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1 Introduction and preliminaries

Azam et al. [1] introduced new spaces called complex valued metric spaces and established
the existence of fixed point theorems under the contraction condition. Subsequently,
Rouzkard and Imdad [2] established some common fixed point theorems satisfying certain
rational expressions in complex valued metric spaces which generalize, unify and comple-
ment the results of Azam et al. [1]. Sintunavarat and Kumam [3] obtained common fixed
point results by replacing constant of contractive condition to control functions. Recently,
Klin-eam and Suanoom [4] extend the concept of complex valued metric spaces and gen-
eralized the results of Azam et al. [1] and Rouzkard and Imdad [2]. For more on fixed point
theory we refer the reader to [4—26].

The aim of this article is to extend and improve the conditions of contraction from the
whole space to closed ball and establish the common fixed point theorems which are more
general than the results of Klin-eam and Suanoom [4], Rouzkard and Imdad [2], and Azam
et al. [1] on complex valued metric spaces.

Let C be the set of complex numbers and z;,z; € C. Define a partial order X on C as

follows:
2132z ifandonlyif Re(z;) <Re(zz) and Im(z) <Im(zy).

It follows that z; 3 2, if and only if one of the following conditions is satisfied:
(i) Re(z1) = Re(zy) and Im(z;) < Im(z,),
(ii) Re(z1) < Re(zy) and Im(z;) = Im(zy),
(iii) Re(z;) < Re(zz) and Im(z;) < Im(zy),
(iv) Re(z1) = Re(zp) and Im(z;) = Im(zy).
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In particular, we will write z; 3 z; if z1 # 2> and one of (i), (ii), and (iii) is satisfied and we
will write z; < z; if only (iii) is satisfied. Note that

03zt = lal<lzl,

21 22, 2y <23 — z1<23.

Definition1 Let X be a nonempty set. Suppose that the mapping d : X x X — C satisfies:
(1) 03 d(x,y) forallw,y € X; and d(x,y) = 0 if and only if x = y;
(2) d(x,y) =d(y,x) for all x,y € X;
(3) d(x,y) 3d(x,z) +d(z,y) forallx,y,z € X.
Then d is called a complex valued metric on X and (X, d) is called a complex valued metric
space.
A point x € X is called an interior point of a set A € X whenever there exists 0 < r € C
such that

B(x,r):={ye X :d(x,y) <r} CA,

where B(x, r) is an open ball. Then B(x,r) = {y € X : d(x,y) < r} is a closed ball.
A point x € X is called a limit point of A whenever for every 0 < r € C, we have

B(x,r)N (A \ {x}) £ 2.

A subset A C X is called open whenever each element of A is an interior point of A.
A subset B C X is called closed whenever each limit point of B belongs to B. The family

F:= {B(x,r):xeX,0<r}

is a sub-basis for a Hausdorff topology 7 on X.

Let {x,} be a sequence in X and x € X. If for every c € C with 0 < c there is ny € N such
that d(x,,x) < ¢, for all n > ny, then {x,} is said to be convergent and {x,} converges to x.
We denote this by lim, x,, = x or x,, — x. If for every ¢ € C with 0 < ¢ there is ny € N such
that d(x,, x,,) < ¢, for all n,m > ny, then {x,} is called a Cauchy sequence. If every Cauchy
sequence is convergent in (X, d), then (X, d) is called a complete complex valued metric
space.

Example 2 Let X = X; U X, where
X = {z € C:Re(z) > 0 and Im(z) = O}
and
X; = {z € C:Re(z) =0 and Im(z) > 0}.
Define d : X x X — C as follows:
21o1 — %a| + 511 — %2 if 21,22 € X35

1 i .
Sy =yl + 3l — 32l if 21,20 € X;
d(z1,23) = > 3

(Gx1+ 392) +i(gx + 372)  if 21 € X1,22 € X

(%yl + %xz) + i(%yl + %xz) ifz1 € Xp,20 € X,
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where z; = %1 + iy1, 2o = x5 + iy € X. Then (X, d) is a complete complex valued metric

space.

Lemma 3 [1] Let (X,d) be a complex valued metric space and let {x,} be a sequence in X.

Then {x,} converges to x if and only if |d(x,,x)| — 0 as n — o0.

Lemma 4 [1] Let (X, d) be a complex valued metric space and let {x,} be a sequence in X.

Then {x,} is a Cauchy sequence if and only if |d(x,, X1m)| — 0 as n — o0.

