2k(Bulln - pll + Dlly — pI) |[f ) - P, (2.9)
which implies that
%41 — P12
< [1= a1 = ]l = pII* + 20,k |5 - pll|[f ) - p|| + | f ) - ||
< ”xn _p”2 _ (1 _ ,3n)| Squ,,mwAlxn _ S‘:lm’lmAlxn “2
(@ + B+ 00 |f0) -
+ 2k (tullttn = pll + Balln = Il + Dullyn — pI) [f (@) - p||- (2.10)
Thus
0 < (1 - B,) || St Ay, — Shn1-diy, |2
< 60 = Pl = 11 = 21> + (s + Bu + 9 |[F0) - ||
+ 2k (tullttn = pll + Bull%n = Il + Oullyn — pI) [f(0) - p|- (2.11)
Since from the proof of step 1, we know that lim,_, , ||x,, — p|| exists, then Sﬁl’”'"Alxn -
ShmaAy 5 0,as n— oo.
Going back to (2.8) again, we know that
Iy =pI% < Ballf @) = p|* + (L = Bo) | St 41, — p)|?
< Bullf ) - p|”
+ (1= B[ Sitm2 g, — p||* — [ Spmr-ig, — st | ]
< Bukll%n = pI% + (1= Ba) [0 — pII = | Shmt-A, — Shme2Ary, |2]
+ Bullf ) - p|” + 2B.klx, - pll|f () - |
< llen =PI = (W= B[St e, = S 12, |
+ Bullf ) - p| + 2B.kl% - pll|f ) - ). (2.12)

Then using (2.12), repeating the processes of (2.9)-(2.11), we know that
S‘,‘;”’*l"'Alx,, - anmfz'"Alxn — 0, asn— oo.
By using the inductive method, we have the following results:

ShnaAlg, s g,

(I +ryA) Y%, —x, — 0,
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as n — oo. Therefore, (I + r,A;1) %, — %,..., Sﬁ;”’A'”’l"'Alxn =T +rA,)" I +rA)™T

Xy — X, as 1 —> 00.

Let v, = ([ +r,A1)) %, then Ay, = x"::”’l — 0, since r, — +o0o and both {x,,} and {v,,1}
are bounded. This ensures that x € A7'0.

Let v, = (I + 1,A2)7 (I + r,A1) Y, = (I + 7,42) v, then Ay, s = % — 0, which
implies that x € A50.

By induction, let v,,,, = (I + 7, A,,) 7 -+ - (I + 1, A1) % = (L + 1,A) Wy mey, then A, v, =
e — 0, which implies that x € A,10. Thus x € (7, 4;10.

Next, we shall show that x € ,l'=1 B;'0.

From step 1, we may assume that there exists M3 > 0 such that 2|x, — p|||lf(») — pIl +

If @) = pI? < Ms, 211y, pIIf ) = Il + If (p) - pI* < M3 and 2|, — pllIIf (0) ~ p 1| + |If (p) -
pl* < Ms.
Now, computing the following, Vp € D:

y = plI> < [1= Bl = K)]llxs — 1% + Bu|f(2) - |
+2Bkllx, — pll | f(p) - p|
< [1-Bu(1 =B ]llxn — pII* + BuMs. (2.13)

By using Lemma 1.2,
= pII> < kBully — pI? + 20,k |[f0) = | llyn — Il + 0| f () - |

l
+(1-1,) (aonyn —plIP+ ) a| T +7B) —p||2)

j-1

< kDullyn - pII> + 20,k f(0) = p|[ I3 — pIl + 2] (0) - 2|

I
+(1- ﬁn){aonyn =pI7+ > ai(lyn —pI* = [+ 7uB) ™y =y ||2)}
j=1

= [1- 941 = )]y - pI? + 20kl ~ pU|f(2) - 2| + 0| 2) - ||

l

-(1-9,) Za,“ I+ r,,B,»)’ly,, — Y ||2
j=1

1

<lyn=pI? = Q=90 > |+ 7:B) "y = yu|* + 94M5. (2.14)
j=1

Then (2.13) and (2.14) imply that

2
”xn+1 —-p ”

