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Abstract
In this paper, employing a new concept of generalized compatibility of a pair of
mappings defined on a product space, certain coupled coincidence point results of
mappings involved herein are obtained. We also deduce certain coupled fixed point
results without mixed monotone property of F. Our results generalize some recent
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integral equations are given here to illustrate the usability of the obtained results.
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1 Introduction
The existence of fixed points in ordered metric spaces has been investigated by Ran and
Reurings []. Recently,many researchers have obtained fixed point and coupled fixed point
results in partially ordered metrics spaces (see, e.g., [–]).
The study of coupled fixed points in partially ordered metric spaces was initiated by

Guo and Lakshmikantham [], and then attractedmany researchers, see for example [–
] and references therein. Bhaskar and Lakshmikantham [] introduced the notions of
mixed monotone mapping and coupled fixed point. As an application, they studied the
existence and uniqueness of a solution for a periodic boundary value problem associated
with a first order ordinary differential equation. Lakshmikantham and Ćirić in [] intro-
duced the concepts of coupled coincidence and coupled commonfixed point formappings
satisfying nonlinear contractive conditions in partially ordered complete metric spaces
and generalized the concept of the mixed monotone property. For more on coupled fixed
point theory we refer to the reviews (see, e.g. [, –]). Recently, Alotaibi and Alsulami
[] presented some coupled coincidence point results involving the (φ,ψ)-contractive
condition formappings having themixed g-monotone property in a partially orderedmet-
ric space which are generalizations of the results of Luong and Thuan [].
In this paper, we introduce the notion of generalized compatibility of a pair {F ,G}, of

mappings F ,G : X × X → X. We then employ this notion to obtain coupled coincidence
point results for such a pair of mappings involving (φ,ψ)-contractive condition without
mixed G-monotone property of F . Thus the derived coupled fixed point results do not
have the mixed monotone property of F . Our results represent new versions of the results
of Alotaibi and Alsulami [], Luong and Thuan [] and Bhaskar and Lakshmikantham
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[]. We also provide an example and an application to an integral equation to support
our results presented here.

2 Preliminaries
We now recall some basic definitions and important results for our use in the sequel.

Definition  [] Let (X,�) be a partially ordered set. The mapping F : X × X → X is
said to have the mixed monotone property if F is monotone non-decreasing in its first
argument and is monotone non-increasing in its second argument, that is, for all x,x ∈
X, x � x implies F(x, y) � F(x, y), for any y ∈ X and for all y, y ∈ X, y � y implies
F(x, y) � F(x, y), for any x ∈ X.

Lakshmikantham and Ćirić [] generalized the concept of a mixedmonotone property
as follows.

Definition  [] Let (X,�) be a partially ordered set and g a self mapping on X. A map-
ping F : X × X → X is said to have the mixed g-monotone property if for all x,x ∈ X,
gx � gx implies that F(x, y) � F(x, y), for any y ∈ X and for all y, y ∈ X, gy � gy im-
plies that F(x, y)� F(x, y), for any x ∈ X.

Definition  [] An element (x, y) ∈ X × X is called a coupled coincidence point of the
mappings F : X ×X → X and g : X → X if F(x, y) = gx and F(y,x) = gy.

Definition  [] Let X be a nonempty set, g a self mapping on X and F : X ×X → X and
g : X → X. We say that F and g are commutative if g(F(x, y)) = F(gx, gy), for all x, y ∈ X.

Definition  [] Let (X,d) be a metric space, F : X × X → X a mapping and g a self
mapping on X. A hybrid pair F , g is compatible if

lim
n→+∞d

(
g
(
F(xn, yn)

)
,F(gxn, gyn)

)
= 

and

lim
n→+∞d

(
g
(
F(yn,xn)

)
,F(gyn, gxn)

)
= 

whenever {xn} and {yn} are sequences in X, such that

lim
n→+∞F(xn, yn) = lim

n→+∞ gxn = x and lim
n→+∞F(yn,xn) = lim

n→+∞ gyn = y

with x, y ∈ X.

As given in [, ], � denotes the set of all functions φ : [,∞)→ [,∞) such that:
. φ is continuous and increasing,
. φ(t) =  if and only if t = ,
. φ(t + s) ≤ φ(t) + φ(s), for all t, s ∈ [, +∞).
Let � be the set of all the functions ψ : [,∞) → [,∞) such that limt→r ψ(t) >  for all

r >  and limt→+ ψ(t) = .
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The main result in [] is given by the next theorem.

Theorem  Let (X,�) be a partially ordered set and suppose there is a metric d on X such
that (X,d) is a complete metric space. Let F : X ×X → X be a mapping having the g-mixed
monotone property on X such that there exist two elements x, y ∈ X with

gx � F(x, y) and gy � F(y,x).

Suppose there exist φ ∈ � and ψ ∈ � such that

φ
(
d
(
F(x, y),F(u, v)

)) ≤ 

φ
(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)
(.)

for all x, y,u, v ∈ X, with gx � gu and gy � gv. Suppose F(X × X) ⊆ g(X), g is continuous
and compatible with F and also suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-decreasing sequence {yn} → y, then yn � y for all n.

Then there exist x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y,x), that is, F and g have
a coupled coincidence point in X .

Definition  Suppose that F ,G : X ×X → X are two mappings. F is said to be G-increas-
ing with respect to � if for all x, y,u, v ∈ X, with G(x, y) �G(u, v) we have F(x, y)� F(u, v).

Example  Let X = (,∞) be endowed with the natural ordering of real numbers ≤. De-
finemappings F ,G : X×X → X by F(x, y) = ln(x+y) andG(x, y) = x+y for all (x, y) ∈ X×X.
Note that F is G-increasing with respect to ≤.