Definition 5 [27] Two families of self-mappings {7;};" and {S;}] are said to be pairwise
commuting if:

(1) T;T; = T;T; for all i,j € {1,2,...,m};

(2) SiS; =SSk forall k,l€{1,2,...,n};

(3) T;Sk=S8T;forallie{l,2,...,m}, ke{l,2,...,n}.

2 Main result

In our main result, we discuss the existence of the common fixed point of the mappings
satisfying a contractive condition on the closed ball. This result is very useful in the sense
that it requires the contractiveness of the mappings only on a closed ball instead of the

whole space.

Theorem 6 Suppose that (X,d) is a complete complex valued metric space and x € X. Let
0 <reCandA, B, C, D and E be five nonnegative reals such that A + B+ C + 2D + 2E < 1.
Let S, T : X — X satisfy

d(x,Sx)d(y, Ty) d(y, Sx)d(x, Ty)
1+d(x,y) " 1+d(x,y)

d(x, Sx)d(x, Ty) s Ed(y, Sx)d(y, Ty)

d(Sx, Ty) S Ad(x,y) + B

D 1
* 1+d(x,y) 1+d(x,y) W)
forall x,y € B(xo,r). If
|d(x0,Sx0)| < = W)Ir], (2)
A+D A+E

where A = max{ }, then there exists a unique point u € B(xo,r) such that u = Su =

Tu.

1-B-D’ 1-B-E

Proof Let x be an arbitrary point in X and define

Xora1 = Sxor and  xogyo = Taopy1, wherek =0,1,2,....

We will prove that x,, € B(x, r) for all n € N by mathematical induction.

A+D A+E
1-B-D’ 1-B-E

Using inequality (2) and the fact that A = max{ } <1, we have

|d(x0,Sx0)| < I7.
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It implies that x; € B(xo,r). Let x,...,%; € B(xo,r) for some j € N. If j = 2k + 1, where

k=0,1,2,..., ’771 orj=2k+2wherek=0,12,..., ’%2, we obtain by using inequality (1)

AXoge1,%2k+2) = A(SXoy Tok11)

A(%oxs1, Took1)d Kok Sxok)

2 Ad(xok, Xok1) + B
" 1+ d(xok, %2k41)

A%k Trok+1)d(Xok+1, Sxok)
1+ d(®oks X2k41)

+C

d %ok, Tooks1)d Xk, Sxok)
+D

1+ d(x2%, %2k41)

d(%oks1, T2k 1) A (X2k 11, SH2k)
1+ d(xk, %2k+1)

Now xoxs1 = Sxox implies that d(xox.1, Sxox) = 0, so we have

A(Xoks1, Xokr2) A Kok Xog41)
1+ d(%ok, %2k41)

d(Xoks1, %oks2) T Ad (x4, X21) + B

A%k, Xokr2) A Kok, Xok41)
1+ d(xok, %2k41)

+D

This implies that

AKXk 41 X2kr2) || A (X2 X2k 1) |
11+ d(x2k, X2k41)]

|d (%211, %0042) | < Ald(eons Xoiea1) | + B|

|d (KXo X2k s2) 1| A (Ko Xk 41|

+D
11+ d %ok, Xok+1)]

Since |1 + d(wax, %2x41)| > 1d(%ox, %2x41) |, we have
|d(%21cs1 %242) | < Al d (Wi %241) | + B|d(Xoies1, Xas2) | + D] d (o Xies) |

This implies by the triangular inequality that

A+D
|21, X2kr2)| < ﬁ|d(~x2k’x2k+l)|- 3)

Similarly, we get

A+E

)| < 1B _E |d (%212 %2041 (4)

|d(x2k+2, X2k+3

A+D A+E
1-B-D’ 1-B-E

Putting A = max{ }, we obtain
|d(xj,xj+1)| < )Lj|d(xo,x1)| forallje N. (5)

Now

|d(x0, x741)| < |d(x0,21)| + -+ + | (), x741) |

< |d(xo,%1)| + -+ + ¥ |d(x0,%1)|

Page 4 of 11
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= |d(xo,x)|[L+- -+ M7+ V]

a-w)

= A=WIr—=—

= I
gives xj,; € B(xo,r). Hence x,, € B(xo,r) for all n € N and
|d (%, %n01)| < 1|0, 21)]
for all » € N. Without loss of generality, we take m > n, then

|d (% 2%m)| < A Xia1)| + [ACnrs Bna2) | + -+ + | d(Ets %) |

< [A” Y S )Lm‘l]|d(xo,x1)|

)\‘Vl
§|:1 )L:||d(xo,x1)|—>0 as m, n — 0.

This implies that the sequence {x,} is a Cauchy sequence in B(x, ). Therefore, there exists

a point u € B(xy, r) with lim,,_, oo %, = u.