< [1= (= )]l = plI* + 20kl = pll[f () - P + @ |f D) - ||
<[1-au(l = B)]lltt = pII* + s M3

1

<[1-a,1-k)] [nyn —pIP = (=90 @] T + B Yy — | + ﬁnMg} + o, M
j=1

Page 8 of 17
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= [1 —a(l- k)] [1 - Bu(1- k)]”xn —P||2 + [1 —ay(1- k)]MS(ﬁn +0u) + oM

1
1= @ =)A= 90> ]| (4 +7B) My~ 3 (2.15)

j=1
From step 1, we know that lim,,_, », ||x, — p|| exists, then (2.15) implies that
(I +7:B) yu—y,— 0, asn— oo, forj=1,2,...,L (2.16)
From the iterative scheme (A), 8, — 0, and the results of step 1, we know that

Vn — S:«imAMJMAlxn = ,Bn (f(xn) - SﬁlmAmflmAlxn) ad O, as 711 — Q.

. AmAp_1A
Then y,, — «, since S,

X, — X,as 1 —> 00.

Thus from (2.16), we have (I + r,,Bj)‘ly,, — x, imitating the proof of x € (", A;*0, we
can see that x € ﬂ/l.zl B]TIO, and thenx € D.

Step 5. x,, — vo = limy,—, oo Ppxy,.

In fact, for Vy € D,
(Ppxy, =y, Ppxy — x4) < 0. (2.17)

From step 3, we know that Ppx,, — vy, as n — 00. Let {x,,} be a subsequence of {x,}
which is weakly convergent to x9. Then x¢ € D from step 4. Taking the limits on both
sides of (2.17), we know that (vy — y,vo —xg) < 0.

Letting y = xo, we have xg = vg.

Supposing {x,} is another subsequence of {x,} such that x,, — x; as j — oo. Then re-
peating the above proof, we have x; = v,. Since all of the weakly convergent subsequences
of {x,,} converge to the same element vy, then the whole sequence {x,} converges weakly
to vg.

This completes the proof. d

Remark 2.1 To prove the strong convergence result in Theorem 2.2, we need to prove the
following two lemmas first and some new proof techniques can be seen.

Lemma2.2 Let H,C,D,A;,B;j:C— C(i=1,2,...,m;j=1,2,...,0), S{"*" " and W, be

the same as those in Lemma 2.1. Suppose that D # §. Then F(Sp7*""41) = (", A7'0 and

F(W,) = ﬂjle/‘IO,for Vr> 0.

Proof It is easy to check (), A710 C F(Sp741741) and ﬂ;zl B;'0 C F(W,), for Vr > 0.
Next, we shall show that F(W,) c (., B-10.

=17
For Vp € F(W,), Vg € ();_, B;'0. Since (;_, B;'0 C F(W,), then g = W,q. Thus

=17
lg -pll = |aolg—p) + a1 (IPq -T2 p) + - + ai(JP'q - JP'p) |

<aolg-pl+ai|)Pq-77p| +--+al)fq-Jp|

<lig-pl.

Page9of 17
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B, B,
Then ao(lg—pll - lg-pl) +ar(lg—pl - I g=J2 pl) + - - + ai(llg-pll - ;' g )7 ' pll) = O.
since llg—pl - Iy g -/ pll = 0,j=1,2,..., L, then g - pll - ) g —J'pll = 0, =1,2,..., L.
That is,

lg—pl=a-7'p| = |la-7"p

. j=12,..,L (2.18)

By using Lemma 1.2 and (2.18), we know that [p — ' p|1% < g = pl> - lg=J0pl> = 0, j =
1,2,...,L. Thusp :[fjp, which implies thatp € B;'0,j=1,2,...,L. Then F(W,) C ﬂ;le]?lO,
for r > 0.

Finally, we shall show that F(S;"*"="41) ¢ ", A70.