Example  Let X = N endowed with the partial order � defined by x, y ∈ X × X, x � y
if and only if y divides x. Define the mappings F ,G : X × X → X by F(x, y) = xy and
G(x, y) = xy for all (x, y) ∈ X ×X. Then F is G-increasing with respect to �.

Definition  Anelement (x, y) ∈ X×X is called a coupled coincidence point ofmappings
F ,G : X ×X → X if F(x, y) =G(x, y) and F(y,x) =G(y,x).

Example  Let F ,G : R × R → R be defined by F(x, y) = xy and G(x, y) = 
 (x + y) for all

(x, y) ∈ X×X. Note that (, ), (, ), and (, ) are a coupled coincidence points of F andG.

Definition  Let F ,G : X×X → X. We say that the pair {F ,G} is generalized compatible
if {

d(F(G(xn, yn),G(yn,xn)),G(F(xn, yn),F(yn,xn)))→  as n→ +∞,
d(F(G(yn,xn),G(xn, yn)),G(F(yn,xn),F(xn, yn)))→  as n→ +∞,

whenever (xn) and (yn) are sequences in X such that

{
limn→∞ F(xn, yn) = limn→∞ G(xn, yn) = t,
limn→∞ F(yn,xn) = limn→∞ G(yn,xn) = t.
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Example  Let (R, | · |) be a usual metric space. Define mappings F ,G : X × X → X by
F(x, y) = x – y and G(x, y) = x + y for all x, y ∈ X. Let (xn) and (yn) be two sequences in
X such that

{
F(xn, yn) → tG(xn, yn) → t as n → +∞,
F(xn, yn) → tG(xn, yn) → t as n→ +∞.

We can prove easily that t = t =  and

{
d(F(G(xn, yn),G(yn,xn)),G(F(xn, yn),F(yn,xn)))→  as n→ +∞,
d(F(G(yn,xn),G(xn, yn)),G(F(yn,xn),F(xn, yn)))→  as n→ +∞.

Thus the pair {F ,G} satisfies the generalized compatibility.

Definition  Let F ,G : X×X → X be twomaps.We say that the pair {F ,G} is commuting
if

F
(
G(x, y),G(y,x)

)
=G

(
F(x, y),F(y,x)

)
for all x, y ∈ X.

Obviously, a commuting pair is a generalized compatible but not conversely in general.

3 Main results
Now we prove our main result.

Theorem  Let (X,�) be a partially ordered set such that there exists a complete metric
d on X. Assume that F ,G : X ×X → X are two generalized compatible mappings such that
F is G-increasing with respect to �,G is continuous and has the mixed monotone property,
and there exist two elements x, y ∈ X with

G(x, y)� F(x, y) and G(y,x) � F(y,x).

Suppose that there exist φ ∈ � and ψ ∈ � such that

φ
(
d
(
F(x, y),F(u, v)

)) ≤ 

φ
(
d
(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

))
–ψ

(
d(G(x, y),G(u, v)) + d(G(y,x),G(v,u))



)
(.)

for all x, y,u, v ∈ X, with G(x, y) � G(u, v) and G(y,x) � G(v,u). Suppose that for any x, y ∈
X, there exist u, v ∈ X such that

{
F(x, y) =G(u, v),
F(y,x) =G(v,u).

(.)

Also suppose that either
(a) F is continuous or
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(b) X has the following properties:
(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Then F and G have a coupled coincidence point in X.

Proof Let x, y ∈ X be such thatG(x, y) � F(x, y) and F(y,x) �G(y,x) (such points
exist by hypothesis). From (.), there exists (x, y) ∈ X ×X such that F(x, y) =G(x, y)
and F(y,x) =G(y,x). Continuing this process, we can construct two sequences {xn} and
{yn} in X such that

F(xn, yn) =G(xn+, yn+),F(yn,xn) =G(yn+,xn+) for all n ∈ N. (.)

First we show that for all n ∈N, we have

G(xn, yn) �G(xn+, yn+) and G(yn+,xn+) �G(yn,xn). (.)

As G(x, y) � F(x, y) and F(y,x) �G(y,x) and as F(x, y) =G(x, y) and F(y,x) =
G(y,x), we have G(x, y) �G(x, y) and G(y,x) �G(y,x). Thus (.) holds for n = .
Suppose now that (.) holds for some fixed n ∈ N. Since F is G-increasing with respect
to �, we have

G(xn+, yn+) = F(xn, yn) � F(xn+, yn+) =G(xn+, yn+)

and

G(yn+,xn+) = F(yn+,xn+) � F(yn,xn) =G(yn+,xn+).

Hence (.) holds for all n ∈ N. For all n ∈N, denote

δn = d
(
G(xn, yn),G(xn+, yn+)

)
+ d

(
G(yn,xn),G(yn+,xn+)

)
. (.)

We can suppose that δn >  for all n ∈N. If not, (xn, yn) will be a coincidence point and the
proof is finished. We claim that for any n ∈N, we have

φ(δn+) ≤ φ(δn). (.)

Since G(xn, yn) � G(xn+, yn+) and G(yn,xn) � G(yn+,xn+), letting x = xn, y = yn, u = xn+
and v = yn+ in (.) and using (.), we get

φ
(
d
(
G(xn+, yn+),G(xn+, yn+)

))
= φ

(
d
(
F(xn, yn),F(xn+, yn+)

))
≤ 


φ
(
d
(
G(xn, yn),G(xn+, yn+)

)
+ d

(
G(yn,xn),G(yn+,xn+)

))
–ψ

(
d(G(xn, yn),G(xn+, yn+)) + d(G(yn,xn),G(yn+,xn+))



)

=


φ(δn) –ψ

(
δn



)
. (.)
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Similarly we have

φ
(
d
(
G(yn+,xn+),G(yn+,xn+)

))
= φ

(
d
(
F(yn+,xn+),F(yn,xn)

))
≤ 


φ
(
d
(
G(yn+,xn+),G(yn,xn)

)
+ d

(
G(xn+, yn+),G(xn, yn)

))
–ψ

(
d(G(yn+,xn+),G(yn,xn)) + d(G(xn+, yn+),G(xn, yn))



)

=


φ(δn) –ψ

(
δn



)
. (.)

