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Abstract

In this paper, we introduce a new explicit iterative algorithm for finding a solution for
a class of variational inequalities over the common fixed points set of a finite family of
nonexpansive mappings in Hilbert spaces. Under suitable assumptions, we prove that
the sequence generated by the iterative algorithm converges strongly to the unique
solution of the variational inequality. Our result improves and extends the
corresponding results announced by many others. At the end of the paper, we
extend our result to the more broad family of A-strictly pseudo-contractive mappings.
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1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Throughout this
paper, we always assume that T is a nonexpansive operator on H. The fixed point set of T
is denoted by Fix(T), i.e., Fix(T) = {x € H : Tx = x}. The typical problem is to minimize a
quadratic function on a real Hilbert space H:

1
in — (Ax, x) — (x,u), 1.1
1;16132( x,%x) — (%, u) (L1)
where C is a nonempty closed convex subset of H, u is a given point in H and A is a strongly
positive bounded linear operator on H.

In 2003, Xu [1] introduced the following iterative scheme:

Xns1 = ot + ([ =, A) Ty, (1.2)

where u is some point of H and {«,} is a sequence in (0,1). He proved that the sequence
{x,} converges strongly to the unique solution of the minimization problem (1.1) with C =
Fix(T).

In 2006, Marino and Xu [2] considered the viscosity method on the iterative scheme
(1.2), and they gave the following general iterative method:

X1 = Y f (xn) + (I — 2 A) TXy, (13)
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where f is a contraction on H. They proved the above sequence {x,} converges strongly

to the unique solution of the variational inequality
((A —yf)x*,x - x*) >0, VxeFix(T),
which is the optimality condition for the minimization problem

1
min —(Ax,x) — h(x),
x€Fix(T) 2

where / is a potential function for yf (i.e., /' (x) = yf(x) for x € H).
In 2001, Yamada [3] considered the following hybrid iterative method:

Xn+l = Txn - M)\nF(Txn): (14)

where F is L-Lipschitzian continuous and n-strongly monotone operator with L > 0, n > 0
and 0 < p < 2n/L2. Under some appropriate conditions, the sequence {x,} generated by
(1.4) converges strongly to the unique solution of the variational inequality

(Fx*,x—x*)>0, VaxeFix(T).

Combining (1.3) and (1.4), Tian [4] considered the following general viscosity type iterative
method:

Xns1 = o Vf (%) + (I — pet, F) Ty, (1.5)

Improving and extending the corresponding results given by Marino et al., he proved that
the sequence {x,} generated by (1.5) converges strongly to the unique solution x* € Fix(T)
of the variational inequality

((yf —uF)%,x-%) <0, VxeFix(T).

In [5], Tian generalized the iterative method (1.5) replacing the contraction operator f
with a Lipschitzian continuous operator V to solve the following variational inequality:

((yV —uP)xx-% <0, VxeFix(T). (1.6)

On the other hand, let {T;}¥, be a finite family of nonexpansive self-mappings of H.
Assume ﬂﬁl Fix(T;) # 9. In [1], Xu also defined the following sequence {x,}:

Xner = pth + ([ — 0, A)T 1%, 120, L7)

where T, = T), mod N and the mod function takes values in {1,2,...,N}. He found that the
sequence {x,} generated by (1.7) converges strongly to the unique solution of the mini-
mization problem (1.1) with C = ﬂf\il Fix(T;) under suitable conditions on {«,} and the
following additional condition on {7,}:

F(Ty---TyT)=F(T\Ty---T3Ty) =--- = F(Tn_1--- T1 Tn). (1.8)

In fact, there are many nonexpansive mappings which do not satisfy (1.8).
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In 1999, Atsushiba and Takahashi [6] defined the W,,-mappings generated by T3, T, ...,
Tn and {yu1} Vuobs - vun} C [0,1] as follows:

Un,O = 1;
Uyy = Yui Tillyo + 1= yu)l,

Uyp = Yo Tolyy + (1= yu2)l,

Uyn-1 = YN InaaUnn-2 + (L= Yun-1)],

Wn = Un,N = Vn,NTNUn,N—l + (1 - yn,N)I'

From [6, Lemma 3.1], we know that F(W,,) = ﬂﬁl F(T)).
In 2006, Yao [7] introduced the following iterative method:

Xn+l = anyf(xn) + Ian + ((1 - ,3)1 - anA) ann- (19)