For Vp € F(Sim4m-141) then p = SpmAm141p Tet g e N, A0, then g = ShmAm1-Al g

since (7, A;10 C F(si"#71"41), Therefore,

lg = pll = || $7nntiq = Spndoma |

< ||S;‘\m-1Am-2~~A1q _ S;qm—lAm—I“AlpH

< ”S‘r‘lm—ZAm—B"'Alq _ S;qm—ZAm—S"'Alp”
S .
<|@+ra)?q-T+rA)'p| < llg-pl. (2.19)

From (2.19), we know that
lg-+rA)7p| = llg-pll (2.20)

Noticing that (2.20) and (2.18) have the same form, then repeating the proof of p = ]f 'p,
we know that p = (I + rA;)"'p and then p € A{'0.
Since p € A;'0, using (2.19) again, we know that

g —pll = | (I +7A2) T+ rA) g — (I + rA2) (I + rAD) ||

= Hq -+ rAz)_lp”. (2.21)

Repeating the above proof again, p € A;'0.
By induction, we have p € A;10. Therefore, F(S;”*""41) c M, A70.
This completes the proof. d

Lemma 2.3 Let H,C,D,A;,B;: C — C (i = 1,2,...,m; j = 1,2,..., 1), S and W,
be the same as those in Lemma 2.1. Suppose that D # (. Then W, simAm1AL L C s C s
nonexpansive and F(W,S‘,qu’”‘l"'Al) =D, forVr > 0.

Proof 1t is easy to check that W, sAmAm-1-41 . ©_ C g nonexpansive. We are left to show
that F(W,SpmAm=141y = p,

Vp € D, then, from Lemma 2.2, p = S274m141 5 and p = W,p. Thus p = W, SamAm-1-41,
which implies that D C F (W, SimAm-1--Aty
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On the other hand, let p € F (W, SamAm-1A1) ' then p= W, SdmAm-1--A1 p. Let g € D, then
q= W,Sf’”A”"l'"Alq, since D C F(W,Sf’”A”"l"‘Al). Then Lemma 2.1 ensures that

Ip— qll = o - sttnrg)

IA

st - sios-4ig]

IA

= |p =74 < lp -4l

which implies that

e -q| = |2 p-q| = = |StAmr-t1p—q| = Ip-ql.

Using the same method as that in Lemma 2.2, p € ()"; A7'0. Thus p = Sf’”Am’l”‘Alp. Since

p = W,SimAm1741, then p = W,p, which implies that p € ﬂ}lﬂ B;IO from Lemma 2.2.
Therefore, F(W,SimAm-1-41y « p,
This completes the proof. d

Theorem 2.2 Suppose H, D, C, {A;},, {B,-}]l»=1 and f are the same as those in Theorem 2.1.
Let {x,} be generated by the iterative scheme (A). If {,}, {Bu} and {0,} are three sequences
in (0,1) and {r,} C (0, +00) satisfy the following conditions:
(i) Y02 laner — | < +00, and o, — 0, as n — 00;

(i) D 02) Bu=+00, > o2 |Busrt — Bul < +00, and B, — 0, as n — oo;

(ii)) Y07 [9ue1 — Oul < +00, and 9, — 0, as n — 00;

(iv) Y02 [rus1 = 1l < +00, and ry — r* > € >0, as n — oo.

Then {x,} converges strongly to a point po € D, which is the unique solution of the follow-
ing variational inequality:

{f(®o) -po,po—q) =0, VqeD. (2.22)

Proof We shall split the proof into five steps:
Step 1. {x,,} is bounded.

’

VpeD, ly.-pl<[1-B.0-0]lx.—pl+Ba|f(0)-p
”un —P|| = [1_ 19n(1_k)]||yn —17|| + ﬁn“f(p) _p“

Letting 8, = o, + By + % — (@B + 00y + Butn)(1 = k) + 0, 8,9, (1 = k)2, Then

%01 = pll < [1 = eu(= k)]l = pll + 2 |[f () - P
<[1-a,0-K)][1-B.0-k)][1-9,0-K)]lx, - pll
+{[1 - = K)]On + ap + [1 = u(1 = K)][1 - 9,1 - 0)]Bu} | (0) - |
= [1-8,(1 = 0)]llxs = pll + 8, | f () - |

}, n>1.