Summing (.) and (.), we obtain

φ(δn+) ≤ φ(δn) – ψ
(

δn



)
. (.)

Sinceφ is non-decreasing, it follows that the sequence (δn) ismonotone decreasing. There-
fore, there is some δ ≥  such that limn→+∞ δn = δ+. We shall show that δ = . Assume on
contrary that δ > . Then taking the limit as n→ +∞ (equivalently, δn → δ) in (.), using
the fact that limn→r ψ(t) >  for all r >  and φ is continuous, we have

φ(δ) = lim
n→+∞φ(δn) ≤ lim

n→+∞

[
φ(δn–) – ψ

(
δn–



)]

= φ(δ) –  lim
δn–→δ

ψ

(
δn–



)
< φ(δ)

a contradiction. Thus δ = , that is

lim
n→+∞

[
d
(
G(xn, yn),G(xn+, yn+)

)
+ d

(
G(yn,xn),G(yn+,xn+)

)]
= lim

n→+∞φ(δn) = . (.)

We shall prove that (G(xn, yn),G(yn,xn)) is a Cauchy sequence in X × X endowed with
the metric � defined by �((x, y), (u, v)) = d(x,u) + d(y, v) for all (x, y), (u, v) ∈ X × X. If
(G(xn, yn),G(yn,xn)) is not a Cauchy sequence in (X × X,�). Then there exists ε >  for
which we can find two sequences of positive integers (m(k)) and (n(k)) such that for all
positive integer k with n(k) >m(k) > k, we have

{
�((G(xm(k), ym(k)),G(ym(k),xm(k))), (G(xn(k), yn(k)),G(yn(k),xn(k)))) > ε,
�((G(xm(k), ym(k)),G(ym(k),xm(k))), (G(xn(k)–, yn(k)–),G(yn(k)–,xn(k)–))) ≤ ε.

(.)

By definition of the metric �, we have

dk = d
(
G(xm(k), ym(k)),G(xn(k), yn(k))

)
+ d

(
G(ym(k),xm(k)),G(yn(k),xn(k))

)
> ε (.)

and

d
(
G(xm(k), ym(k)),G(xn(k)–, yn(k)–)

)
+ d

(
G(ym(k),xm(k)),G(yn(k)–,xn(k)–)

) ≤ ε. (.)
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Further from (.) and (.), for k ≥ , we have

ε < dk

≤ d
(
G(xm(k), ym(k)),G(xn(k)–, yn(k)–)

)
+ d

(
G(xn(k)–, yn(k)–),G(xn(k), yn(k))

)
+ d

(
G(ym(k),xm(k)),G(yn(k)–,xn(k)–)

)
+ d

(
G(yn(k)–,xn(k)–),G(yn(k),xn(k))

)
≤ ε + δn(k)–.

Taking the limit as k → +∞ in the above inequality, we have, by (.),

lim
k→+∞

dk = ε+. (.)

Again, for all k ≥ , we have

dk = d
(
G(xm(k), ym(k)),G(xn(k), yn(k))

)
+ d

(
G(ym(k),xm(k)),G(yn(k),xn(k))

)
≤ d

(
G(xm(k), ym(k)),G(xm(k)+, ym(k)+)

)
+ d

(
G(xm(k)+, ym(k)+),G(xn(k)+, yn(k)+)

)
+ d

(
G(xn(k)+, yn(k)+),G(xn(k), yn(k))

)
+ d

(
G(ym(k),xm(k)),G(ym(k)+,xm(k)+)

)
+ d

(
G(ym(k)+,xm(k)+),G(yn(k)+,xn(k)+)

)
+ d

(
G(yn(k)+,xn(k)+),G(yn(k),xn(k))

)
= d

(
G(xm(k), ym(k)),G(xm(k)+, ym(k)+)

)
+ d

(
G(ym(k),xm(k)),G(ym(k)+,xm(k)+)

)
+ d

(
G(xm(k)+, ym(k)+),G(xn(k)+, yn(k)+)

)
+ d

(
G(ym(k)+,xm(k)+),G(yn(k)+,xn(k)+)

)
+ d

(
G(xn(k)+, yn(k)+),G(xn(k), yn(k))

)
+ d

(
G(yn(k)+,xn(k)+),G(yn(k),xn(k))

)
.

Hence, for all k ≥ ,

dk ≤ δm(k) + δn(k) + d
(
G(xm(k)+, ym(k)+),G(xn(k)+, yn(k)+)

)
+ d

(
G(ym(k)+,xm(k)+),G(yn(k)+,xn(k)+)

)
. (.)

Using the property of φ, we have

φ(dk) = φ
(
δm(k) + δn(k) + d

(
G(xm(k)+, ym(k)+),G(xn(k)+, yn(k)+)

)
+ d

(
G(ym(k)+,xm(k)+),G(yn(k)+,xn(k)+)

))
≤ φ(δm(k) + δn(k)) + φ

(
d
(
G(xm(k)+, ym(k)+),G(xn(k)+, yn(k)+)

))
+ φ

(
d
(
G(ym(k)+,xm(k)+),G(yn(k)+,xn(k)+)

))
.