Without the condition (1.8), he proved that the sequence {x,} generated by (1.9) converges

strongly to the unique solution of the following variational inequality:
N
((A —yf)x*, x* —x) <0, Vxe ﬂFix(T,'), (1.10)
i=1
which is the optimality condition for the minimization problem
in - (Ax,2) ~ () (1)
min = (Ax, x) — , .
xeC 2 o x

where C = ﬂf\il Fix(T;) and 4 is a potential function for yf (i.e., /' (x) = yf(x)).
Shang et al. [8] introduced the following scheme:

Yn = Bun + (1= B,) Wy,
Xn+l = Olnyf(xn) +( - OlnA)yn-

(1.12)

Under certain appropriate conditions, without (1.8), they proved that {x,,} defined by (1.12)
converges strongly to the unique solution of (1.10) which is also the optimality condition
for (1.11).

Recently, combining the Krasnoselskii-Mann type algorithm and the steepest-descent

method, Buong and Duong [9] introduced a new explicit iterative algorithm:
a1 = (L= Bk + BATa T -+ Trx, (1.13)
where TX = (1 - I + i T; fori=1,2,...,N, Tx = I - ApuF, and F is an L-Lipschitz con-

tinuous and 7n-strongly monotone mapping. Under some appropriate assumptions, they

proved that the sequence {x;} converges strongly to the unique solution of the following
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variational inequality:

N
(F(x*),x —x*) >0, Vxe ﬂFix(T,). (1.14)
i=1

Very recently, Zhou and Wang [10] proposed a simpler iterative algorithm than the it-
erative algorithm (1.13) given by Buong and Duong:

Xpo1 = ([ = A F)TR -+ Thy. (1.15)

They proved that the sequence {x;} defined by (1.15) converges strongly to the unique
solution of the variational inequality (1.14) in a faster rate of convergence.

Motivated and inspired by the results of Zhou et al., in this paper, we consider a new it-
erative algorithm to solve the class of variational inequalities (1.6). The iterative algorithm
improves and extends the results of Yao et al., and the corresponding results announced
by many others. At the end of this paper, we extend our iterative algorithm to the more
broad family of A-strictly pseudo-contractive mappings.

2 Preliminaries
Throughout this paper, we write x, — x and x,, — x to indicate that {x,} converges weakly
to x and converges strongly to x, respectively.

An operator T : H — H is said to be nonexpansive if | Tx — Ty|| < ||[x—y| forallx,y € H.
It is well known that Fix(T') is closed and convex. A is called strongly positive if there exists
aconstant y > 0 such that (Ax,x) > y||x||? for allx € H. The operator F is called n-strongly
monotone if there exists a constant 1 > 0 such that

(x—y,Fx—Fy) > nlx -yl

forallx,y € H.
In order to prove our results, we collect some necessary conceptions and lemmas in this

section.

Definition 2.1 A mapping T : H — H is said to be an averaged mapping if there exists
some number « € (0,1) such that

T=0-a)l+as, (2.1)

where [ : H — H is the identity mapping and S : H — H is nonexpansive. More precisely,
when (2.1) holds, we say that T is o-averaged.

Lemma 2.1 ([11]) (i) The composite of finitely many averaged mappings is averaged. That
is, if each of the mappings {T;}Y, is averaged, then so is the composite T, - - - Ty. In partic-
ular, if Ty is ay-averaged and T, is ay-averaged, where ay, oy € (0,1), then both T\ T, and
T, T are a-averaged, where o = o1 + 0ty — 01l

(ii) If the mappings {T;}Y, are averaged and have a common fixed point, then

N
[\Fix(T:) = Fix(Ty - T).

i=1

In particular, if N = 2, we have Fix(T1) N Fix(T3) = Fix(T1T,) = Fix(T, Th).
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Lemma 2.2 ([12]) Let C be a closed convex subset of a real Hilbert space H. Given x € H
andy € C. Then y = Pcx if and only if the following inequality holds:

(x—y;Z—y> < 0
foreveryz e C.

Lemma 2.3 ([5]) Assume V is a contraction on a Hilbert space H with coefficient a > 0,
and F : H — H is an L-Lipschitzian continuous and n-strongly monotone operator with
L>0,17>0.Then, for 0 <y < &L, uF —yV is strongly monotone with coefficient un — ya.
Lemma 2.4 ([13]) Let H be a Hilbert space, C a closed convex subset of H,and T : C — C
a nonexpansive mapping with Fix(T) # 0. If {x,,} is a sequence in C weakly converging to
x € Cand {(I — T)x,} converges strongly to y € C, then (I — T)x = y. In particular, ify = 0,
then x € Fix(T).