By induction, ||x, — p|| < max{|x; — pl|, ﬁ If(») —pl}, n>1. Thus {x,} is bounded.

1
< max{ %, —pll, —x If ) -p|
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Step 2. limy, o [|%,41 — %, ]| = 0 and lim,,_, o ||%,, — u, || = 0.
In fact,

lyn = yu-all
< 1Bu = Buaal |[f () = S 41, || + Bt [[f Gen) = f () |
+ (= Bu) [ S = S |
< 2Mi|By = Buorl + Bucak s — % |

T |

Next we discuss ||Sf;’”'"A1x,, —ShmAe L

Tn-1

If r,_1 <r,, then in view of Lemma 1.4,

A A
]rnlxn _]ynilxn—l ||
A
] 1

Tn n-1\,4 A
P 1 _ 1
,n1< . Xp + (1 . Tl | =T %n

rp-1 p-1
Xnt (1 - T, — %41

IA

T'n 'n

IA

n

rj‘l [E—— (1 - r::) 70 = 2 |

IA

'y —Fp—1
%6 — 21 || + ——||JA

]rnl Xn — Xn-1 ” .

For Vp € D, let My = M; + ||p||, then

15, 3|
< ||+ ruA) % — p|| + o = %0

< l%n —pll + llp = %1 |l < 2Ms.

From (2.24) and (2.25), we know that

”];:W . ” <% —%ptll + 2M4%.

'n-1

Page 12 of 17

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

Notice that S’;‘KZAlx,, = f}f ,f:,lx,, and S’,:z_?lx,,_l = ];12_1 ]f;l_lx,,_l; similar to (2.26), we have
Sh241 Sh241 < |74 Ay IM, n — Tna
|| rn Xn — Tr-1 Xn-1 || = ”]rn Xn _]r,,,lxn—l || + 4 e .
Following from (2.26) and (2.27), we have
'y —Vp-1
85240 = S50 | <l = 2o [l + 2 X 2Ma——"—.
n n-1 &

Then by induction, we can get the following result:

Ay eA A A 'y —Vp-1
[ 1, = 2 A 4| = = a2 My =

(2.28)


http://www.fixedpointtheoryandapplications.com/content/2014/1/77

Wei and Tan Fixed Point Theory and Applications 2014, 2014:77
http://www.fixedpointtheoryandapplications.com/content/2014/1/77

Putting (2.28) into (2.23), and letting Ms = max{ 2244 241},

".yn _yn—IH
2 x mM.
= [1 - Bu(l - k)]”xn = x|l + Tzl(rn — 1) + 2M1| By — Buaal

= [1 - Bu(1- k)]”xn —Xu1 |l + Ms [(rn —Tpo1) + | Bu — ﬁn—1|]'

If r, <r,_1, then imitating the above proof, we have

lyn = Fnall < [1 - B.(1~ k)] 1% — %1 +M5[(7'n—1 = 1)+ |Bu— ,Bn—l|]~

Combining (2.29) and (2.30),

190 = Yn-1ll < [1= Bu@ = )% = % || + M5 (|7ns = 7ul + |Bn = Bucrl)-
Similar to the discussion of (2.24), we have

I WrnVn = Wi, Yna l

!
< a0l =ynall + S @1 yn =Ty
j=1

!
< aollyn = yaall + Za,(nyn —yuall + "8—“' 23 = 9 ||)

j-1

|70 = 11l
< Myn = yull +2Mlu'

Using (2.32), then

”un — Uy ”
< Oukllyn = Yol + 100 = Dt | ([F Q) || + 1 Wiy )
+ (]- - 19n)“ Wrnyn - Wrn_lyn—ln

2M
= [1 - 19n(l - k)]”yn _yn—IH + 2M1|19n - ﬁn—l| + TIVVI —Tn-1l.
Based on (2.31) and (2.33), and letting Mg = M5 + ZTMI, we have

[1%241 = %,
=ay “f(un) _f(un—l)H + oty — oty | Hf(un—l) ” + (L= o)ty = 1 |
+ oty — ot [ |

