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1 Introduction

Throughout this paper, we denote the set of real numbers and the set of positive integers
by R and N, respectively. Let H be a Hilbert space with the norm | - || and C a nonempty
subset of H. Let T': C — H be a mapping. We denote by F(T') the set of fixed points of T
and by A(T) the set of attractive points (see [1]) of T, i.e.,

F(T)={xeC:Tx=x} and A(T)= {er: Ty —x|| <|ly—x|,Vy e C}.

A mapping T : C — H is said to be nonexpansive if | Tx — Ty|| < ||lx — y| for all x,y € C.
A mapping T : C — H is said to be quasi-nonexpansive if F(T) # # and || Tx — y|| < |lx —y||
forallx € Cand y € F(T). A mapping T : C — H is said to be strongly monotone if there
exists y > 0 such that (x —y, Tx — Ty) > 7 |lx — y||? for all x,y € H.
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Recall that the one-step Halpern iteration (see [2]) is given by the following formula:
Xp1 =i+ (1 —a,)Tx,, uecC,x €C. 1.1)

Here, {0, },cn is a real sequence in [0,1] satisfying some appropriate conditions. A more
general iteration scheme of one-step Halpern iteration is two-step Halpern iteration given
by

ueC,x; € C chosen arbitrarily,
Y= (1= Bu)%n + BuTxy, (1.2)
K1 = gt + (1 — ) Vs

where the sequences {8,},en and {o,},en satisfy some appropriate conditions. In partic-
ular, when all 8, = 1, the Halpern iteration (1.2) becomes the standard Halpern iteration
(1.2).

Definition 1.1 Let C be a nonempty subset of a Hilbert space H. Then C is called star-
shaped if there exists z € C such that for any x € C and any A € (0,1),

rz+(1-MxeC.
Such z € C is called a center of the star-shaped set C.

Recently, Takahashi and Takeuchi [1] introduced the concept of attractive points. Akashi
and Takahashi [3] proved the following strongly convergence attractive point theorem for
nonexpansive mappings on a star-shaped set C of a Hilbert space.

Theorem 1.1 Let H be a Hilbert space and C be a star-shaped subset of H with center
ze€ C.Let T :C — C be a nonexpansive mapping with A(T) # (). Suppose that {x,},cN is a
sequence generated by x; = x € C and

Xps1 =0z + (1 —o,)Tx,, VneN,

where 0 < a, <1, limy, ooy =0, > ooy oty = 00 and Y oy oty — otyi1| < 00. Then {x,}nen
converges strongly to P, (r)z, where Py (r) is metric projection of H onto A(T).

Akashi and Takahashi [3] posed the following open problem in their final remark.

Question1.1 Isthere any strong convergence theorem of Halpern’s type for a wide class of
nonlinear mappings which contains nonexpansive mappings and nonspreading mappings

in a real Hilbert space H?

Definition 1.2 ([4]) Let C be a nonempty subset of a Banach space X. For u > 1, we say
that a mapping T': C — X satisfies condition (E,) on C if there exists u > 1 such that for
allx,ye C,

o = Tyl < pellx — Tx|| + llx =yl

We say that T satisfies condition (E) on C whenever T satisfies (E,) on C for some p > 1.
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The split feasibility problem (SFP) is to find a point
x* € C such that Ax™ € Q,

where C is a nonempty closed convex subset of a Hilbert space H, Q is a nonempty closed
convex subset of a Hilbert space H,, and A : H; — H, is an operator. The split feasibility
problem in finite dimensional Hilbert spaces was first introduced by Censor et al. [5] for
modeling inverse problems which arise from phase retrievals and in medical image re-
construction. The split feasibility problem has applications in signal processing, image
reconstruction, approximation theory, control theory, biomedical engineering, commu-
nications, and geophysics. One may refer to [6-9].

Let C;,Cy,...,Cy be nonempty closed convex subsets of a Hilbert space Hi, let
Q1,Q3,...,Q, be nonempty, closed convex subsets of Hilbert space H, and let A;,A,,
..o»Ay : H — H; be linear operators. The well known multiple sets split feasibility prob-
lem (MSSFP) is to find x* € H such that x* € C; and A;x* € Q; forall i =1,2,...,m.

Multiple sets split feasibility problem (MSSFP) contains convex feasibility problem
(CFP) and split feasibility problems (SFP) as special cases [5, 10, 11].

In this paper, we study attractive points for a class of generalized nonexpansive map-
pings on star-shaped sets and establish strong convergence theorems of the Halpern it-
erative sequences generated by these mappings in a real Hilbert space. We modify the
Halpern iterations for finding an attractive point of a mapping T satisfying condition (E)
on a star-shaped set C in a real Hilbert space H and provide an affirmative answer to open
Question 1.1. Furthermore, we study the approximation of common attractive points of
generalized nonexpansive mappings and derive a strong convergence theorem by a new
iterative scheme for these mappings. As applications of our results, we study multiple
sets split monotone inclusion problems for inverse strongly monotone mappings, mul-
tiple sets split optimization problem, multiple sets split feasibility problem. To the best
of our knowledge, there is no result on multiple sets split monotone inclusion for inverse
strongly monotone mappings and multiple sets split optimization problem in the liter-
ature. Our results also improve and generalize many well-known results in the current
literature; see, for example, [3].

2 Preliminaries

Following Kohsaka and Takahashi [12], a mapping T : C — H is said to be nonspreading
if

20 Tx - Ty|* < I Tx = yII* + llx — Tyl (2.1)

forallx,y € C.

Let C be a nonempty, closed convex subset of a Hilbert space H and x € H. Then there
exists a unique nearest point z € C such that ||x — z|| = infyec |lx — y||. We denote such a
correspondence by z = Pcx. The mapping Pc is called a metric projection of H onto C.