Lemma 2.5 ([14]) Let {x,} and {z,} be bounded sequences in a Banach space X and {B,}
be a sequence in [0,1] which satisfies the following condition:

0 <liminf B, <limsup B, < 1.
n—00

n—00

Suppose xy.1 = (1 — Bu)zn + Buxn for all integers n > 0 and

1imsup(||z,,+1 = Zull = I%ns1 _xn”) <0.
n—0oQ0

Then lim,,_, ||z, — x| = 0.
Lemma 2.6 ([1]) Assume {a,} is a sequence of nonnegative real numbers such that
An+1l =< (1 - Vn)"ln + 5;17 n= O;

where {y,} is a sequence in (0,1) and {3,} is a sequence such that
(i) 32 vn=00,
(i) limsup,,_, o f/—: <0o0rYy 2|8, < o0.

Then lim,_, s a,, = 0.

Lemma 2.7 ([15]) Assume S is a A-strictly pseudo-contractive mapping on a Hilbert
space H. Define a mapping T by Tx = ax + (1 — «)Sx for all x € H and o € [A,1). Then
T is a nonexpansive mapping such that Fix(T) = Fix(S).

3 Main results
Now we state and prove our main results in this paper.

Theorem 3.1 Let {T:}Y, be N nonexpansive mappings of a real Hilbert space H such that
C= ﬂf\il Fix(T;) # 9, F be an L-Lipschitzian continuous and n-strongly monotone operator
on Hwith L>0 and n >0,V be an a-Lipschitzian on H with a > 0. Suppose x; € H and
O<puc< i—;’ Define a sequence {xi} as follows:

X1 = oy Vi) + (= po F) TN Ty -+ Trag, k>0, (3.1)
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where 0 <y < = with T = u(n - %,U,L2) and Tl.k =(1 —ﬁ,i)l+ ,B,iTifori: 1,2,...,N. Suppose
oy €(0,1) and ﬁ,ﬁ € (§,¢) for some &,¢ € (0,1). If the following conditions are satisfied:
(i) limk_wo o = 0;
(ii) Zlﬁl o = 005
(iii) limgoo |BE,, = Bl =0 fori=1,2,...,N.
Then the sequence {xi} converges strongly to the unique solution x* of the variational in-

equality:
N
((,uF -y V)x*,x —x*) >0, Vxe ﬂFix(Ti). (3.2)
i=1

Equivalently, we have Pc(I — uF +y V)x* = x*.

Proof Since our methods easily deduce the general case, we prove Theorem 3.1 for N = 2.
First, we show {x;} is bounded. In fact, for some point p € C, by (3.1) we have

ke = pll = oy Ve + (I = poF) Ty Ty = p|
= |( = pawF)Ty T xi = (I = pewF)p + a(y Ve — up) |
< (1-o0) | T3 Txi = Ty Tip|| + e (lly Vi =y Vil + lly Vo — iFpl)

< A —axt)llxk —pll + axyallxe —pll + oxlly Vo — nEpll

ly Vb — ukpll
= (1-ax(t = ya)) o - pll + ox(r — yo) =—————
T—ya
smaX{llxk—pII, ||)/VP—MFP||}
T—-yo
5~-§max{llxo—pll, ||J/VP—MFP||}-
T—ya

Therefore, {x} is bounded. Hence we also see that {Tf lexk}, {F Té‘ lexk}, and {Vxy} are all
bounded. From (3.1), it follows that

kli)rgo”xkﬂ - Té‘lexk” =0. (3.3)

We next show that limi_, o [[%x+1 — %« || = 0. Noting that le and Té‘ are ﬁ,ﬁ—averaged and

B?-averaged, respectively, by Lemma 2.1, we find that TA T} is t-averaged for every &,

where t = Bl + BE — BiBi. Set §* = 2§ — £? and ¢* = 2¢ - ¢?. It is easy to deduce that
0<&* <t <¢*<1forall kand

lim ||£xs1 — &l = 0. (3.4)
k—o00

Since for every k, TST¥ is t;-averaged, we can find a family of nonexpansive mappings
{Sk}k=0 on H such that