From (.), (.), and (.), for all k ≥ , we have

φ
(
d
(
G(xm(k)+, ym(k)+),G(xn(k)+, yn(k)+)

))
= φ

(
d
(
F(xm(k), ym(k)),F(xn(k), yn(k))

))
≤ 


φ
(
d
(
G(xm(k), ym(k)),G(xn(k), yn(k))

)
+ d

(
G(ym(k),xm(k)),G(yn(k),xn(k))

))
–ψ

(
d(G(xm(k), ym(k)),G(xn(k), yn(k))) + d(G(ym(k),xm(k)),G(yn(k),xn(k)))



)
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=


φ(dk) –ψ

(
dk


)

≤ 

φ(dk). (.)

Also from (.), (.), and (.), for all k ≥ , we have

φ
(
d
(
G(ym(k)+,xm(k)+),G(yn(k)+,xn(k)+)

))
= φ

(
d
(
F(ym(k),xm(k)),F(yn(k),xn(k))

))
≤ 


φ
(
d
(
G(ym(k),xm(k)),G(yn(k),xn(k))

)
+ d

(
G(xm(k), ym(k)),G(xn(k), yn(k))

))
–ψ

(
d(G(ym(k),xm(k)),G(yn(k),xn(k))) + d(G(xm(k), ym(k)),G(xn(k), yn(k)))



)

=


φ(dk) –ψ

(
dk


)

≤ 

φ(dk). (.)

Inserting (.) and (.) in (.), we have

φ(dk) ≤ φ(δm(k) + δn(k)) + φ(dk) – ψ
(
dk


)
. (.)

Letting k → +∞ in the above inequality, we obtain

φ(ε) ≤ φ() + φ(ε) –  lim
k→+∞

ψ

(
dk


)
= φ(ε) –  lim

dk→ε+
ψ

(
dk


)
< φ(ε), (.)

which is a contradiction. Hence (G(xn, yn),G(yn,xn)) is a Cauchy sequence in (X × X,�),
which implies that (G(xn, yn)) and (G(yn,xn)) are Cauchy sequences in (X,d). Now, since
(X,d) is complete, there exist x, y ∈ X such that

lim
n→+∞G(xn, yn) = lim

n→+∞F(xn, yn) = x and

lim
n→+∞G(yn,xn) = lim

n→+∞F(yn,xn) = y.
(.)

Since the pair {F ,G} satisfies the generalized compatibility, from (.), we get

lim
n→+∞d

(
F
(
G(xn, yn),G(yn,xn)

)
,G

(
F(xn, yn),F(yn,xn)

))
=  (.)

and

lim
n→+∞d

(
F
(
G(yn,xn),G(xn, yn)

)
,G

(
F(yn,xn),F(xn, yn)

))
= . (.)

Suppose that F is continuous. For all n ≥ , we have

d
(
G(x, y),F

(
G(xn, yn),G(yn,xn)

))
≤ d

(
G(x, y),G

(
F(xn, yn),F(yn,xn)

))
+ d

(
G

(
F(xn, yn),F(yn,xn)

)
,F

(
G(xn, yn),G(yn,xn)

))
.
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Taking the limit as n→ +∞, using (.), (.), and the fact that F andG are continuous,
we have

G(x, y) = F(x, y). (.)

Similarly, using (.), (.), and the fact that F and G are continuous, we have

G(y,x) = F(y,x). (.)

Thus (x, y) is a coupled coincidence point of F andG. Now, suppose that (b) holds. By (.)
and (.), we have (G(xn, yn)) is non-decreasing sequence, G(xn, yn) → x and (G(yn,xn))
is non-decreasing sequence, G(yn,xn)→ y as n→ +∞. Thus for all n ∈N, we have

G(xn, yn) � x and G(yn,xn) � y. (.)

Since the pair {F ,G} satisfies the generalized compatibility and G is continuous, by (.)
and (.), we have

lim
n→+∞G

(
G(xn, yn),G(yn,xn)

)
= G(x, y)

= lim
n→+∞G

(
F(xn, yn),F(yn,xn)

)
= lim

n→+∞F
(
G(xn, yn),G(yn,xn)

)
(.)

and

lim
n→+∞G

(
G(yn,xn),G(xn, yn)

)
= G(y,x)

= lim
n→+∞G

(
F(yn,xn),F(xn, yn)

)
= lim

n→+∞F
(
G(yn,xn),G(xn, yn)

)
. (.)

Now, we have

d
(
G(x, y),F(x, y)

) ≤ lim
n→+∞d

(
G

(
F(xn, yn),F(yn,xn)

)
,F(x, y)

)
= lim

n→+∞d
(
F
(
G(xn, yn),G(yn,xn)

)
,F(x, y)

)
.

Since G has the mixed monotone property, it follows from (.) that G(G(xn, yn),
G(yn,xn)) �G(x, y) andG(G(yn,xn),G(xn, yn))�G(y,x). Now using (.), (.), and (.),
we get

φ
(
d
(
G(x, y),F(x, y)

))
≤ lim

n→+∞


φ
(
d
(
G

(
G(xn, yn),G(yn,xn)

)
,G(x, y)

)
+ d

(
G

(
G(yn,xn),G(xn, yn)

)
,G(y,x)

))
–ψ

(
d(G(G(xn, yn),G(yn,xn)),G(x, y)) + d(G(G(yn,xn),G(xn, yn)),G(y,x))



)
.

Then we obtain G(x, y) = F(x, y). Similarly, we can show that G(y,x) = F(y,x). �
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The commuting maps {F ,G} are obviously generalized compatible, thus we obtain the
following.

Corollary  Let (X,�) be a partially ordered set such that there exists a complete met-
ric d on X. Assume that F ,G : X × X → X are two commuting mappings such that F is
G-increasing with respect to �,G is continuous and has the mixedmonotone property, and
there exist two elements x, y ∈ X with

G(x, y)� F(x, y) and G(y,x) � F(y,x).

Suppose that the inequalities (.) and (.) hold and either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Then F and G have a coupled coincidence point in X.