Definition 2.1 ([13]) Let C be a nonempty subset of a Banach space X. We say that a
mapping T : C — X satisfies condition (C) on C if for all x,y € C,

1
Sl = Tl = flx =y
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1T - Tyl < lx -yl
Remark 2.1 ([13] and [4]) Let T:C — X.
(i) Itis obvious that if T is nonexpansive, then T satisfies (E,) on C for some u > 1,
but the converse is not true.
(ii) If T satisfies condition (C), then T satisfies (E,) on C for some p > 1, but the
converse is not true.
(iii) If T satisfies condition (E), it is easy to see that

A(T)NC=F(T).

In this section, we collect some lemmas which will be used in the proofs for the main
results in next sections. We start with the following well-known lemma.

Lemma 2.1 ([14]) Let H be a real Hilbert space and C a nonempty convex subset of H. For
given x € H:
(i) z=Pcx ifand only if
x—z,y-2)<0, VyeC.
(ii) z=Pcx if and only if

lx—z|* < llx—yI* - lly-=zlI>, VyeC.

(iii) (Pcx — Pcy,x —y) > |Pcx — Pcyl|?, Vx,y € H. Consequently, Pc is a nonexpansive
mapping.

Lemma 2.2 ([15]) In a Hilbert space H, we have
(i) forallx,y € H and € [0,1]

Ao+ (L= 2y = Alleli? + (L= D1yl = A0 = 1) = y1%
(ii) forallx,y,ze H

e =y11% < 2= (v +2)|* + 206 - ,2);
(iii) forallx,ye H

2+ 11 < 12> + 209, + );
(iv) forall x,y,w € H,

(=9 + x=w)y—w) = llx—w|® = llx - y|*.
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Takahashi and Takeuchi [1] proved the following useful lemmas related to attractive

points of a nonempty set C in a Hilbert space H.

Lemma 2.3 Let C be a nonempty subset of a real Hilbert space H and T : C — H be a
mapping. Then A(T) is a closed convex subset of H.

Lemma 2.4 Let C be a nonempty subset of a real Hilbert space H and T : C — H be a
mapping. If {u,},en be a sequence in H such that

limsup((u, — ) + (, — Ty),y — Ty) < 0

n—0oQ0
forally e C.If a subsequence {uy, }icn Of {thn}nen, converges weakly to u € H, then u € A(T).
Lemma 2.5 Let C be a nonempty subset of a real Hilbert space H and T : C — C be a
nonexpansive mapping. Then the following assertions are equivalent.
(1) The attractive point set A(T) # @.
(2) There exists x € C such that the sequence {T"x},eN is bounded.
Proposition 2.1 Let C be a nonempty subset of a Banach space X and T : C — C be a
mapping which satisfies condition (E,,) for some . > 1. Then the following statements hold.
(i) Forallxe C,
llx = T < (u + 1)l - Tx|.
(i) Forallx,y€C,
1 Tx = Tyl < w( +2)llx = Tx[| + [ Tx = yll.
(ili) Forallx,y € C,

I = TylI> = | T = yl1> < [ (e +2) e = Txl® + 20 (e + 2)11 T = | ]l = T

Proof
(i) Since T satisfies condition (E,),

0= 72| < pallc = el + e = Tl < (st + 1)ljc = T,
(i) By (i),

1T — Tyl < | T — T2 + | T~
< u(I T = xll + = T2]) + | T -yl

< ulp+ 2 Tx —x[ + [ Tx - yll.

(iii) This follows immediately from (ii). This completes the proof.
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Example 2.1 Let T:[0,2] — [0,2] be defined by

0 ifxe][0,2),
Tx =
1 ifx=2.

Then T is a nonspreading mapping with F(T') = {0}. Indeed, for any x € [0,2) and y = 2,
we have Tx = 0 and Ty = 1. Observe now that

2|Tx - Ty|* = 2|0 - 1)
<lx=12+]2-0]?

=|x—Ty)* + |y - T~

The other cases can be verified similarly. It is worth mentioning that T is neither non-

expansive nor continuous.

Proposition 2.2 Let C be a nonempty subset of a Banach space X and T : C — C be a
mapping. If T is a nonspreading mapping, then it satisfies condition (E;) on C.

Proof Since T is a nonspreading mapping, then we have
20T~ TyI* < | T~ yl° + |2~ Tyl ¥xyeC.
This implies that, for any x,y € C,
W ITx =Tyl <1 Tx -yl or (2) 1Tx~Tyll < llx - Tyl
If (1) holds, then we have

llx =Tyl < llx = Tx|l + | Tx - Ty ||
< o= Tx| + [ Tx -yl
< = Tl + [ Tx — x| + [l — vl

=2|lx — Tx|| + [l = yIl.
If (2) holds, then we obtain

ly = Txll < lly = Iyl + | Ty - Tx||
<ly=-Dl + llx =Tyl
Sly=yll + =yl + lly = Dyl

=2[y =Dyl + llx = yll.
This completes the proof. O

Let us give an example of a generalized nonexpansive mapping which is not a nonspread-

ing mapping.

Page 6 of 24
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Example 2.2 Let T:[-2,1] — [-2,1] be defined by

B ifxe[-2,1),
Tz = { ’) if x =
-3 1 x—l.

It could easily be verified that T satisfies condition (E) on [-2,1]; for more details, see [4].
However, the mapping T is not a nonspreading mapping. Indeed, for x = -2 and y = 1, we
have Tx =1and Ty = —%. Thus we obtain

2

_2 (2.2)

2|Tx - Ty|? =2 >

1+ -
2

and

2

1
|Tx —y)* + |x - Ty)* = |2+ = .
2| 4

If T is a nonspreading mapping, then, in view of (2.2), we have

| Tx - Ty)* =

=

N | O
e

This is a contradiction. Therefore, T is not a nonspreading mapping.

Lemma 2.6 (see [16, Lemma 2.1]) Let {s,}.cn be a sequence of nonnegative real numbers

satisfying the inequality:
Sus1 < (L= ¥u)Su + Yubpy V=0,

where {Yn}uen and {8, }nen satisfy the conditions:

() {(Vulnen C[0,1] and Y o2, vu = 00, or equivalently, [ 2o (1 = yu) = 0;
(i) limsup,_ ., 8, <0,o0r
(il) Y02 Vudn < 00.