= [1 - an(l - k)] ”un - un—l” + 2M1|an - an—l|

< [1 —o,(l- k)] [1 - 0,01 - k)] ”yn _yn—IH + 2M1(|l9n — Dl + oy, — an—1|)

M,
+ —lrn_rn—l|
&

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

Page 13 of 17
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= [1 - Bu(l - k)]”xn — %1l +M6(|rn =Tl +1Bu = Bual + oy — 0y

+ |79n - ﬁn—ll)'

In view of Lemma 1.6, we know that ||x,,1; —x,| — 0, as n — co. Combining with the fact
that ||x,.1 — 4| = o ||f () — un|| = 0, we can easily know that ||x, — u,|| < |41 — % +
[[%41 — Uy || = 0, as 1 — oo.

Step 3. ||W,u, — u,|| — 0, and || SmAm-1A1y, | — 0, as n — oo. In view of

Lemma 1.4 again, we know that
[t = 80|

r r
];«41 (_xn + (1 - _)];«tlxn) _],ﬁqlxn
ry Iy

r
1-
T'n

IA

||];:1xn —Xn || = 2[Ml )

r
1- —
T'n

and then

st - sto0i, |

r
—+1).
'n
m-1
r r
|:(—) oot — +1:| — 0, (2.34)
n T'n

Vp € D, continuing the computation of (2.15), we have

- L st <20
n

r
1- —
r,

< T, e | +
ry n

By induction,

st - st | < 200

r
1- —
r,

n

as n — oo, since r, — r*.

1
0<[1-a,(@-K]A- ) > a7 +raB) 50—y

j=1
< |lxn —P||2 = l1%n41 —P||2 + Ms(a, + B + U).

From step 2, we know that ||x, — x,..1]| = 0, then (I + 7,B)) 'y, = yull = 0, =1,2,...,1,
which implies that

Wi Vn — Y2 — 0, asm— oo. (2.35)

Noticing that ||, = Wy, ¥ull = 9ullf ) = Wy, ¥l = 0, and [y, — Sem M, || = Bullf () —

Sﬁm“'Alx,,H — 0,as n — oo.

Combining with the facts of (2.34), (2.35), and step 2, we know that
ot = 7 A |
< Mty = W, gl + W5, 3 = yull + |3 = Spm 41w, |

+ ||S;1’”"'A1xn —Sfm”'Alx,,” + ||S‘,4’”"'A1x,, —Sf”’"'Alun || — 0, asn— oo.
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Using Lemma 1.4 again, then

— 0.

r
1- —
n

l
IWryn = Wiyall < Zﬂj” rnjyn _]ijn H < 2M;(1 - ay)
j=1

Since Wty — Wryull < Nty = yull < Oullf 0n) = yull + A= )| Wy, 9 = yull — 0, then ||u, —
Wity ll < ttn = Wi, Yl + I Wr, 0 = Weyull + | Wiy = Wenyll — 0, as n — oo.

Step 4. limsup,,_, . {f(po) — po,un — po) < 0, limsup,_, . {f(po) — Po,Xns1 — po) < O,
limsup,_, . {f®o) — Po, ¥ — Po) < 0, where py satisfies (2.22).

Using Lemmas 1.5 and 2.3, we know that if we let z; = ¢f(z;) + (1 -t) W,SfmAm’l"'Alzt, r>0
and ¢t € (0,1), then z; — po € F(W,SimAm1741) _ D as t — 0*. And, Ppo satisfies (2.22).

A
ISE M 4y
17

From step 3, we may choose ¢, € (0,1) such that ¢, — 0, — 0, and

w—)&asneoo.

n

Using Lemma 1.7,

24, — >
<@1- tn)2 ” WrSfmmAlztn — Uy ”2 + 2tn(f(ztn) — Ups 24, — un)
< (1= 1) 122, — thall + |0 = S A0t | + N1t — Wy |]

+ 28,f (21,) — 26, 26, — thn) + 2|22, — 1.
Then

(f(ze,) — 20, thn — 21,
(1 - tn)2

n

Iz, — sl (| S27 M 1ty = s | + 1 — Witall)

ty 2
= 5l —uall” +

(1 - tn)z

s (180 Mty = | + | Woaty = ). (2.36)
n

+

Since {Sf’”"'Alu,,}, {W,u,}, {x,}, {u,} and {z;,} are all bounded, and W — 0, and
W — 0, from (2.36), limsup,,_, .. {f(2:,) — zs,, hn — 21,) <O.