Definition  Let (X,�) be a partially ordered set, F : X ×X → X and g : X → X. We say
that F is g-increasing with respect to � if for any x, y ∈ X,

gx � gx implies F(x, y) � F(x, y)

and

gy � gy implies F(x, y) � F(x, y).

Now, we deduce an analogous result to Theorem . of Alotaibi and Alsulami [] (The-
orem ) without g-mixed monotone property of F .

Corollary  Let (X,�) be a partially ordered set and suppose there is ametric d on X such
that (X,d) is a complete metric space. Let F : X × X → X and g : X → X be two mappings
such that F is g-increasing with respect to �, and there exist φ ∈ � and ψ ∈ � such that

φ
(
d
(
F(x, y),F(u, v)

)) ≤ 

φ
(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)

for all x, y,u, v ∈ X,with gx� gu and gy� gv. Suppose that F(X×X) ⊆ g(X), g is continuous
and monotone increasing with respect to �, and the pair {F , g} is compatible. Also suppose
that either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

If there exist two elements x, y ∈ X with

gx � F(x, y) and gy � F(y,x).

Then F and g have a coupled coincidence point.
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Corollary  Let (X,�) be a partially ordered set and suppose there is ametric d on X such
that (X,d) is a complete metric space. Let F : X × X → X and g : X → X be two mappings
such that F is g-increasing with respect to �, and there exist φ ∈ � and ψ ∈ � such that

φ
(
d
(
F(x, y),F(u, v)

)) ≤ 

φ
(
d(gx, gu) + d(gy, gv)

)
–ψ

(
d(gx, gu) + d(gy, gv)



)

for all x, y,u, v ∈ X,with gx� gu and gy� gv. Suppose that F(X×X) ⊆ g(X), g is continuous
and monotone increasing with respect to �, and the pair {F , g} is commuting. Also suppose
that either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

If there exist two elements x, y ∈ X with

gx � F(x, y) and gy � F(y,x).

Then F and g have a coupled coincidence point.

Definition  Let (X,�) be a partially ordered set, F : X × X → X. We say that F is in-
creasing with respect to � if for any x, y ∈ X,

x � x implies F(x, y) � F(x, y)

and

y � y implies F(x, y) � F(x, y).

The following result provides the conclusion of the main results of Luong and Thuan
[] without the mixed monotone property of the involved mapping F .

Corollary  [] Let (X,�) be a partially ordered set and suppose there is a metric d on
X such that (X,d) is a complete metric space. Assume that F : X ×X → X is an increasing
map with respect to � and there exist two elements x, y ∈ X with

x � F(x, y) and y � F(y,x).

Suppose there exist φ ∈ � and ψ ∈ � such that

φ
(
d
(
F(x, y),F(u, v)

)) ≤ 

φ
(
d(x,u) + d(y, v)

)
–ψ

(
d(x,u) + d(y, v)



)

for all x, y,u, v ∈ X, with x � u and y� v. Also suppose that either

http://www.fixedpointtheoryandapplications.com/content/2014/1/62
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(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Then F has a coupled fixed point.

Corollary  Let (X,�) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Assume that F : X × X → X be an increasing
map with respect to � and there exist two elements x, y ∈ X with

x � F(x, y) and y � F(y,x).

Suppose there exists ψ ∈ � such that

d
(
F(x, y),F(u, v)

) ≤ d(x,u) + d(y, v)


–ψ

(
d(x,u) + d(y, v)



)

for all x, y,u, v ∈ X, with x � u and y� v. Also suppose that either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Then F has a coupled fixed point.

The conclusion of the main results of Bhaskar and Lakshmikantham [] without the
mixed monotone property of the involved mapping F is obtained in the following corol-
lary.

Corollary  Let (X,�) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Assume that F : X × X → X be an increasing
map with respect to � and there exist two elements x, y ∈ X with

x � F(x, y) and y � F(y,x).

Suppose there exists a real number k ∈ [, ) such that

d
(
F(x, y),F(u, v)

) ≤ k

(
d(x,u) + d(y, v)

)

for all x, y,u, v ∈ X, with x � u and y� v. Also suppose that either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Then F has a coupled fixed point.
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Now we prove the uniqueness of the coupled coincidence point. Note that if (X,�) is a
partially ordered set, then we endow the product X × X with the following partial order
relation, for all (x, y), (u, v) ∈ X ×X:

(x, y) � (u, v) if and only if G(x, y)�G(u, v) and G(y,x) �G(v,u),

where G : X ×X → X ×X is one-one.

Theorem  In addition to the hypotheses of Theorem , suppose that for every (x, y),
(z, t) in X × X, there exists another (u, v) in X × X which is comparable to (x, y) and (z, t),
then F and G have a unique coupled coincidence point.

Proof From Theorem , the set of coupled coincidence points of F and G is nonempty.
Suppose (x, y) and (z, t) are coupled coincidence points of F and G, that is,

{
F(x, y) =G(x, y),
F(y,x) =G(y,x)

and
{
F(z, t) =G(z, t),
F(t, z) =G(t, z).

Now we prove that G(x, y) =G(z, t) and G(y,x) =G(t, z). By assumption, there exists (u, v)
in X × X that is comparable to (x, y) and (z, t). We define sequences {G(un, vn)} and
{G(vn,un)} as follows, with u = u, v = v:

F(un, vn) =G(un+, vn+), F(vn,un) =G(vn+,un+) for all n ∈N.

Since (u, v) is comparable to (x, y), we assume that (x, y) � (u, v) = (u, v). Which implies
G(x, y) �G(u, v) andG(y,x)�G(v,u).We suppose that (x, y) � (un, vn) for some n. We
prove that

(x, y) � (un+, vn+).

