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Abstract
Let H be a real Hilbert space and C be a closed convex subset of H. Let T : C → C be a
nonexpansive mapping with a nonempty set of fixed points Fix(T ). If 0 /∈ C, then
Halpern’s iteration process xn+1 = (1 – tn)Txn cannot be used for finding a minimum
norm fixed point of T since xn may not belong to C. To overcome this weakness, Wang
and Xu introduced the iteration process xn+1 = PC (1 – tn)Txn for finding the minimum
norm fixed point of T , where the sequence {tn} ⊂ (0, 1), x0 ∈ C arbitrarily and PC is the
metric projection from H onto C. However, it is difficult to implement this iteration
process in actual computing programs because the specific expression of PC cannot
be obtained, in general. In this paper, three new algorithms (called boundary point
algorithms due to using certain boundary points of C at each iterative step) for
finding the minimum norm fixed point of T are proposed and strong convergence
theorems are proved under some assumptions. Since the algorithms in this paper do
not involve PC , they are easy to implement in actual computing programs.
MSC: 47H09; 47H10; 65K10

Keywords: minimum norm fixed point; nonexpansive mapping; metric projection;
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1 Introduction and preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, and let C be
a nonempty closed convex subset of H . Recall that a mapping T : C → C is nonexpansive
if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. We use Fix(T) to denote a set of fixed points of T ,
i.e., Fix(T) � {x ∈ C | Tx = x}. Throughout this article, Fix(T) is always assumed to be
nonempty.
For every nonempty closed convex subset K of H , the metric (or nearest point) projec-

tion indicated by PK fromH onto K can be defined, that is, for each x ∈H , PKx is the only
point in K such that ‖x– PKx‖ = inf{‖x– z‖ | z ∈ K}. It is well known (e.g., see []) that PK

is nonexpansive and a characteristic inequality holds.

Lemma . Let K be a closed convex subset of a real Hilbert space H . Given x ∈ H and
z ∈ K . Then z = PKx if and only if there holds the relation

〈x – z, y – z〉 ≤ , ∀y ∈ K .

Since Fix(T) is a closed convex subset of H , so the metric projection PFix(T) is valid and
thus there exists a unique element, denoted by x†, in Fix(T) such that ‖x†‖ = infx∈Fix(T) ‖x‖,
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that is, x† = PFix(T). x† is called a minimum norm fixed point of T . Because the minimum
norm fixed point of a nonexpansive mapping is closely related to convex optimization
problems, it is favored by people.
An extensive literature on iteration methods for fixed point problems of nonexpansive

mappings has been published (for example, see [–]). Many iteration processes are of-
ten used to approximate a fixed point of a nonexpansive mapping in a Hilbert space or a
Banach space. One of them is now known as Halpern’s iteration process [] and is defined
as follows: take an initial guess x ∈ C arbitrarily and define {xn} recursively by

xn+ = tnu + ( – tn)Txn, n = , , , . . . , (.)

where {tn} is a sequence in the interval [, ] and u is some given element in C. For
Halpern’s iteration process, a classical result is as follows.

Theorem . ([, ]) If {tn} satisfies the conditions:
(i) tn →  (n→ ∞);
(ii)

∑∞
n= tn =∞;

(iii) limn→∞ tn+
tn =  or

∑∞
n= |tn+ – tn| < ∞;

then the sequence {xn} generated by (.) converges strongly to a fixed point x∗ of T such
that x∗ = PFix(T)u, that is,

∥∥u – x∗∥∥ = inf
x∈Fix(T)

‖u – x‖.

Now we consider how to get the minimum norm fixed point of T . In the case where
 ∈ C, taking u =  in (.), we assert by using Theorem . that {xn} generated by (.)
converges strongly to x† under conditions (i)-(iii) above. But, in the case where  /∈ C, the
iteration process xn+ = ( – tn)Txn becomes invalid because xn may not belong to C. In
order to overcome this weakness, Wang and Xu [] introduced the iteration process

xn+ = PC( – tn)Txn, n = , , . . . . (.)