We prove that u = Su. Let us consider

(%ok+1> Tok+1)|1d (1t Sur)|
11+ d(u,x9k41)]

d
|t S)| < |t t31)| + Al (o, )] + B,

|d(xkr1, Su)||d (14, Txog11)]
|1 + d(u, x2k+1) |

|d(u, Txop)|1d(u, Su)|
|1 + d(u: x2k+1) |

+C

|d(x2k+1, Tx2k+1)| |d(x2k+1; SM)|

+E
1+ d(2, X2441) |

Notice that limy,_, oo |d(1, Xok42)| = limy,_, oo [d(Xop1, u)| = |d(Xo2x41,Su)| = 0. Hence |d(u,
Su)| = 0, that is, u# = Su. It follows similarly that # = Tu. For uniqueness, assume that * in

B(xo,r) is a second common fixed point of S and T. Then

|d(u, Su)||d(u*, Tu*))|
11+ d(u, u*)|
|d(u*, Su)||d(u, Tu™))
11+ d(u, u*)|
|d(u, Su)||d(u, Tu*)|
11+ d(u, u*)|
|d(u*, Su)||d(u*, Tu*)|
11+ d(u, u*)|

\d(u,u*)| < A|d(u,u*)| +B

Since |1 + d(u, u*)| > |d(u, u*)|, so we have

|d(u,u*)| <A+ C)|d(u, u*)‘
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This is contradiction because A + C < 1. Hence u* = u. Therefore, u is a unique common
fixed point of S and T. g

By setting S = T in Theorem 6, we get the following corollary.

Corollary7 Suppose that (X, d) is a complete complex valued metric space and xo € X. Let

0<reCandA,B, C, D and E be five nonnegative reals such that A+ B+ C+2D + 2E < 1.
Let T : X — X satisfy

A(Tx, T9) < Ad(x,) +Bd(x, Tx)d(y, Ty) . d(y, Tx)d(x, Ty)

1+d(x,) 1+d(x,y)
d(x, Tx)d(x, Ty) Ed(y, Tx)d(y, Ty)
1+d(x,y) " 1+d(x,y)

forall x,y € B(xo,r). If

’d(xo» Tx0)| = (1 —)»)|V|,

A+D A+E

where A = max{{73=5, {55 }» then there exists a unique point u € B(xo, r) such that u = Tu.

Remark 8 The conclusion of Theorem 6 remains true if the condition (2) is replaced by
the condition |d(xg, Txo)| < (1 - A)|r|.

By choosing E = 0 in Theorem 6, we get the following corollary.

Corollary 9 Suppose that (X,d) is a complete complex valued metric space and xy € X.

Let 0 <r e Cand A, B, C, D be four nonnegative reals such that A+ B+ C + 2D < 1. Let
S, T : X — X satisfy

d(Sx, Ty) < Ad(x,y) + Bd(x, Sx)d(y, Ty) Cd(y, Sx)d(x, Ty) . Dd(x, Sx)d(x, Ty)

1+d(x,y) * 1+d(x,y) 1+d(x,y)
forall x,y em.lf
|d(xo, Sxo)| < (1= A)Irl,
where A = max{%, %}, then there exists a unique point u € B(xo,r) such that u = Su =

Tu.

By setting S = T in Corollary 9, we get the following corollary.

Corollary 10 Suppose that (X,d) is a complete complex valued metric space and x, € X.

Let 0 <re Cand A, B, C, D be four nonnegative reals such that A+ B+ C+2D < 1. Let
T:X — X satisfy

dx, T)d(y, Ty)  _d(y, Tx)d(x, Ty) _d(x, Tx)d(x, Ty)
d(Tx, Ty) 3 Ad(x,y) + B T+ d(s,y) +C 1+d(x,y) +D 1+d(x,y)
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forall x,y € B(xo,r). If
|d(x0, Too)| < (1= )17,

lfgf'D, %}, then there exists a unique point u € B(xo,r) such that u = Tu.

where A\ = max{
By choosing D = 0 in Theorem 6, we get the following corollary.

Corollary 11 Suppose that (X,d) is a complete complex valued metric space and x, € X.
Let 0 <reCand A, B, C and E be five nonnegative reals such that A+ B+ C + 2E <1. Let
S, T:X — X satisfy

dw S0)d, Ty) 40, S0d0xTy)  d(y,Sx)d0, 1)

d(Sx, Ty) = Ad(x, B
(x J’)N (x J’)+ 1+d(x,y) 1+d(x,y) 1+d(x,y)

forall x,y € B(xo,r). If

|d(x0,Sx0)| < @ =),

A+E

1°5-F |» then there exists a unique point u € B(xo,r) such that u = Su =

where )\ = max{l‘_iB,
Tu.