Since F isG increasing, we haveG(x, y)�G(un, vn) implies F(x, y)� F(un, vn) andG(y,x) �
G(vn,un) implies F(y,x)� F(vn,un). Now

G(x, y) = F(x, y)� F(un, vn) =G(un+, vn+)

and

G(y,x) = F(y,x)� F(vn,un) =G(vn+,un+).

Thus we have

(x, y) � (un, vn) for all n. (.)
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Using (.) and (.), we have

φ
(
d
(
G(x, y),G(un+, vn+)

))
= φ

(
d
(
F(x, y),F(un, vn)

))
≤ 


φ
(
d
(
G(x, y),G(un, vn)

)
+ d

(
G(y,x),G(vn,un)

))
–ψ

(
d(G(x, y),G(un, vn)) + d(G(y,x),G(vn,un))



)
. (.)

Similarly

φ
(
d
(
G(vn+,un+),G(y,x)

))
= φ

(
d
(
F(vn,un),F(y,x)

))
≤ 


φ
(
d
(
G(vn,un),G(y,x)

)
+ d

(
G(un, vn),G(x, y)

))
–ψ

(
d(G(vn,un),G(y,x)) + d(G(un, vn),G(x, y))



)
. (.)

Using (.), (.), and the property of φ, we have

φ
(
d
(
G(x, y),G(un+, vn+)

)
+ d

(
G(y,x),G(vn+,un+)

))
≤ φ

(
d
(
F(x, y),F(un, vn)

))
+ φ

(
d
(
G(vn+,un+),G(y,x)

))
≤ φ

(
d
(
G(x, y),G(un, vn)

)
+ d

(
G(y,x),G(vn,un)

))
– ψ

(
d(G(x, y),G(un, vn)) + d(G(y,x),G(vn,un))



)
, (.)

which implies that

φ
(
d
(
G(x, y),G(un+, vn+)

)
+ d

(
G(y,x),G(vn+,un+)

))
≤ φ

(
d
(
G(x, y),G(un, vn)

)
+ d

(
G(y,x),G(vn,un)

))
.

By using the property of φ, we get

d
(
G(x, y),G(un+, vn+)

)
+ d

(
G(y,x),G(vn+,un+)

)
≤ d

(
G(x, y),G(un, vn)

)
+ d

(
G(y,x),G(vn,un)

)
.

This implies that the sequence {d(G(x, y),G(un, vn)) + d(G(y,x),G(vn,un))} is decreasing.
Therefore, there exists l ≥  such that

lim
n→+∞

[
d
(
G(x, y),G(un, vn)

)
+ d

(
G(y,x),G(vn,un)

)]
= l. (.)

Nowwe show that l = .We suppose on the contrary that l > . Taking the limit as n→ ∞
in (.) and using the property of ψ , we have

φ(l)≤ φ(l) –  lim
n→+∞ψ

(
d(G(x, y),G(un, vn)) + d(G(y,x),G(vn,un))



)
< φ(l),
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a contradiction. Thus l = , that is,

lim
n→+∞

[
d
(
G(x, y),G(un, vn)

)
+ d

(
G(y,x),G(vn,un)

)]
= . (.)

This implies that

lim
n→+∞d

(
G(x, y),G(un, vn)

)
= lim

n→+∞d
(
G(y,x),G(vn,un)

)
= .

Similarly, we show that

lim
n→+∞d

(
G(z, t),G(un, vn)

)
= lim

n→+∞d
(
G(t, z),G(vn,un)

)
= . (.)

Using (.) and (.), we have G(x, y) =G(z, t) and G(y,x) =G(t, z). �

Example  Let X = [, ] endowed with the natural ordering of real numbers.We endow
X with the standard metric X

d(x, y) = |x – y|

for all x, y ∈ X. Then (X,d) is a completemetric space. Define themappings F ,G : X×X →
X as follows:

F(x, y) =

{
x–y

 if x≥ y,
 if x < y

and

G(x, y) =

{
x – y if x≥ y,
 if x < y.

First we prove that F is G-increasing.
Let (x, y), (u, v) ∈ X ×X with G(x, y) ≤G(u, v). We consider the following cases.
Case : If x < y, then F(x, y) =  ≤ F(u, v).
Case : If x≥ y, and if u ≥ v, then

G(x, y) ≤G(u, v) ⇒ x – y ≤ u – v ⇒ x – y


≤ u – v


⇒ F(x, y)≤ F(u, v).

But if u < v, then

G(x, y) ≤G(u, v) ⇒  ≤ x – y ≤  ⇒ x = y ⇒ F(x, y) =  ≤ F(u, v).

Thus we see that F is G-increasing.
Now we prove that for any x, y ∈ X, there exist u, v ∈ X such that

{
F(x, y) =G(u, v),
F(y,x) =G(v,u).

Let (x, y) ∈ X ×X be fixed. We consider the following cases.
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Case : If x = y, then we have F(x, y) =  =G(x, y) and F(y,x) =  =G(y,x).
Case : If x > y, then we have F(x, y) = x–y

 =G( x ,
y
 ) and F(y,x) =  =G( y ,

x
 ).

Case : If x < y, then we have F(x, y) =  =G( x ,
y
 ) and F(y,x) = y–x

 =G( y ,
x
 ).

Now we prove that G is continuous and has the mixed monotone property.
ClearlyG is continuous. Let (x, y) ∈ X×X be fixed. Suppose that x,x ∈ X are such that

x < x. We discuss the following cases.
Case : If x < y, then we have G(x, y) =  ≤ G(x, y).
Case : If x > x > y, then we have G(x, y) = x – y ≤ x – y =G(x, y).
Similarly, we can show that if y, y ∈ X are such that y < y, then G(x, y) ≥G(x, y).
Now, we prove that the pair {F ,G} satisfies the generalized compatibility hypothesis.
Let (xn) and (yn) be two sequences in X such that

t = lim
n→+∞F(xn, yn) = lim

n→+∞G(xn, yn)

and

t = lim
n→+∞F(yn,xn) = lim

n→+∞G(yn,xn).