They proved that if {tn} satisfies the same conditions in Theorem ., then the sequence
{xn} generated by (.) converges strongly to x†.
However, it is difficult to implement the iteration process (.) in actual computing pro-

grams because the specific expression of PC cannot be obtained, in general.
The purpose of this paper is to propose three new algorithms for finding the minimum

norm fixed point of T . The strong convergence theorems are proved under some assump-
tions. The main advantage of the algorithms in this paper is that they have nothing to do
with the metric projection PC and thus they are easy to implement in actual computing
programs. Because the key of our algorithms is replacing a fixed element u in (.) by a
certain sequence {un} in the boundary of C, they are called boundary point algorithms.
We will use the following notations:
. ⇀ for weak convergence and → for strong convergence.
. ωw(xn) = {x | ∃{xnk } ⊂ {xn}such thatxnk ⇀ x} denotes the weak ω-limit set of {xn}.
. A� Bmeans that B is the definition of A.
Weneed some facts and tools in a real Hilbert spaceH which are listed as lemmas below.
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Lemma . ([]) Let C be a closed convex subset of a real Hilbert space H , and let T :
C → C be a nonexpansive mapping such that Fix(T) 
= ∅. If a sequence {xn} in C is such
that xn ⇀ z and ‖xn – Txn‖ → , then z = Tz.

Lemma . There holds the identity in a real Hilbert space H:

‖u – v‖ = ‖u‖ – ‖v‖ – 〈v,u – v〉, u, v ∈ H .

Lemma. ([, ]) Assume that {an} is a sequence of nonnegative real numbers satisfying
the property

an+ ≤ ( – γn)an + γnδn + σn, n = , , , . . . .

If {γn}∞n= ⊂ (, ), {δn}∞n= and {σn}∞n= satisfy the conditions:
(i)

∑∞
n= γn =∞,

(ii) limsupn→∞ δn ≤ ,
(iii)

∑∞
n= |σn| <∞,

then limn→∞ an = .

2 Main results
In this section, C is always assumed to be a nonempty closed convex subset ofH such that
 /∈ C. We use ∂C to denote the boundary of C. In order to give our main results, we first
introduce a function h : C → (, ] by the definition

h(x) = inf
{
λ ∈ (, ] | λx ∈ C

}
, ∀x ∈ C.

It is easy to see that h(x)x ∈ ∂C and h(x) >  hold for each x ∈ C due to the assumption
 /∈ C.
Since our iteration processes will involve the function h(x), it is necessary to explain

how to calculate h(x) for any given x ∈ C in actual computing programs. In order to get
the value h(x) for a given x ∈ C, we often need to deal with an algebraic equation. But
dealing with an algebraic equation is easier than calculating the metric projection PC , in
general. To illustrate this viewpoint, let us consider the following simple example.

Example  Let H be a real Hilbert space. Define a convex function ϕ :H → R by

ϕ(x) = ‖x – x‖ + 〈x,u〉, ∀x ∈H ,

where x and u are two given points in H such that 〈x,u〉 < . Setting C = {x ∈H | ϕ(x)≤
}, then it is easy to show that C is a nonempty convex closed subset of H such that  /∈ C
(note that ϕ(x) = 〈x,u〉 <  and ϕ() = ‖x‖ > ). For a given x ∈ C, we have ϕ(x) ≤ . In
order to get h(x), let ϕ(λx) = , where λ ∈ (, ] is an unknown number. Thus we obtain an
algebraic equation

‖x‖λ +
(〈x,u〉 – 〈x,x〉

)
λ + ‖x‖ = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/56
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Consequently, we get

λ =
〈x,x〉 – 〈x,u〉 ± √

(〈x,u〉 – 〈x,x〉) – ‖x‖‖x‖
‖x‖ .

By the definition of h, we have

h(x) =
〈x,x〉 – 〈x,u〉 –√

(〈x,u〉 – 〈x,x〉) – ‖x‖‖x‖
‖x‖ .