Then lim,—, o0 S, = 0.
To prove our main result, we need the following lemma.

Lemma 2.7 ([17]) Let {s,}.cn be a sequence of nonnegative real numbers, let {at,},en be a
sequence of [0,1] with Z;l“;l oy, = 00, let { B, }nen be a sequence of nonnegative real numbers
with fo’:l Bn < 00 and let {y,}nen be a sequence of real numbers with limsup,,_, ¥, < 0.
Suppose that

Snal < (L—ay)sy, + QY+ Bn, Yn>0.
Then lim,_, o s, = 0.

The following lemma has been proved in [18].
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Lemma 2.8 Let {a,},cn be a sequence of real numbers such that there exists a subse-
quence {n;}ien of {n}yen such that a,, < a,,. for all i e N. Then there exists a subsequence
{mi}ken C Nsuch that my — oo and the following properties are satisfied by all (sufficiently
large) numbers k € N:

Ay < Ap1 aNnd g < Apyy 1.
In fact, my = max{j < k: a; < aj.1}.

Let X be a real Banach space. The modulus § of convexity of X is denoted by
. %+ yll
8(e) = mf{l— S el < LIl < L ls -yl = e}

for every € with 0 < e < 2. A Banach space X is said to be uniformly convex if 5(¢) > 0 for
every € > 0. It is well that any Hilbert space is a uniformly convex Banach space; see, for
more details [14].

We know the following result from [19].

Lemma 2.9 Let X be a uniformly convex Banach space and B, := {x € X : ||x|| <r}, r> 0.

Then there exists a continuous strictly increasing convex function g : [0, 00) — [0, 00) with
2(0) = 0 such that

A% + By + vzl < Allxll® + Bllyl* + v llzl1* — ABg(Ilx - ¥1I)
forallx,y,z€ B, and all ), B,y € [0,1]] withA+ B+y =1.
The following result has been proved in [20].

Lemma 2.10 Let X be a uniformly convex Banach space, r > 0 be a constant. Then there

exists a continuous, strictly increasing and convex function g : [0,00) — [0, 00) such that

o0 2 oo

2
D o = allal® - ciog (Ilx — xll)
k=0 k=0

Soralli,j e NU{0},xx € B, :={z€ X : ||lz]| <1}, € (0,1) and k € NU{0} with ) poyox = 1.

3 Strong convergence theorems
The following result presents an existence theorem of attractive points of a generalized

nonexpansive mapping 7" on a nonempty subset C of a Hilbert space H.

Theorem 3.1 Let C be a nonempty subset of a real Hilbert space H. Let T : C — C be
a mapping satisfying condition (E) on C which is uniformly asymptotically regular, i.e.,
lim,,_, o || T"x — T"*1x|| = O for all x € C. Then the following assertions are equivalent.

(1) The attractive point set A(T) # .

(2) There exists x € C such that the sequence {T"x},eN is bounded.
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Proof The implication (1) = (2) is obvious. For the converse implication, suppose that
there exists x € C such that the sequence {7”x},cy is bounded. Setting u, = T"x for all
n € N, the uniformly asymptotically regularity of T assures that

lim || T, — ]| = lim | T"% - T"x| = 0. (3.1)
n—00 n—00

Since {u,},cn is bounded and C is a nonempty subset of the Hilbert space H, there exists
a subsequence {u,, }ren of {#4,},en such that u,, — y € C as k — oo. Next, we denote u,,
by x for all k € N. This, together with (3.1), implies that

Lim || Txe — x|l = lim || Toty, — 24 [l =0 and  xx —y ask — oo.
k— o0 k— o0
Thus we have

limsup fl — Tyl < g limsup || Ty — ¢ | + lim sup [l — || = lim sup [lx — -
k— 00 k—o00 k—00 —00

The Opial property implies that y € F(T') C A(T), which completes the proof. |

The following strong convergence result provides an affirmative answer to open Ques-

tion 1.1 in the case where the mapping T is a generalized nonexpansive mapping.
Theorem 3.2 Let H be a Hilbert space and C be a star-shaped subset of H with center

zeC.Let T: C— C be a mapping satisfying condition (E) on C such that A(T) # 0. Sup-

pose that {x,},en is a sequence generated by x, = x € C and
X1 =z + (1 —o,)Tx,, VneN, (3.2)

where 0 < ay <1, limy, ooy =0, > 02 0ty = 00 and Yy oy |ty — tya1| < 00. Then {x,}nen

converges strongly to Pu(ryz, where Pty is metric projection of H onto A(T).

Proof Let x; € C and u = P4(r)z. Following the same argument as in Theorem 3.1 [3], we
can show that the sequences {x, },cry and {Tx,},cn are bounded.

Let K := sup{|||z||, || Tx, — u||| : n € N}, with the same argument as in Theorem 3.1 [3], we
see that

%001 — Xull < 2K|0ty — atpan| + (1= o) 16 — %1 ]

Since 0 <, <1, limy ooy = 0, Y ooy =00 and Y ooy |y — 1] < 00, we have from
Lemma 2.7 that

lim %41 — x| = 0.
n—00
This last result together with (3.2) amounts to

lim ||x, — Tx,| = 0.
Hn— 00
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In view of Lemma 2.2(iv), we get, for any y € C,

lim sup((x,, -9+ = Ty),y - TJ’)

n—00

= limsup((Tx,, -9+ (Tx, — Ty),y - Ty)

n—00

= limsup(|| T, — Ty|1* = || s — yII°)

n— 00

<lim sup[uz(u +2)2 1%, = Txnl1? + 2 (i + 2) || T,y —yll] [, — T, ||

n— 00
<limsup[u®(u +2)* + 2u(i + 2)|Mil|x, — Txnll,

n— o0

where M; = sup{|| Tx, — y||, | Tx,, — x4 : n € N}. Thus we obtain

lim sup((xn =)+ (x, — Ty),y — Ty> <0, VyeC.

n—00

Since {x,},en is bounded, there exists a subsequence {x,, };en of {*,},en such that x,, — y,

and

limsup(x, —u,z—u) = lim {x,, —u,z —u) = (y —u,z — u).