Then we must have t = t =  and one can easily prove that

{
limn→+∞ d(F(G(xn, yn),G(yn,xn)),G(F(xn, yn),F(yn,xn))) = ,
limn→+∞ d(F(G(yn,xn),G(xn, yn)),G(F(yn,xn),F(xn, yn))) = .

Now we prove that there exist two elements x, y ∈ X with

G(x, y)� F(x, y) and G(y,x) � F(y,x).

Since we have G(,  ) =  = F(,  ) and G(  , ) =

 ≥ 

 = F(  , ). Now, let φ : [,∞) →
[,∞) be defined as φ(t) = 

 t, for all t ∈ [,∞) and let ψ : [,∞) → [,∞) be defined as
ψ(t) = 

 t, for all t ∈ [,∞). Clearly φ ∈ � and ψ ∈ � . We next verify the contraction (.)
for all x, y,u, v ∈ X, with G(x, y) �G(u, v) and G(v,u)�G(y,x). We have

φ
(
d
(
F(x, y),F(u, v)

))
=




[
d
(
F(x, y),F(u, v)

)]
=




∣∣F(x, y) – F(u, v)
∣∣

=



∣∣G(x, y) –G(u, v)
∣∣

=



|G(x, y) –G(u, v)|


≤ 


|G(x, y) –G(u, v)| + |G(y,x) –G(v,u)|


=



|G(x, y) –G(u, v)| + |G(y,x) –G(v,u)|


–



|G(x, y) –G(u, v)| + |G(y,x) –G(v,u)|


=


∣∣G(x, y) –G(u, v)

∣∣ + ∣∣G(y,x) –G(v,u)
∣∣
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–



|G(x, y) –G(u, v)| + |G(y,x) –G(v,u)|


=


φ
(
d
(
G(x, y),G(u, v)

)
+ d

(
G(y,x),G(v,u)

))
–ψ

(
d(G(x, y),G(u, v)) + d(G(y,x),G(v,u))



)
.

Hence condition (.) is satisfied. Thus all the requirements of Theorem  are satisfied
and (, ) is a coupled coincidence point of F and G.

4 Applications to the integral equations
Fixed point theorems for monotone operators in ordered metric spaces are widely inves-
tigated and have found various applications in differential and integral equations (see [,
, , ] and references therein). Motivated by the work in [, –], we study the exis-
tence of solutions for a system of nonlinear integral equations using the results proved in
the previous section.
Let 	 denote the class of those functions θ : [,∞) → [,∞) which satisfies the follow-

ing conditions:
(i) θ is increasing.
(ii) There exists ψ ∈ � such that θ (t) = t

 –ψ( t ) for all t ∈ [,∞).
Consider the integral equation

x(t) =
∫ b

a

(
K(t, s) +K(t, s)

)(
f
(
s,x(s)

)
+ g

(
s,x(s)

))
ds + h(t) (.)

for all t ∈ [a,b]. We assume that K, K, f , and g satisfy the following conditions:
(i)  ≤ K(t, s),  ≤ K(t, s) for all t, s ∈ [a,b].
(ii) There exist λ,μ >  and θ ∈ 	 such that for all x, y ∈ R, x ≥ y,

 ≤ f (t,x) – f (t, y) ≤ λθ (x – y) and  ≤ g(t,x) – g(t, y) ≤ μθ (x – y).

(iii) We have

max{λ,μ} sup
t∈[a,b]

∫ b

a

(
K(t, s) +K(t, s)

)
ds≤ 


.

(iv) There exist continuous functions z,w : [a,b]→R such that

z(t) ≤
∫ b

a
K(t, s)

(
f
(
s, z(s)

)
+ g

(
s,w(s)

))
ds

+
∫ b

a
K(t, s)

(
f
(
s,w(s)

)
+ g

(
s, z(s)

))
ds + h(t)

and

w(t) ≥
∫ b

a
K(t, s)

(
f
(
s,w(s)

)
+ g

(
s, z(s)

))
ds

+
∫ b

a
K(t, s)

(
f
(
s, z(s)

)
+ g

(
s,w(s)

))
ds + h(t)

for all t ∈ [a,b].
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Theorem  Consider the integral equation (.) with K,K ∈ C([a,b]× [a,b],R), f , g ∈
C([a,b] × R,R) and h ∈ C([a,b],R) and suppose that the conditions (i)-(iv) are satisfied.
Then the integral equation (.) has a solution in C([a,b],R).

Proof LetX = C([a,b],R) denote the space of continuous functions defined on the interval
[a,b]. We endowed X with the metric d : X ×X →R defined by

d(x, y) = sup
t∈[a,b]

∣∣x(t) – y(t)
∣∣ for all x, y ∈ X.

It is clear that (X,d) is a complete metric space and (X,d,�) is a complete ordered metric
space if x � y whenever x(t) ≤ y(t) for all t ∈ [a,b]. Suppose {un} is a monotone non-
decreasing in X that converges to u ∈ X. Then for every t ∈ [a,b] the sequence of real
numbers

u(t) ≤ u(t)≤ · · · ≤ un(t)≤ · · ·

converges to u(t). Therefore for all t ∈ [a,b], n ∈ N, un(t) ≤ u(t). Hence un � u for all n.
Similarly, we can verify that limn v(t) of a monotone non-increasing sequence vn(t) in X
is a lower bound for all the elements in the sequence. That is, v � vn for all n. Therefore,
condition (b) of Corollary  holds. Also, X × X = C([a,b],R) × C([a,b],R) is a partially
ordered set if we define the following order relation on X × X, for all x, y,u, v ∈ X, with
x � u and y � v.
Define the mapping F : X ×X → X by