Next we give our first iteration process for finding the minimum norm fixed point of T :
take u ∈ ∂C arbitrarily and define {xn} recursively by

⎧⎨
⎩
xn = PFix(T)un,

un = λnxn–,
(.)

where λn = h(xn–) (n≥ ).

Remark  How to implement the iteration process (.)? In actual computing programs,
we can use the standard Halpern’s iteration process to get xn from un for each n ≥ .
Indeed, taking x()n = un and {x(m)

n } is generated inductively by

x(m+)
n = tmun + ( – tm)Tx(m)

n , m≥ ,

then, using Theorem ., x(m)
n → xn � PFix(T)un as m → ∞. Thus we can take xn = x(Mn)

n

approximately for a sufficiently large integer Mn in actual computing programs.

Geometric intuition seems to encourage us to guess xn → PFix(T) as n→ ∞ under some
certain assumptions. As a matter of fact, it is true.

Theorem . If {λn} satisfies
∑∞

n=( – λn) = ∞, then {xn} generated by (.) converges
strongly to x† = PFix(T).

Proof Noticing the fact that x† = PFix(T) = PFix(T)λx† holds for all λ ∈ [, ], we have from
(.) that

∥∥xn – x†
∥∥ =

∥∥PFix(T)un – x†
∥∥ =

∥∥PFix(T)λnxn– – PFix(T)λnx†
∥∥ ≤ λn

∥∥xn– – x†
∥∥,

consequently,

∥∥xn – x†
∥∥ ≤ λnλn– · · ·λλ

∥∥x – x†
∥∥. (.)

Thus this together with the condition
∑∞

n=( – λn) = ∞ leads to the conclusion. �

Remark  Is the condition
∑∞

n=( – λn) = ∞ reasonable? In other words, can we find an
example which satisfies this condition? The answer is yes. The following result implies
that this condition is not harsh.
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Corollary  If d(Fix(T), ∂C)� inf{‖x– y‖ | x ∈ Fix(T), y ∈ ∂C} > , then {xn} generated by
(.) converges strongly to x† = PFix(T).

Proof Obviously, it suffices to verify that if d(Fix(T), ∂C) > , then
∑∞

n=( – λn) = ∞. In
fact, setting d� d(Fix(T), ∂C) > , we have from (.) and (.) that

λn =
‖un‖
‖xn–‖ =

‖xn–‖ – ‖xn– – un‖
‖xn–‖ ≤  –

d
‖x‖ + ‖x – x†‖ ,

hence

 – λn ≥ d
‖x‖ + ‖x – x†‖ .

This implies that
∑∞

n=( – λn) =∞ holds. �

Our second iteration process for finding the minimum norm fixed point of T is defined
by

xn = tnλnxn– + ( – tn)Txn, n≥ , (.)

where {tn} ⊂ (, ), λn = h(xn–) (n≥ ) and x is taken in C arbitrarily.

Remark  Equation (.) is an implicit iteration process. A natural question is how to get
xn from xn–. Indeed, suppose that we have got xn–, define the mapping Tn : C → C by
Tn : x �→ tnλnxn– + ( – tn)Tx (∀x ∈ C), then Tn is ( – tn)-contractive and xn is just its
unique fixed point. So we can use Picard’s iteration process

x(m+)
n = tnλnxn– + ( – tn)Tx(m)

n , m ≥ ,

to calculate xn approximately since x(m)
n → xn as m → ∞, where x()n can be taken in C

arbitrarily, for example, x()n = xn–.

Theorem . Assume that
∑∞

n=( – λn) = ∞ and
∑∞

n= tn < ∞, then {xn} generated by
(.) converges strongly to x† = PFix(T).

Proof We first show that {xn} is bounded. Indeed, take a p ∈ Fix(T) to derive that

‖xn – p‖ = ∥∥tnλn(xn– – p) + ( – tn)(Txn – p) – tn( – λn)p
∥∥

≤ tnλn‖xn– – p‖ + ( – tn)‖xn – p‖ + tn( – λn)‖p‖.