n—0oQ0

By Lemma 2.4, y € A(T). This, together with Lemma 2.1(ii), implies that

limsup(x,.1 — u,z — u) < limsup{x,;1 — %, 2 — )
n—00 n—00

+ limsup(x, — u,z — u)

n—00

limsup{x, — u,z — u)
n—00

= lim (x,, —u,z — u)
11— 00

=(y-u,z—u)=(y—Parnz,z— Par)2)

<0.
From Lemma 2.2(iii) and (3.2), we have

2
%1 = PA(T)Z”2 = ||Oan + (1 - an)xn - PA(T)Z”
2
< |0 = a)xn = Pary@) | + 200 (%ns1 = Pacryz: 2 = Par)2)

< (1= ap)ll%n = Paryzll® + 206 (%41 — Pa(ryz, 2 — Pacr)2).-
Then Theorem 3.2 follows from Lemma 2.7. O

Applying Theorems 3.1 and 3.2 and following the same arguments as Theorem 3.2 [3],

we have the following fixed point theorem, which generalizes Theorem 3.2 [3].

Page 10 of 24
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Theorem 3.3 Let H be a Hilbert space and C be a closed star-shaped subset of H. Let T :
C — C be a mapping satisfying condition (E) on C such that T is uniformly asymptotically
regular and {T"x},cx is bounded for some x € C. Then F(T) # .

For the special case of Theorem 3.2, we have the following fixed point theorem.

Corollary 3.1 Let H be a Hilbert space and C be a closed star-shaped subset of H. Let T :
C — C be a mapping satisfying condition (C) on C such that T is uniformly asymptotically
regular and {T"x},cy is bounded for some x € C. Then F(T) # 0.

Applying Theorem 3.2 and following the same arguments as Theorem 3.4 [3], we have

the following fixed point convergence theorem, which generalizes Theorem 3.4 [3].

Theorem 3.4 Let H be a Hilbert space and C be a closed star-shaped subset of H with
centerz € C.Let T : C — C be a mapping satisfying condition (E) on C such that F(T) # 0.
Suppose that {x,},cn is a sequence generated by x, = x € C and

Xne1 =z + (1 —0,)Tx,, VnmeNl,

where 0 < a, <1, limy ooy =0, > ooy a0y = 00 and Y ooy oty — otyi1| < 00. Then {x,}nen

converges strongly to some uy € F(T), where
uo =arg min |lu—z|.
o =arg min |u-z]

Corollary 3.2 Let H be a Hilbert space and C be a closed star-shaped subset of H with
centerze€ C.Let T : C — C be a mapping satisfying condition (C) on C such that F(T) # 0.

Suppose that {x,},cn is a sequence generated by x; = x € C and
X1 =z + (1 —ay,)Tx,, VneN,

where 0 < a, <1, limy, ooy =0, > oo 0ty = 00 and Yy oy |ty — ttya1| < 00. Then {x,}nen

converges strongly to some uy € F(T), where
up = arg min |lu—z|.
o= arg min |lu—z|

Remark 3.1 The two-step Halpern iteration process is a generalization of the one-step
Halpern iteration process. It provides more flexibility in defining the algorithm parameters

which is important from the numerical implementation perspective.

In the following, we prove strong convergence theorems of common attractive points

for generalized nonexpansive mappings in a Hilbert space.

Theorem 3.5 Let H be a Hilbert space and C be a convex subset of H and z € C. Let
T, : C — C be a mapping satisfying condition (E,) on C and T, : C — C be a mapping
satisfying condition (E,) on C such that A := A(T1) N A(T) # 9. Let {oty}nens {Buitnens
{Bu2}nen, and {Bu3}uen be sequences in [0,1] satisfying the following control conditions:
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() lim,— oy, = 0;

(b) Y2 o = 00;

(© Bui+Pua+Buz=1VneN;

(d) liminf, o0 ByjBuz >0,7=1,2.
Let {x,},cn be a sequence generated by

x1 € C  chosen arbitrarily,
Yn = ,Bn,l Tlxn + ﬁn,Z T2xn + ,Bn,an: (33)
Xn+l = OpZ + (1 - an)yn'

Then the sequence {x,},cN defined in (3.3) converges strongly to Paz, where P4 is the metric
projection from H onto A.

Proof We divide the proof into several steps. Set
u="~Paz.

Step 1. We prove that the sequences {%,}nen, {Vulnens {T1%n}nen, and {Tox,},en are
bounded.
We first show that {x,,},cy is bounded.
Let p € A be fixed. In view of Lemma 2.9, there exists a continuous strictly increasing
convex function g : [0, 00) — [0, 00) with g(0) = 0 such that
”yn —P||2 = ”;Bn,l Tlxn + ﬁn,ZTan + lgn,an —P||2
< Buall Ty = plI* + B2l Taxn = plI* + Busllxn — plI?
- /Bn,jlgn,sg(”xn - T}'xn ”)
< Buall%n = pI* + Buzlltn = pII* + Busllxn — plI?
- /Bn,jﬂn,Sg(”xn - T}'xn ”)
= %0 = P1I* = BujBusg (1% — Tjxull)
<% -pl? j=12. (3.4)

This together with (3.3) entails

ln41 = pll = ”arlu + (1= ) yn —P”
<aullu-pl+A-a)lly.-pl
<aullu-pl+ A -a,)lx, -pl

<max{|lu-pll, 5. - pll}.
Consequently, by induction, we deduce that
%1 = pll < max{|ju - p|, %1 - pll}

for all n € N. This implies that the sequence {||x, — p||},en is bounded and hence the se-
quence {x,},cn is bounded. Then, by (3.4), {yu}uen, { T1%1}nen, and {Tox, } e are bounded.
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Step 2. We prove that for any n € N
%1 — ll® < (1= )% — ul® + 200 (K1 — 1,2 — 1), (3.5)
Let us show (3.5). For each n € Nand j = 1,2, in view of (3.4), we obtain
1y = 211> < 112 — ll® = B Br3g (1% — Tixull)-
This implies that