Recalling that z;, — po, then (z;, — po, #n — z1,) — 0. Thus limsup,,_, . {f(z:,) — po, n —
z,) < 0. Since (f(z,,) = po,un — po) = {f(2s,) = po,un — 2,) + (f(22,) = P02, — Po),
then limsup,,_, . (f(po) — o, 4n — po) < 0. Then from step 2, limsup,,_, . {f (o) — Po, Xns1 —

po) 0.
Noticing that

(f(po) —P0orYn —po)
= <f(Po) —P0>Yn — Wrnyn> + (f(Po) =20 Wi, yn — Mn)
+ (f(Po) —Po,Un _xn+1> + (f(l?o) —P0sXn+1 —170),

and using (2.35), iterative scheme (A) and the result of step 2, we have limsup,,_, . (f(po) —

PorYn _p0> <0.
Step 5. x, — po, which satisfies (2.22), as n — oo.
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Using Lemma 1.7, we know that

Iy —P0||2 = [1 - Bu(1- k)] [l —170||2 + Zﬁn{f(PO) —P0rYn _}70>' (2.37)
We have
ln = poll* < [1=3a(1 = K)]llyn — poll> + 204(f (o) - Po, tn — po)- (2.38)

Letting M; = max{(M; + [[poll}%, 2(M; + |po ) (Lf (20) | + 17 )} and using (2.37) and (2.38),
we have

%41 = poll?
< [1=u(@ = 0)]lltn = poll* + 2eu{f (po) = Po, Xns1 — po)
< [1- = 0)][1= Bl = O)][1 = 34(1 = ©)]llx4 - poll’
+2[1 = au(1 = &) |[1 = 4 (1 = K)]Bulf (P0) — P>y — Po)
+2[1= (1= &) |9u{f (o) = Po» thn — Po) + 2a{f (P0) = P0s X1 — Po)
<[1=@=k)(an + B+ ) 1% — o> + Mz(1 = k)* (uBu + Buln + ctu?s)
+ 20,0, (1= K){po —f (po), tn = Po) + 2@ + Ba02) A = K)po —f (0), ¥ — Po)
+ 20, B 91 = K)*(f (o) = P0s Y — Po)
+ 20 (f (Do) = Pos Xns1 — Do) + 2Bulf (P0) — Pos ¥ — Po) + 20{f (Do) — Po, tn — po)
<[1= A =K) e+ Bu + 00)Ilxn — poll” + Ma(1 = k)* (@B + Bun + )
+ M7 (1= k)(@nBu + Buln + uDn) + 2M700, B, 0 (1 — k)
+ 20 (f (Do) = PosXns1 — Do)
+2Bulf (P0) = P, Yn = Po) + 20uf (P0) — Po, 4 — D). (2.39)

Let ¢, = (ay + By + 9,)(1 — k), then ¢, —> 0 and Y o7, ¢, = +00.
7k N nYn nvn 71( nn n
Let b, = M7[(2 Moin Pt PO+t ) + 21Kty fid |+ (O(n+l3n2‘ft7-9n)(1*k) (f(p()) — P0s%ns1 — Po) +

an+Pn+dn ap+Pnt+dy
29 b
et I P0) = Posthn = po) + 2 (o) = o,y = po)
Notice that lim,_, o W =0, lim,— o ajinggn = 0 and from the results in

step 4, we have limsup,,_, , ., b, <0.
Using Lemma 1.6, x,, — po, which satisfies (2.22), as n — oo.

This completes the proof. d

Remark 2.2 The iterative construction in this paper generalizes and extends some corre-

sponding ones in [2, 4, 12, 13], etc., in Hilbert spaces.
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