It follows that

‖xn – p‖ ≤ λn‖xn– – p‖ + ( – λn)‖p‖.

By induction,

‖xn – p‖ ≤max
{‖x – p‖,‖p‖} (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/56
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and {xn} is bounded, so are {Txn}. This together with (.) implies that ‖xn – Txn‖ → 
(n→ ∞). Thus it follows from Lemma . that ωw(xn) ⊂ Fix(T).
Next we show that

lim
n→∞ sup

〈
–x†,xn – x†

〉 ≤ . (.)

Indeed, take a subsequence {xnk } of {xn} such that

lim
n→∞ sup

〈
–x†,xn – x†

〉
= lim

k→∞
〈
–x†,xnk – x†

〉
,

without loss of generality, we may assume that xnk ⇀ x̄. Noticing x† = PFix(T), we obtain
from x̄ ∈ Fix(T) and Lemma . that

lim
n→∞ sup

〈
–x†,xn – x†

〉
=

〈
–x†, x̄ – x†

〉 ≤ .

Finally, we show that ‖xn – x†‖ →  (n → ∞). As a matter of fact, we have by using
Lemma . that

∥∥xn – x†
∥∥ =

∥∥tnλn
(
xn– – x†

)
+ ( – tn)

(
Txn – x†

)
– tn( – λn)x†

∥∥

≤ ∥∥tnλn
(
xn– – x†

)
+ ( – tn)

(
Txn – x†

)∥∥

+ tn( – λn)
〈
–x†,xn – x†

〉

≤ tnλ

n
∥∥xn– – x†

∥∥ + ( – tn)
∥∥xn – x†

∥∥

+ tnλn( – tn)
∥∥xn– – x†

∥∥ · ∥∥xn – x†
∥∥

+ tn( – λn)
〈
–x†,xn – x†

〉
.

Hence,

( – tn)
∥∥xn – x†

∥∥ ≤ tnλ
n
∥∥xn– – x†

∥∥ + λn( – tn)
∥∥xn– – x†

∥∥ · ∥∥xn – x†
∥∥

+ ( – λn)
〈
–x†,xn – x†

〉

≤ tnλ
n
∥∥xn– – x†

∥∥ + λ
n
∥∥xn– – x†

∥∥ + ( – tn)
∥∥xn – x†

∥∥

+ ( – λn)
〈
–x†,xn – x†

〉
.

Consequently,

∥∥xn – x†
∥∥ ≤ [

 – ( – λn)
]∥∥xn– – x†

∥∥ + ( – λn)
〈
–x†,xn – x†

〉

+ tn
∥∥xn– – x†

∥∥.

Using Lemma ., we conclude from (.) and conditions
∑∞

n=( – λn) =∞ and
∑∞

n= tn <
∞ that xn → x†. �

By a similar argument as above, we easily get the following result.
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Corollary  If d(R(T), ∂C) � inf{‖x – y‖ | x ∈ Fix(T), y ∈ ∂C} >  and
∑∞

 tn < ∞, then
{xn} generated by (.) converges strongly to x† = PFix(T), where R(T) is the range of T .

Proof It suffices to verify that d(R(T), ∂C) >  implies
∑∞

n=( – λn) =∞. Indeed,

λn =
‖un‖
‖xn–‖ =

‖xn–‖ – ‖xn– – un‖
‖xn–‖ =  –

‖xn– – Txn– + Txn– – un‖
‖xn–‖ .

Setting d� d(R(T), ∂C) > , we have from (.) that

 – λn ≥ ‖Txn– – un‖
‖xn–‖ –

‖xn– – Txn–‖
‖xn–‖ ≥ d

‖x – x†‖ + ‖x†‖ –
‖xn– – Txn–‖

d(,C)
.