2 2

i1 — ull® = [lauz + (1 - an)yn —ul
2 2
<aullz—ull” + A - an)llyn — ull

< aullz = ul® + (U = )11~ ull* = BujBusg (160 — Tiull) - (3.6)
Let M, := sup{||lz — u||® = ||, — u||?| : n € N,j = 1, 2}. It follows from (3.6) that
BrjBusg (%0 — Tixull) < 1% — ul® = e — ull® + 0tuMs,  j=1,2. (3.7)
In view of Lemma 2.2(ii) and (3.4), we obtain

%1 = u||2 = ”Ol,,Z+ (I —an)yn - uHZ

IA

”0an +Q-an)yn—u—ay(z—u) ||2 + 2(xn+1 —u,a,(z - u))

|0 = )@ = )| + 20 (1 — 1,2~ 1)
<@ =an)llyn - ull® + 20 (X1 — 4,2 — 1)

2
<A —an)llxy — ull® + 20, (Xy — 1,2 — u).

Step 3. We prove that x, — u as n — oo.
We discuss the following two possible cases.

[’}
n=ng

Case 1. Suppose that there exists ng € N such that {||x, — ||} is nonincreasing. Then

the sequence {||x, — u||},cn is convergent. Thus we have |lx, — u||? — ||x,1 — #]|> — 0 as
n — oo. This, together with conditions (c), (d), and (3.7), imply that
lim ||x, — Tix,|| =0, and lim |x, — Tox,| = 0. (3.8)
n—00 n—oo

On the other hand, we have

Y —%n = Bui (X — T1%4) + Buo(wn — Toxy), and Xy — Y = @u(z — yn).

This implies that
lim ||y, —x,|l = 0, and  lim (%, -yall =0. (3.9)
n—00 n—00

By the triangle inequality, we conclude that

”xn+l _xn” = ||xn+1 _yn” + ”yn _xn||~

Page 13 of 24
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It follows from (3.9) that
lim %41 — x4 = 0.
n—0o0
Using Proposition 2.1, Lemma 2.2(iv), and (3.8), we obtain for any y € C

lim sup((x,, =y)+ (%0 = Toy),y - TZJ’)

n—00

=lim sup((Tgx,, —9) + (Tox, — Tay),y — sz)

n—00

= limsup (|| Tox, — Toy|* = | Toxs = y11°)

n—00

<limsup[u?(u +2)* 1ty = Townll* + 20 + 2)[| Toxtn = ¥l 60 — Toxu

n—00

< limsup[p* (1 +2)* + 20 (i + 2) M |10 = Totall,

n—00

where M3 = sup{|| Tox, — ¥, || Tox, — x4|| : n € N}. Thus we obtain

lim sup((x,, —9) + (x, — Toy),y — sz) <0, VyeC. (3.10)

n—0o0

Similarly, we have

lim sup((xn -9+ &= T1y)sy - TlJ’)

n—00

= limsup((T1, — ) + (T1x%, — T19),y — T1y)

n— 00

= limsup (|| Tvx, — Toyll* = 11 Trxn - y11%)

n—00

<lim sup[)»z()» +2)2 42000 + 2)]M4||x,, - T1x,|l,

n—0o0

where My = sup{|| T1x, — ¥, | T1x, — xa|l : 2 € N}.
Thus we obtain

lim sup((xn -+ (x, — T1y),y — le) <0, VyeC. (3.11)

n—o0

Since {x,},en is bounded, there exists a subsequence {x,, };en of {*,},en such that x,, — y,
and

limsup{x, —u,z—u) = lim {x,, —u,z—u) = (y — u,z — u).
n—00 =00

By Lemma 2.4, (3.10), and (3.11), y € A(T1) N A(T3). By Lemma 2.1(ii), we show that

limsup(x,,1 — u,z — u) < limsup{x,;1 — %, 2 — )

n—0o0 n—00

+ limsup(x, — u,z — u)
n—o0

= limsup(x, — u,z — u)

n—00
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= lim (x,, — 4,z — u)
I—> 00

=(y—u,z—u) = (y—Paz,z— Pyz)

<o. (3.12)

Thus we have the desired result by (3.5) and Lemma 2.6.
Case 2. Suppose that there exists a subsequence {#;};cy of {n},cn such that

196, — ]l < 1%n;41 — 2]l

for all i € N. Then, by Lemma 2.8, there exists a nondecreasing sequence {m}xeny C N
such that n, — oo,

ot =% Il < Nt = xmerll - and o= xicll < 1t = Kyl
for all k € N. This, together with (3.7), imply that

B L= B ) 1%y, = Tt 12 < m = ull* = 61 = 2e]1* + o Mo <ty M
for all k € Nandj = 1,2. By conditions (a), (c), and (d), we have

kli)rgo 1%, — Tixm, | =0, j=1,2. (3.13)
By the same argument, as in Case 1, we arrive at

Lim sup (%41 — 4,z —u) < 0.
k— o0

It follows from (3.7) that
”xmkﬂ - I/l||2 = (1 - amk)”xmk - MHZ + 2amk (xmkﬂ —u,z— u) (314)
Since [, — |l < %41 — ull, we have

2 2 2
(07778 ”xnu< - M” = ”xmk - ”” - ”xmk+1 - M” + 2amk (xmk+1 —U,z— ”)

< 200 (Kppe1 — Uy Z— U). (3.15)
In particular, since o, >0, we obtain
1% — 2l < 2(%mg1 — 4,2 — ).
In view of (3.15), we deduce that
dim [, -] = 0.
This, together with (3.14), implies that

lim ||xmk+1 —u| =0.
k—00
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On the other hand, we have ||xx — u|| < [|%,, .1 — u]| for all kK € N which implies that xx — u
as k — oo. Thus, we have x,, — u as n — 00. We thus complete the proof. 0

Corollary 3.3 Let H be a Hilbert space and C be a convex subset of H and z € C. Let
T : C — C a mapping satisfying condition (E) on C such that A(T) # (. Let {a,}nen and
{Bu}nen be two sequences in [0,1] satisfying the following control conditions:

(@) lim,_ o0, =0;

(b) 31 an = 00;

(¢) liminf,_ o B,(1 - B,) > 0.
Let {x,},cn be a sequence generated by

x1 € C chosen arbitrarily,
Yn = (1 - ,Bn)xn + ,Bn Txnr (316)
Xnil = Az + (1 = €p)yn.