By setting S = T in Corollary 11, we get the following corollary.

Corollary 12 Suppose that (X, d) is a complete complex valued metric space and xy € X.
Let 0 <r € Cand A, B, C, and E be five nonnegative reals such that A+ B+ C +2E <1. Let
T : X — X satisfy

d(x, Tx)d(y, Ty) Cd (9, Tx)d(x, Ty) Ed(y, Tx)d(y, Ty)

d(Tx, Ty) 3 Ad(x, B
(Ix, Ty) S Ad(x,y) + 1+d(x,y) " 1+d(x,y) * 1+dx,y)

forall x,y € B(xo,r). If

|d(x0, Sxo)| < (1= M)l

A+E

1°5F|» then there exists a unique point u € B(xo, r) such that u = Tu.

where A = max{l‘%B,

Remark 13 By equating A, B, C, D, and E to 0 in all possible combinations, one can derive
a host of corollaries which include the Banach fixed point theorem for self-mappings on

the closed ball in complex valued metric spaces.

By choosing D = E = 0 in Theorem 6, we get the extension of Theorem 2.1 of [2] to the

closed ball as follows.

Corollary 14 Suppose that (X, d) is a complete complex valued metric space and xy € X.
Let0 <r e Cand A, B, C be three nonnegative reals such that A+ B+C <1.LetS, T : X — X

satisfy

d(x,Sx)d(y, Ty) . Cd(y, Sx)d(x, Ty)

d(Sx, Ty) = Ad(x, B
(S, Ty) S Ad(x,) + 1+d(x,y) 1+d(x,y)
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forall x,y € B(xo,r). If
|d(x0;Sx0)| < (1 - )")|r|:

where )\ = 1:4;3’ then there exists a unique point u € B(xo, r) such that u = Su = Tu.

By setting S = T in Corollary 14, we get Corollary 2.3 of [16] on the closed ball as follows.

Corollary 15 Suppose that (X, d) is a complete complex valued metric space and xo € X.
Let 0 <r € Cand A, B, C be three nonnegative reals such that A+ B+ C<1.Let T: X — X

satisfy

d(x, Tx)d(y, Ty) Cd (y, Tx)d(x, Ty)
T+deoy) = L+dny)

d(Tx, Ty) S Ad(x,y) + B

forall x,y € B(xo,r). If
|d(xo, Txo)| < (L= M),
where A = 1‘_“;3, then there exists a unique point u € B(xq, r) such that u = Tu.

By choosing C = D = E = 0 in Theorem 6, we get the extension of Theorem 4 of [1] to

the closed ball as follows.

Corollary 16 Suppose that (X,d) is a complete complex valued metric space and x, € X.
Let 0 <r € Cand A, B be nonnegative reals such that A+ B< 1. Let S, T : X — X satisfy

d(x,Sx)d(y, Ty)
1+d(x,y)

d(Sx, Ty) 2 Ad(x,y) + B
forall x,y € B(xo,r). If

’d(xO)SxO)‘ = (1 - )x)|7‘|,
where )\ = 1:4;3’ then there exists a unique point u € B(xo, r) such that u = Su = Tu.

By setting S = T in Corollary 16, we get Corollary 2.3 of [1] on the closed ball as follows.

Corollary 17 Suppose that (X,d) is a complete complex valued metric space and x, € X.
Let 0 <r € C and A, B be nonnegative reals such that A + B<1. Let T : X — X satisfy

d(x, Tx)d(y, Ty)
1+d(x,y)

d(Tx, Ty) 3 Ad(x,y) + B
forall x,y € B(xo,r). If
|d(x0, Txo)| < (1 - 1)|r,

where )\ = 1:4;13’ then there exists a unique point u € B(xo, r) such that u = Tu.

As an application of Theorem 6, we prove the following theorem for two finite families

of mappings.

Page 8 of 11
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Theorem 18 If {T;}* and (S;}] are two finite pairwise commuting finite families of self-
mapping defined on a complete complex valued metric space (X, d) such that the mappings
Sand T(withT =TTy Tyyand S = 515, - - - S,,) satisfy the contractive conditions (1) and
(2), then the component maps of the two families {T;}{" and {S;}} have a unique common
fixed point.