F(x, y)(t) =
∫ b

a
K(t, s)

(
f
(
s,x(s)

)
+ g

(
s, y(s)

))
ds

+
∫ b

a
K(t, s)

(
f
(
s, y(s)

)
+ g

(
s,x(s)

))
ds + h(t)

for all t ∈ [a,b]. Now we shall show that F is increasing. For x � x, that is, x(t) ≤ x(t)
for all t ∈ [a,b], we have

F(x, y)(t) – F(x, y)(t) =
∫ b

a
K(t, s)

(
f
(
s,x(s)

)
+ g

(
s, y(s)

))
ds

+
∫ b

a
K(t, s)

(
f
(
s, y(s)

)
+ g

(
s,x(s)

))
ds + h(t)

–
∫ b

a
K(t, s)

(
f
(
s,x(s)

)
+ g

(
s, y(s)

))
ds

–
∫ b

a
K(t, s)

(
f
(
s, y(s)

)
+ g

(
s,x(s)

))
ds – h(t)

=
∫ b

a
K(t, s)

(
f
(
s,x(s)

)
– f

(
s,x(s)

))
ds

+
∫ b

a
K(t, s)

(
g
(
s,x(s)

)
– g

(
s,x(s)

))
ds

≤ .
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Hence F(x, y)(t) ≤ F(x, y)(t) for all t ∈ [a,b], that is, F(x, y) � F(x, y). Similarly, if y � y,
that is y(t)≤ y(t) for all t ∈ [a,b], we have

F(x, y)(t) – F(x, y)(t) =
∫ b

a
K(t, s)

(
f
(
s,x(s)

)
+ g

(
s, y(s)

))
ds

+
∫ b

a
K(t, s)

(
f
(
s, y(s)

)
+ g

(
s,x(s)

))
ds + h(t)

–
∫ b

a
K(t, s)

(
f
(
s,x(s)

)
+ g

(
s, y(s)

))
ds

–
∫ b

a
K(t, s)

(
f
(
s, y(s)

)
+ g

(
s,x(s)

))
ds – h(t)

=
∫ b

a
K(t, s)

(
g
(
s, y(s)

)
– g

(
s, y(s)

))
ds

+
∫ b

a
K(t, s)

(
f
(
s, y(s)

)
– f

(
s, y(s)

))
ds

≤ .

Hence F(x, y)(t) ≤ F(x, y)(t) for all t ∈ [a,b], that is, F(x, y) � F(x, y). Thus F(x, y) is
increasing. Now, for x, y,u, v ∈ X such that x� u and v � y, we have

d
(
F(x, y)(t) – F(u, v)(t)

)
= sup

t∈[a,b]

∣∣F(x, y)(t) – F(u, v)(t)
∣∣

= sup
t∈[a,b]

∣∣∣∣
∫ b

a
K(t, s)

(
f
(
s,x(s)

)
+ g

(
s, y(s)

))
ds

+
∫ b

a
K(t, s)

(
f
(
s, y(s)

)
+ g

(
s,x(s)

))
ds + h(t)

–
(∫ b

a
K(t, s)

(
f
(
s,u(s)

)
+ g

(
s, v(s)

))
ds

+
∫ b

a
K(t, s)

(
f
(
s, v(s)

)
+ g

(
s,u(s)

))
ds + h(t)

)∣∣∣∣
= sup

t∈[a,b]

∣∣∣∣
∫ b

a
K(t, s)

[(
f
(
s,x(s)

)
– f

(
s,u(s)

))
+

(
g
(
s, y(s)

)
– g

(
s, v(s)

))]
ds

+
∫ b

a
K(t, s)

[(
f
(
s, y(s)

)
– f

(
s, v(s)

))
+

(
g
(
s,x(s)

)
– g

(
s,u(s)

))]
ds

∣∣∣∣
≤ sup

t∈[a,b]

∣∣∣∣
∫ b

a
K(t, s)

[
λθ

(
x(s) – u(s)

)
+μθ

(
y(s) – v(s)

)]
ds

+
∫ b

a
K(t, s)

[
λθ

(
y(s) – v(s)

)
+μθ

(
x(s) – u(s)

)]
ds

∣∣∣∣
≤max{λ,μ} sup

t∈[a,b]

∫ b

a

(
K(t, s) +K(t, s)

)
× [

θ
(
x(s) – u(s)

)
+ θ

(
y(s) – v(s)

)]
ds.
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As the function θ is increasing and u(t) ≥ x(t) and y(t) ≥ v(t) for all t ∈ [a,b], then θ (x(s) –
u(s))≤ θ (d(x,u)), θ (y(s) – v(s))≤ θ (d(y, v)), for all s ∈ [a,b], we obtain

d
(
F(x, y),F(u, v)

) ≤ max{λ,μ} · [θ(
d(x,u)

)
+ θ

(
d(y, v)

)] · sup
t∈[a,b]

∫ b

a

(
K(t, s) +K(t, s)

)

≤ 

[
θ
(
d(x,u)

)
+ θ

(
d(y, v)

)]
≤ θ

(
d(x,u) + d(y, v)

)
≤ d(x,u) + d(y, v)


–ψ

(
d(x,u) + d(y, v)



)
.

Therefore, for x� u and v� y, we have

d
(
F(x, y),F(u, v)

) ≤ d(x,u) + d(y, v)


–ψ

(
d(x,u) + d(y, v)



)
.

Also from condition (iv) we have z(t) ≤ F(z,w)(t) and F(w, z)(t) ≤ w(t) for all t ∈ [a,b], that
is, z � F(z,w) and F(w, z) � w. Thus all of the hypotheses of Corollary  are satisfied and
the mapping F has a coupled fixed point that is a solution in X = C([a,b],R) of the integral
equation (.). �
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