Then the sequence {x,},en defined in (3.16) converges strongly to Pu(r)z, where Pycr) is the
metric projection from H onto A(T).

Applying Theorem 3.5, we study the approximation of common fixed points of general-
ized nonexpansive mappings and derive a strong convergence theorem by a new iteration
scheme for these mappings.

Theorem 3.6 Let H be a Hilbert space and C be a closed convex subset of H and z € C. Let
T, : C — C be a mapping satisfying condition (E,) on C and T, : C — C a mapping satis-
fying condition (E,) on C such that F := F(T1) NF(T3) # @. Let {0t} nen, {Bui}nens {Bu2}nen
{Bu3}uen be sequences in [0,1] satisfying the following control conditions:

(a) lim,_ o oty = 0;

(b) 32521 o = 00;

(©) Bui+Bua+Puz=1VneN;

(d) liminf, o ByjBuz>0,7=1,2.
Let {x,},cn be a sequence generated by

x1 € C chosen arbitrarily,
Yn = ﬂn,l Tlxn + ﬂn,2 T2xn + ,Bn,an: (317)
X1 = 0pZ + (1= €p)yn.

Then the sequence {x,},cn defined in (3.17) converges strongly to some uy € F, where

Up = argmin ||u — z||.
ueF

Proof Since T; and T, are mappings satisfying condition (E), for any x € C and u € F, we
have

1T1% — ull < llu—x|
and

1 T1x — |l < ljae — x|
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This implies that F C A(T1) N A(T3). Thus we obtain A := A(T7) N A(T,) # @. It follows
from Theorem 3.6, that {x,},cn converges strongly to u, € A. Since C is closed, we have
uy € C. We follow the same argument as in the proof of Theorem 3.3 [3], we can prove
Theorem 3.7. 0

Using Lemma 2.10 and Theorem 3.5, we can prove the following result.

Theorem 3.7 Let H be a Hilbert space and C be a convex subset of H and z € C. For
any j € N, let T;: C — C be a mapping satisfying condition (E;;) on C such that A :=
ﬂ]‘flA(T/) # 0. Let {y}nen, {Bnjlnenjenuioy be sequences in [0,1] satisfying the following
control conditions:

(a) lim,_, o, = 0;

(b) ZEZ ay, = 0Q0;

(c) Z}O:ol Buj+ Bro=1,VneN;

(d) liminf, o ByjBuo >0, VjeN.
Let {x,},cn be a sequence generated by

x1 € C  chosen arbitrarily,
Y= D1 B Tj%n + Buo%n, (3.18)
Xnsl = 0pZ + (1 - an)yn'

Then the sequence {x,},cn defined in (3.18) converges strongly to Pz, where Py is the metric
projection from H onto A.

Remark 3.2 Theorem 3.7 improves Theorem 1.1 and many fixed point results in the lit-

erature.

4 Applications to multiple sets split feasibility problems
Let H;, and H, be Hilbert spaces, Q;, and Q, be nonempty, closed convex subsets of H;,
and H,, respectively. Let G : H; — H; be a multivalued mapping. The effective domain of
G is denoted by D(G), that is, D(G) = {x € H; : Gx ##}. Then G : H; — H; is called
(i) a monotone operator on Qy if (x —y,u —v) > 0 for all x,y € D(G), u € Gx, and
ve Gy
(ii) a maximal monotone operator on Hj if G is a monotone operator on H; and its
graph is not properly contained in the graph of any other monotone operator on Hj.
A mapping V' : Q; — H; is called a-inverse strongly monotone on Q; (in short a-ism), if

(x—y,Ve—Vy)>a|Va - Vy||*> forallx,ye Q anda > 0.

Let I and I, denote the identity functions on #;, and H,, respectively. For each i € N,
let

(i) «,K; and p; > 0, B; be a p;-inverse strongly monotone mapping of Q; into H;, L;
be a «;-inverse strongly monotone mapping of Q, into Hy, L be a « -inverse strongly
monotone mapping of Qy into Hy;

(i) M and M; be maximal monotone mappings on H; such that the domains of M and
M, are included in Qy, G; be a maximal monotone mapping on #; such that the
domain of G; includes Qy;
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(i) M;'0={xeH;:0eMax}, /i = (I + 1M, by > 0;
(iv) A:H,— Hyand A;: Hi — H, be bounded linear operators, A and A} be the
adjoints of A and A;, respectively;

(v) R and R; be the spectral radii of A*A and A}A;, respectively.

Throughout this section, we use these notations and assumptions unless specified oth-
erwise.

A mapping T : H; — H; is said to be averaged if T = (1 — «)I + «S, where « € (0,1)
and S: H; — H, is nonexpansive. In this case, we also say that T is o-averaged. A firmly

nonexpansive mapping is %—averaged.

Lemma 4.1 ([21, 22]) Let C be a nonempty closed convex subset of a real Hilbert space H,
and let T : C — C be a mapping. Then the following are satisfied:
(i) T is nonexpansive if and only if the complement (I — T) is a 1/2-ism.
(i) IfS is v-ism, then for y >0, yS isa v/y-ism.
(iii) S is averaged if and only if the complement I — S is a v-ism for some v > 1/2.
(iv) If S and T are both averaged, then the composite ST of S and T is averaged.
)

(v) If the mappings {T;}, are averaged and have a common fixed point, then

m?zl FIX(TL) = FIX(T1 s Tn)

In order to study the convergence theorems for the solutions set of multiple sets split
problems, we must give an essential result in this paper. We study the following essential
problem (SFP-1):