Proof From Theorem 6, we can say that the mappings 7 and S have a unique common
fixed point u i.e. Tu = Su = u. Now our requirement is to show that « is a common fixed
point of all the component mappings of both families. In view of pairwise commutativity
of the families {7;}}" and {S;}} (for every 1 < k < m), we can write Txu = Ty Tu = TTju and
Tru = TiSu = STru which show that Tyu (for every k) is also a common fixed point of T
and S. By using the uniqueness of common fixed point, we can write Txu = u (for every k)
which shows that u is a common fixed point of the family {7;}}". Using the same argument
one can also show that (for every 1 < k < n) Sxu = u. Thus the component maps of the two
families {7;}}" and {S;}} have a unique common fixed point. O

By setting Ty =Ty, =--- =T, =Fand $§; =S, =--- =S, = G in Theorem 18, we get the
following corollary.

Corollary 19 Suppose that (X, d) is a complete complex valued metric space and x, € X.
Let0 <reCandA, B, C,D and E be five nonnegative reals such that A+ B+ C+2D+2E < 1.
Let F,G: X — X satisfy

d(x, F"x)d(y, G"y) d(y, F"x)d(x, G"y)
1+d(x,y) vC 1+d(x,)

d(x, F"x)d(x, G"y) . Ed(y, F"x)d(y, G"y)
1+d(x,y) 1+d(x,y)

d(F"x,G"y) 3 Ad(x,y) + B

forall x,y € B(xo,r) and

|d(x0, an0)| =< (1 _)L)|r|»

where A = max{%, % }, then there exists a unique point u € B(xo,r) such thatu = Fu =
Gu.

By setting m = nand F = G = T in Corollary 19, we get the following corollary.

Corollary 20 Suppose that (X, d) is a complete complex valued metric space and x € X.
Let0 <reCandA, B, C,D and E be five nonnegative reals such that A+ B+ C+2D+2E < 1.
Let T : X — X satisfy

d(x, T"x)d(y, T"y) Cd(y, T"x)d(x, T"y)
1+d(x,y) " 1+d(x,y)

dx, T"x)d(x, T"y) dy, T"x)d(y, T"y)
1+d(x,y) " 1+d(x,y)

d(T"x, T"y) 3 Ad(x,y) + B

forall x,y € B(xo,r) and

|d (%0, T"x0)| < @ = W7,
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lfg?D, lf"fE}, then there exists a unique point u € B(xo,r) such that u =

where A = max{
Tu.

Now we give an example satisfying our main result.

Example 21 Let X; = {z € C : Re(z) > Oand Im(z) = 0} and X, = {z € C : Re(z) =
0 and Im(z) > 0} and let X = X; U X,. Consider a metric d : X x X — C as follows:

2oy — x| + Sl —wo| i 21,20 € X35
d(er.22) = =yl + i -yl ifz,2 € Xy
S+an)+ g +yn) ifz €Xy,z € Xy
%(xg +91) + %(xz +y1) ifz € X,z € X,

where z; = %1 + iy1,22 = %3 + iy; € X. Then (X, d) is a complex valued metric space. Take
ZO=%+0iandr=%+ ii.Then

B(zo,r) = {z€X1:0 <Re(z) <1} U{z € X,:0 <Im(z) <1}.
Define S, T : X — X by

0+7%i ifzeX;with0<Re(z) <1,Im(z) = 0;
% 1+0i ifzeX; with Re(z) >1,Im(z) = 0;

Sz =
L+0i ifze X, with 0 <Im(z) <1,Re(z) = 0;
0+ %i if z € X, with Im(z) > 1,Re(z) = 0;
0+%i ifzeX; with 0 <Re(z) <1,Im(z) = 0;
- ¥ +0i ifzeX; with Re(z) > 1,Im(z) = 0;
7 =

2+0i ifzeX; with 0 <Im(z) <1,Re(z) = 0;

0+2i ifzeX,with Im(z) > 1,Re(z) = 0.

By a routine calculation, one can verify that the mappings S and T satisfy the conditions
(1) and (2) of Theorem 6 with A = %, B= ﬁ, C= %, D= 2—15 and E = %. Hence S and T are
contractions on B(zo,7) and 0 + 0i € B(zo, 7) is a unique common fixed point of mappings
Sand T.

It is interesting to notice that S and T are not contractions on the whole space X for

z1=2p=3 +0i ¢ B(zo,1) as

1 1. 33,859 4,837
d(8z1,Tzp) = — + —i > + i
30 40 3,744,000 156,000
d(z1,821)d(z2, T25) d(z2, Sz1)d(z1, Tz)
1+d(z1,27) 1+d(z1,22)
d(z1,8z1) (21, T2) N d(z2, S71)d(22, T22)
1+ d(Zl, Z2) 1+ d(zb 22)

= Ad(z1,27) + B
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