TETE = (- t) + 4Sk, k> 0. (3.5)
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Substituting (3.4) into (3.1) yields
X1 = oy Vag + (I — pouF)[ (1 - 6 + bS]
= (1= fi)wie + i [Skxk + (Z—: (v Vax — WETy lexk):|.
Define a sequence {zi} by zx = Sgxx + ‘:—]’:(y Vi — uFTé( Tkxy), so
Xrs1 = (1= t)xx + trz. (3.6)
Now, we claim that

lim sup(J|zis1 — zill = a1 —axll) < O.
k—o00

To this end, we observe that

Oy

1 k+1 k+1
lzes1 = zrll < Ske1%ks1 — Skoxell + . |y Vakia = pFT5 T o |
k+1

+ (Z—If ||)/ka — WFTSTExy ||

= ISka®rs1 — Skarxell + 1 Ske1xx — Skl

Uil
+
Lrs1

(ly Vsl + | TS T xein |)

+ ‘Z—kk(ny\/xkn + | T T )

= ||xk+1 _xk” + ||Sk+1xk - Skxk”

Ofes1
+
sl

(I Vil + | RETE T )

+ ‘Z—kk(ny\/xkn + | T TR ) 3.7)

and

Xk

1 1 1-¢ 1-¢
— Té‘*lle”lxk -— T£‘ lexk - —k”xk + k
Ik 7351 173

| Sks10k — Skl
L1

< | B (g ) + A TR - TET |
k1l b

< tk;li_tk M+ l(” Ty T o = Ty T |
ke1tk Lk

+ | T T = T T )

IA

bt = b Lok, ok
7fk+1tk M+%‘*(”T1 Xk Tlxk”

+ | T5 Tk — Ty T

), (3.8)

where M is a fixed constant satisfying

M > sup{ | T3 T || + Nl }-
k=0


http://www.fixedpointtheoryandapplications.com/content/2014/1/60

Zhang and Yang Fixed Point Theory and Applications 2014, 2014:60 Page 8 of 11
http://www.fixedpointtheoryandapplications.com/content/2014/1/60

Note that

I T5 ok — T | = || (1= Bian)ak + Bsa Toxe — (L= Bi)x — B T |

< |Brar = Bl (el + 1 Tuxe).
Since limg_, o |;3,i+1 - ﬁ,’;| =0 fori=1,2, and {x¢} and {T1xx} are bounded, we easily obtain
Jim | T a — Tixe| = 0. (3.9)
Similarly,

|73 T = T3 Txe | < B2 = B (| T + | T T

)
from which it follows that

Jim | Ty T — Ty Tio|| = 0. (3.10)
Using (3.4), (3.9), and (3.10), from (3.8) we have

klgglo | Sks16x — Skxicll = 0. (3.11)
Since limg_, oo 04 = 0 and 0 < £* < # < {* <1, combining (3.7) and (3.11) we get

lim sup([1zis1 — 2ll = 141 = %) < 0.
k— o0

By Lemma 2.5, we conclude that lim_, o ||z — #¢|| = 0, which implies that limg_, oo [|%k41 —
x|l = 0 by (3.6). Thus from (3.3), it is true that

lim |ax — T T{ x| = 0. (3.12)
k—o00

From [8, Theorem 3.2], we know that the solution of the variational inequality (3.2) is
unique. We use x* to denote the unique solution of (3.2). Since {xy}i>0 is bounded, there
exists a subsequence {xkj }j=1 of {xk}x=0 such that Xy — X asj— oo and

limsup((uF — y V)a*, & —xi) = jlir£10<(pLF -y V)x',x* —x).

k— 00

Since {ﬂf(} is bounded for i = 1,2, we can assume that ﬁ’ii — Bl asj— 0o, where 0 < & <
Bl < <1fori=1,2. Define T° = (1 - B )] + B T; (i = 1,2). Then we have Fix(T7°) =
Fix(T;) for i = 1,2. Note that

| 7%~ ] <L - Bl (Il + 1 Txl)-
Hence, we deduce that

lim sup| Tik/x - T x| =0, (3.13)

J7 0 xeD

where D is an arbitrary bounded subset of H.
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Since Fix(T7°) NFix(T5°) = Fix(T1) NFix(T3) = C # @ and T7° is B._-averaged for i = 1,2,
by Lemma 2.1, we know that Fix(75° 77°) = Fix(T5°) NFix(7T7°) = C. Combining (3.12) and
(3.13), we obtain