Find ¥ € H; such that Ax € (L + M)~(0).
Recently, Yu, Lin and Chuang [23] proved the following useful result.
Lemma 4.2 ([23]) Given any x € Hy, we have the following.
(i) Ifx is a solution of (SFP-1), then (I — AA*(I, — U)A)x = X, where 1. > 0,
U=JM(I,-oL),ando > 0.
(i) Suppose that U =JM(I, -oL),0< 1<, 0<0 <2, then J'(I, — o L), and
I-)A*(I, - U)A are averaged. We assume further that the solution set of (SFP-1) is

nonempty, and (I — AA*(I, — U)A)x = x. Then x is a solution of (SFP-1).
pLy

In the following theorem, we study the following multiple sets variational inclusion
problems (MSSVIP-1):

Find % € H; such that x € (G; + B1)'0 N (G, + Bo)'0N--- N (G, + B,) 10
and
Ak e M, + L), Asx € (M, + Ly)710, Ak e (M; + L),

where m € Nand [ € N.
Let 2; denote the solution set of the problem (MSSVIP-1).
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Theorem 4.1 Let z € H;. Let T : Qu — Qy be a mapping defined by
Ty =T (I = MBI = haBa) -+ T (I = 3By,
and Ty : Q1 — Q; be a mapping defined by
Ty = (I - 1A} (I — UD) A1) (I — 0245 (I — Up)Ap) - - (I — oA} (I — UDA)),

where U, =]§;4"(12 —68,L;),meN,ieNandleN.

Suppose that 2, # 0.

Let {t}nets {Brt nerts {Buzbnerts (Bushuent be sequences in [0,1] satisfying the following
control conditions:

(a) lim,_, o, = 0;

(b) 302t = 05

(©) Bui+Bua+Buz=1,Vnel;

(d) liminf, o0 BujBuz >0,7=1,2;

(e) foreachieN,0<8; <2k;,0<ti<2u;,and0<o;< RL,

Let {x,}nen be a sequence generated by
x1 € C  chosen arbitrarily,
Yn = ﬂn,l Tlxn + ﬁn,z T2xn + ﬂn,?;xm (4'1)

Xn+l = OpZ + (1 - Oln)yn'

Then the sequence {x,},cn defined in (4.1) converges strongly to some uy € Q, where ug =

argmingeq, llu —z|.

Proof By Lemma 4.2, foreachie N, ]ff (I -X;B;) and (I — 0;A¥ (I, — U;)) are averaged. Since
Q) # 0, there exists w € 1, such that

we (G +B)0N(Gy+By) 0NN (G, + B,y)~t0
and
Ayw e (M + Ly)7o, Asw € (M + Ly)™10, Awe (M +L)70,

meNand/eN.
By Lemma 4.2,

w € F(I - 01Af(I — Uy)Ay) NF(I = 00451, — U)Ay) N -+~ NF(I — 0iAf (I, — UpA).
We also see that

w e F(J3H(I - MBy)) NF(J2 (I = 22B2)) N+~ N F(J" (I = ABiyn)).
By Lemma 4.1, we see that

we F(JIH(I - MBy) (22U = 22B2)) - (1 (I = hnBon))
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and
w € F(I - 01Af (I - UD)A;) (I - 0245 (I — Up)Az) -+ - (I — oA} (I — UDA)).

Therefore w € F := F(T1) N F(T,) and F # @.

By Lemma 4.1 again, we see that 77 and T, are averaged. Therefore 77 and T are non-
expansive mapping. Then by Theorem 3.7, the sequence {x,},cn defined in (4.1) con-
verges strongly to some uy € F, where uy = argmin,er ||u — z||. Since ; # @, it follows
from Lemma 4.1 that €; = F. This completes the proof. d

Remark 4.1 Moudafi [24] studied a weak convergence of split monotone variational in-
clusion problem, while Theorem 4.1 studied a strong convergence theorem for the multi-
ple sets split monotone variational inclusion problem.

In the following theorem, we study the following multiple sets split inclusion problems
for inverse strongly monotone mappings (MSSVIP-2):

Find ¥ € H; such that x € B['0 N B,'0N---N B0
and
Aixe L0,  Ayxel;'0, ..., Axel;'0,

where m € Nand / € N.
Let 2, denote the solution set of the problem (MSSVIP-2).

Theorem 4.2 Let z € Hy. Let Ty : Q1 — Qy be a mapping defined by
Ty = = MB1)I = 212B3) - (I = AuBy)
and Ty : Q1 — Q; be a mapping defined by
Ty = (I - 1A} (I — UD) A1) (I — 02A%5 (I — Up)Ap) - - (I — oA} (I — UDA)),

where U; = (I, - 8;L;), meN,ieNandl eN.

Suppose that Qo # 0.

Let {ctu}nens {Buitnens {Bn2}nens {Bn3lnen be sequences in [0,1] satisfying the following
control conditions:

(a) lim,_, oy, = 0;

(b) 3252 o = 00;

(©) Bui+PBua+Buz=1VnelN;

(d) liminf, o ByjBnz>0,j=1,2;

(e) foreachieN,0<8; <2k;,0<ti<2u;,and0<o;< RL,
Let {x,},cn be a sequence generated by

x1 € C  chosen arbitrarily,
Yn = Bua T1%n + BnaToxn + Buzxn, (4.2)
Xne1 =z + (1 - Oln)yw
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Then the sequence {x,},cn defined in (4.1) converges strongly to some ug € 2, where ug =

argmin,eq, llu —z||.

Proof By Lemma 4.2, for each i € N, (I — 1;B;)U; = (I — §;L;) are averaged and I, — U; is
k; inverse strongly monotone for some k; > % Following the same argument as in Theo-

rem 3.1 [24], we can show that for each i € N, Af(l; — U))A;, is %—inverse strong mono-
tone. Following the same argument as in Theorem 4.1, we show that the sequence {x; },en
defined in (4.1) converges strongly to some ug € F, where uy = argmin,cr ||u — z||. Since
Q, # 0, it follows from Lemma 4.1, it is easy to show that 2, = F. This completes the proof

of Theorem 4.2. O

Remark 4.2 To the best of our knowledge, there are many results on inclusion problems
for maximum monotone mappings, but there are no results on inclusion problem for in-
verse strongly monotone mappings or split inclusion problems for inverse strongly mono-

tone mappings.