Note that ‖xn– – Txn–‖ → , it follows that
∑∞

n=( – λn) = ∞. �

Finally, we propose an explicit iteration process for finding the minimum norm fixed
point of T which is defined by

xn+ = tnλnxn + ( – tn)Txn, n≥ , (.)

where {tn} ⊂ (, ), λn = h(xn) (n≥ ) and x is taken in C arbitrarily.

Theorem . Assume that {tn} and {λn} satisfy the following conditions:
(i) tn →  and

∑∞
n= tn =∞;

(ii) limsupn→∞ λn ≤ λ̄ < ;
(iii)

∑∞
n= |tn – tn–| < ∞ or limn→∞ tn

tn–
= ;

(iv)
∑∞

n= tn|λn – λn–| < ∞ or limn→∞ λn
λn–

= .
Then {xn} generated by (.) converges strongly to x† = PFix(T).

Proof We first show that {xn} is bounded. Indeed, we have by taking p ∈ Fix(T) arbitrarily
that

‖xn+ – p‖ ≤ tn‖λnxn – p‖ + ( – tn)‖Txn – p‖
≤ tn

[
λn‖xn – p‖ + ( – λn)‖p‖

]
+ ( – tn)‖xn – p‖

≤ tnmax
{‖xn – p‖,‖p‖} + ( – tn)‖xn – p‖

≤max
{‖xn – p‖,‖p‖}.

Inductively,

‖xn – p‖ ≤max
{‖x – p‖,‖p‖}, n≥ .

This means that {xn} is bounded, so are {Txn}.
We next show that ‖xn+ – xn‖ → . Using (.), it follows from a direct calculation that

‖xn+ – xn‖ =
∥∥[
tnλnxn + ( – tn)Txn

]
–

[
tn–λn–xn– + ( – tn–)Txn–

]∥∥
=

∥∥( – tn)(Txn – Txn–) – (tn – tn–)Txn– + tnλn(xn – xn–)

http://www.fixedpointtheoryandapplications.com/content/2014/1/56
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+ (tnλn – tn–λn–)xn–
∥∥

≤ [
 – tn( – λn)

]‖xn – xn–‖ + |tn – tn–|
(‖Txn–‖ + λn–‖xn–‖

)

+ tn|λn – λn–| · ‖xn–‖.

Using Lemma ., we conclude from conditions (i)-(iv) that ‖xn+ – xn‖ → . Noticing the
boundedness of {xn} and {Txn} and condition (i), we have from (.) that ‖xn+ –Txn‖ → .
Consequently, ‖xn – Txn‖ → . Using Lemma ., we derive that ωw(xn) ⊂ Fix(T).
Then we show that

lim
n→∞ sup

〈
–x†,xn– – x†

〉 ≤ . (.)

As a matter of fact, this is derived by the same argument as in the proof of Theorem ..
Finally, we show that ‖xn – x†‖ → . Using Lemma . and (.), it is easy to verify that

∥∥xn+ – x†
∥∥ =

∥∥tn
(
λnxn – x†

)
+ ( – tn)

(
Txn – x†

)∥∥

≤ ( – tn)
∥∥Txn – x†

∥∥ + tn
〈
λnxn – x†,xn+ – x†

〉

≤ ( – tn)
∥∥xn – x†

∥∥ + tnλn
〈
xn – x†,xn+ – x†

〉

+ tn( – λn)
〈
–x†,xn+ – x†

〉

≤ ( – tn)
∥∥xn – x†

∥∥ + tnλn
∥∥xn – x†

∥∥ · ∥∥xn+ – x†
∥∥

+ tn( – λn)
〈
–x†,xn+ – x†

〉
.

Hence,

∥∥xn+ – x†
∥∥ ≤ ( – γn)

∥∥xn – x†
∥∥ + γnσn,

where

γn = tn
( – λn) – tn

 – tnλn
,

σn =
( – λn)

( – λn) – tn

〈
–x†,xn+ – x†

〉
.

It is easily seen that γn → ,
∑∞

n= γn =∞ by conditions (i) and (ii), and limn→∞ supσn ≤ 
by (.). By Lemma ., we conclude that xn → x†. �
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