Jsy — T T | = o = T8 T | + | 75 T - T3 T |
+ | T3 TV oy, — T3 T |
< g = 75 T | + 75 T, - 5T |
+ | g - T |

< |y - T3 TV | + sup||: = T3]
XE

+ sup | lejx -Tx
xeD"

’

where D' is a bounded subset including {lej xx;} and D" is a bounded subset including
{xx}. Hence lim;_, oo [l — T5° TT°% || = 0. From Lemma 2.4, we have x e Fix(Ts° 1) = C.
It follows that

lim sup((pLF -y V)x*,x* — Tf lexk) =lim sup((uF -y V¥, 5" — xk>

k—o00 k— 00

= lim ((uF - y V)a*, &* — i)
j—00
=((uF -y V)a*,x* - %) <0. (3.14)
Finally, we show that xy — x* as k — oco. From (3.1), we have

ln =) * = [y Vaox + (I = pon ) TE Ty, — % |
= | (I = newF) TE T — (I = peF)x* + g (y Vieg — pFe®) ||
= | (I - peuF) TE Thar = (I = pecF)x* | + a2 |y Varg — x|
+200((I - o F) Ty Tt — (I — o F)x*, y Vieg — wFx”*)
< (1 - ag0)? e — 2" ||* + o |y Vg — wFx*|)?
+ 200 Ty Tk — &%, y Vg — Fx*)
— 2pua(FTS Ty — Fx*, y Vg — nFx*)
< (1 - ag0)?|oe — & |* + 02 ||y Vacy — pFx*||?
+ 20y (T4 Tfx — &%, Vigg — V™)
+ 20 TA T x — &%,y V™ — pF”)
— 2ue(FT5 Ty — Fx*, y Vg — wFx”)
< [ = ax)? + 20y ] | = |* + aa[2 TE TE e — 2%, (v V = wF)x?)
+ ||y Vaek — Fx* || + 200 L | TS Thos — | |y Vet — x| ]
= [1=20(t —ap)] ok =% | + a[2{TE Tha = %, (y V = uF)*)

+ o ( ||y Vax — wFx* H2 + 2L | — ™ |||y Vav = wEx*|| + 72 e — 2 ||2)]

Page9of 11
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< [1-2a(t — ay)]|xx —&* ||2

+ ak[2<T§lexk x5 (yV - ,uF)x*) + akM’],
where M’ is a constant satisfying
M > sup{ ||)/ka — wEx* ||2 + 2LH Té‘lexk —x* || ||)/ka — wFx* || + r2||xk —x* H2}
k>0

Consequently, according to the conditions (i) and (ii), (3.14), and Lemma 2.6, we conclude
that xy — x* as k — oo. This completes the proof. g

4 An extension of our result

In this section, we extend our result to the more broad family of A-strictly pseudo-
contractive mappings. Now let us recall that a mapping S: H — H is said to be A-strictly
pseudo-contractive if there exists a constant A € [0,1) such that

I1Sx =Syl < e =yl + 2| (T = S)x = (I - S)y|>, Vx,yeH.

Let {S;}Y, be a family of A;-strictly pseudo-contractive self-mappings of H with 0 <
Mi<l.Fori=1,2,...,N, define

Ty = wid + 1 - w)S;, (4.1)

where 0 < A; < w; < 1. By virtue of Lemma 2.7, we know that {f",-}ﬁl is a family of non-
expansive mappings. Thus we extend Theorem 3.1 to the family of A;-strictly pseudo-
contractions.

Theorem 4.1 Let H be a real Hilbert space, F : H — H be an L-Lipschitizian continuous
and n-strongly monotone operator on H with L > 0 and n > 0, V be an a-Lipschitzian
continuous on H with o > 0. Let {S;}, be N A;-strictly pseudo-contractive mappings on
H such that C = ﬂf\il Fix(S;) # 0. Suppose 0 < u < =, 0 <y < = with T = u(n - %MLZ),
ax € (0,1), Bi € (§,¢) for some &, € (0,1) and 0 < A; < w; <1 for i =1,2,...,N. If the
conditions (i)-(iil) of Theorem 3.1 are satisfied, the sequence {xi }i>o defined by (3.1) with T;
replaced by (4.1), converges strongly to the unique solution x* of the following variational
inequality:

N
((,uF -y V)x*,x —x*) >0, Vxe ﬂFix(Si).
i=1
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