As an application of the split inclusion problem for inverse strongly monotone map-
pings, we study the following split optimization problem.

Let V1 and V; be nonempty open convex sets in H; and Hj, respectively, Q; C Vi,
Qy C Vh.Foreachie N, letf;: V1 — R and g;: V, — R be convex Géteaux differential
functions. In the following theorem, we study the following multiple sets split optimiza-
tion problem (MSSVIP-3):

Find ¥ € Q; such that ¥ € arg min f (x) N arg minf>(x) N - - - N arg min f(x)
x€Q x€Qr xeQ
and
Ajx € arg min g1(w), Ayx € arg min g, (w), oo Ajx € arg min g;(w),
weQy weQo weQy

where m € Nand [ € N.
Let Q3 denote the solution set of the problem (MSSVIP-3).

Theorem 4.3 In Theorem 4.2, we assume further that V, and V, are nonempty open con-
vex sets in Hy and H,, respectively, Q1 C V1, Qy C V. Foreachi e N, let f;: Vi — R and
gi: Vo = R be convex Gdteaux differential functions. For each i € N, suppose that B; and
L; are strongly monotone and Lipschitz continuous on Q; and Q,, respectively, and B; and
L; be the Gateaux derivatives of f; and g;, respectively. Then the sequence {x,},cn defined

in (4.1) converges strongly to some X € Q3.

Proof Since for each i € N, B; and L; are Lipschitz and strongly monotone, it is easy to
see that B; and L; are inverse strongly monotone. By Theorem 4.2, the sequence {x,},cn
defined in (4.1) converges strongly to some X € Q5. Therefore for each i =1,2,...,m, j =
L2,...,L,xeB'0,Ajx € L]TIO. Since foreachi €N, f;: Vi — R and g;: V, — R are convex


http://www.fixedpointtheoryandapplications.com/content/2014/1/72

Naraghirad and Lin Fixed Point Theory and Applications 2014, 2014:72 Page 22 of 24
http://www.fixedpointtheoryandapplications.com/content/2014/1/72

Gateaux differential functions with Géateaux derivatives B; and L;, respectively, we obtain

0= (B y—%) = i fi + 80 = %) —fi®)

t—0 t
_ thn(‘,ﬁ((l - t)x : ty) - fi(%) < lim 1-1)fi(%) +ttfi(Y) —fi%) ~£0) £

forally e V1.
Then, for each i = 1,2,...,m, fi(y) > f(x) for all y € Q; and x € argmin,cq, fi(y).
Similarly, for eachj=1,2,...,1, gi(w) > gi(A;x) for all w € Q, and A;x € arg minyeq, g&(W).
This shows that x € Q3. O

Let f be a proper lower semicontinuous convex function of H; into (—o0, 00). The sub-
differential df of f is defined as follows:

f (x) = {z€H:f(%) + (zy —x) <f(),Vy € Hy}

for all x € H;. From Rockafellar [25], we know that df is a maximal monotone operator. Let
C be a nonempty closed convex subset of a real Hilbert space Hj, and ic be the indicator
function of C, i.e.

0 ifxeC,

‘Yo ifxéC.

Then ic is a proper lower semicontinuous convex function on H, and the subdifferential
dic of ic is a maximal monotone operator. We define the resolvent ]ficx = (I + Mic) '«
for all x € H. We have ]fic =Pc.

For eachie N, andj € N, let C;,Cs, ..., C,, be nonempty closed convex subsets of #;
and Dy, D, ..., D; be nonempty closed convex subsets of H,.

In the following theorem, we study the following multiple sets split feasibility problems
(MSSVIP-4):

Findx € Hy suchthatxe C,NCy,N---NCy,

and Ajx € D1, Ayx € D,,...,Aix € D;, where me N, [ € N.
Let ©4 denote the solution set of the problem (MSSVIP-4).

Theorem 4.4 Foreachie N, andjeN, let Cy,C,,...,C,, be the nonempty closed convex
subsets of Hy and D1, Dy, ..., D; be nonempty closed convex subsets of Hy. Let T1 : Q1 — Q1
be a mapping defined by

Ty = Pc,Pcy, ..., P,
and Ty : Qu — Qq a mapping defined by

Ty = (I - 01 A5 (I = Pp)) A1) (I = 024A5(Iy — Pp,)A3) - - - (I - 01A} (I — Pp))A;),

where m e N, and [ € N.
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Suppose that Qq # 0.

Let {an}nens {Buitnens {Bnatnen, {Busluen be sequences in [0,1] satisfying the following
control conditions:

(a) lim,_ o0, =0;

(b) Yoy ay = 00;

(© Bui+Bu2+Puz=1LVneN;

(d) liminf, o0 BujBuz>0,7=1,2;

1

(e) foreachieN,0<o;< -

Let {x,},cn be a sequence generated by
x1 € C  chosen arbitrarily,
Yn = :Bn,l Tix, + lgn,2 Tox, + ,Bn,3xm (4-3)
KXpp1 =0tz + (1 - Oln)yru

Then the sequence {x,},cn defined in (4.3) converges strongly to some ug € 4, where

ug = arg 52}3 llu -zl

Proof Let G; = dic;, B; =0, M; = BiDj, L; = 0 in Theorem 4.1. Then Theorem 4.4 follows
from Theorem 4.1. O

Example 4.1 Let T: R — [0, 2] be defined by

0 ifx e (-00,2),
1 ifxe[2,00).

Tx =

Then, T is a nonspreading mapping. Indeed, for any x € (—00,2) and y € [2,00), we have
Tx = 0 and Ty = 1. Observe now that

2|Tx — Ty|* = 2|0 — 1)
<lx-1P+|y-0p

=|x- Ty|2 + |y - Tx|2.

Therefore, T satisfies condition E; with A(T) = (-00,0]. Let z =1, «, = %, x1 = 2, then

Tx1=1,%p = %, ey Xpa] = % We see that the sequence x,, converges strongly to 0 € A(T).
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