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Abstract
We prove that the set of all common fixed points for a continuous nonexpansive
semigroup of nonlinear mappings acting in modular function spaces can be
represented as an intersection of fixed points sets of two nonexpansive mappings.
This representation is then used to prove convergence of several iterative methods
for construction of common fixed points of semigroups of nonlinear mappings. We
also demonstrate an example how the results of this paper can be applied for
constructing a stationary point of a process defined by the Urysohn integral operator.
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1 Introduction
The purpose of this paper is to prove that the set of all common fixed points for a contin-
uous nonexpansive semigroup of nonlinear mappings acting in modular function spaces
can be represented as an intersection of fixed point sets of two nonexpansive mappings,
where nonexpansiveness is understood in themodular sense.Modular function spaces are
natural generalizations of both function and sequence variants of many important, from
applications perspective, spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-
Lorentz, Calderon-Lozanovskii spaces and many others; see [, ] for an extensive list of
examples and special cases.
The fixed point theory in modular function spaces originated in the  seminal paper

by Khamsi, Kozlowski and Reich []. In that paper, the authors showed that there exist
mappings which are ρ-nonexpansive but are not norm-nonexpansive. They demonstrated
that for a mapping T to be norm nonexpansive in a modular function space Lρ , a stronger
than ρ-nonexpansiveness assumption is needed: ρ(λ(T(x) – T(x))) ≤ ρ(λ(x – y)) for any
λ ≥ . From this perspective, the fixed point theory in modular function spaces should be
considered as complementary to the fixed point theory in normed spaces and in metric
spaces. It is worthwhile to mention that from the perspective of applications, modular
type conditions are typically more easily verified than their metric or norm counterparts.
For earlier and recent results of fixed point theory in modular function spaces, refer, e.g.,
to [, –].
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Let us recall that a family {Tt}t≥ of mappings forms a semigroup if T(x) = x, Ts+t =
Ts(Tt(x)). Such a situation is quite typical in mathematics and applications. For instance,
in the theory of dynamical systems, the modular function space Lρ would define the state
space and the mapping (t,x)→ Tt(x) would represent the evolution function of a dynami-
cal system. The question about the existence of common fixed points, and about the struc-
ture of the set of commonfixed points, can be interpreted as a questionwhether there exist
points that are fixed during the state space transformation Tt at any given point of time
t, and if yes - what the structure of a set of such points may look like. In the setting of
this paper, the state space may be infinite dimensional. Therefore, it is natural to apply
these results not only to deterministic dynamical systems but also to stochastic dynamical
systems.
An existence of common fixed points of ρ-nonexpansive semigroups was demonstrated

in  []. However, a structure of the set of common fixed points can be a priori very
complicated and therefore it can be difficult to apply any methods of construction of such
common fixed points, which is of a major importance for applications. In the current pa-
per, we show that in the case of a continuous nonexpansive semigroup, the set of its com-
mon fixed points can be actually represented by an intersection of fixed point sets of just
two suitably chosen, nonexpansive mappings. The idea of such representation is known
in Banach spaces; see, e.g., the  paper by Suzuki [] and references therein. How-
ever, the case of ρ-nonexpansive mappings acting in modular function spaces have not
been investigated prior to the current paper. It is worthwhile to mention that we use only
convexity of the function modular ρ as it does not need to have any triangle inequality of
homogeneity properties. This shows the strength of the convexity assumptions because
convexity of ρ suffices to prove both the existences and the representation of a set of com-
mon fixed points.
We use this representation to show how the Mann and Ishikawa type iterative methods

can be used for the construction of common fixed points of continuous nonexpansive
semigroups. The idea of using such processes in this context can be traced back to the
seminal s-s papers by Mann [], Krasnosel’skii [], Ishikawa [], Reich [,
], and others. See also an extensive body of work from the s and s [–], and
more recent research from the current century [, –] and the works referred there.
We also show an example how the results of this paper can be applied for constructing a
stationary point of an Urysohn process.

2 Preliminaries
Let us introduce basic notions related to modular function spaces and related notation
which will be used in this paper. For further details, we refer the reader to preliminary
sections of the recent articles [, , ] or to the survey article []; see also [, , ] for
the standard framework of modular function spaces.
Let � be a nonempty set and � be a nontrivial σ -algebra of subsets of �. Let P be a

δ-ring of subsets of � such that E ∩ A ∈ P for any E ∈ P and A ∈ �. Let us assume that
there exists an increasing sequence of sets Kn ∈P such that � =

⋃
Kn. By E we denote the

linear space of all simple functions with supports from P . By M∞ we denote the space
of all extended measurable functions, i.e., all functions f : � → [–∞,∞] such that there
exists a sequence {gn} ⊂ E , |gn| ≤ |f | and gn(ω) → f (ω) for all ω ∈ �. By A we denote the
characteristic function of the set A.
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Definition . Let ρ :M∞ → [,∞] be a nontrivial, convex and even function. We say
that ρ is a regular convex function pseudomodular if:

(i) ρ() = ;
(ii) ρ is monotone, i.e., |f (ω)| ≤ |g(ω)| for all ω ∈ � implies ρ(f )≤ ρ(g), where

f , g ∈M∞;
(iii) ρ is orthogonally subadditive, i.e., ρ(f A∪B) ≤ ρ(f A) + ρ(f B) for any A,B ∈ � such

that A∩ B 
= ∅, f ∈M;
(iv) ρ has the Fatou property, i.e., |fn(ω)| ↑ |f (ω)| for all ω ∈ � implies ρ(fn) ↑ ρ(f ),

where f ∈M∞;
(v) ρ is order continuous in E , i.e., gn ∈ E and |gn(ω)| ↓  implies ρ(gn) ↓ .

Similarly, as in the case of measure spaces, we say that a set A ∈ � is ρ-null if ρ(gA) = 
for every g ∈ E . We say that a property holds ρ-almost everywhere if the exceptional set
is ρ-null. As usual we identify any pair of measurable sets whose symmetric difference is
ρ-null as well as any pair of measurable functions differing only on a ρ-null set. With this
in mind, we define M = {f ∈ M∞ : |f (ω)| < ∞ ρ-a.e.}, where each element is actually an
equivalence class of functions equal ρ-a.e. rather than an individual function.

Definition . We say that a regular function pseudomodular ρ is a regular convex func-
tion modular if ρ(f ) =  implies f =  ρ-a.e. The class of all nonzero regular convex func-
tion modulars defined on � will be denoted by �.

Definition . [, , ] Let ρ be a convex function modular. A modular function space
is the vector space Lρ = {f ∈M : ρ(λf ) →  as λ → }.

The following notions will be used throughout the paper.

Definition . Let ρ ∈ �.
(a) We say that {fn} is ρ-convergent to f and write fn → f (ρ) if and only if ρ(fn – f ) → .
(b) A sequence {fn}, where fn ∈ Lρ , is called ρ-Cauchy if ρ(fn – fm) →  as n,m → ∞.
(c) A set B⊂ Lρ is called ρ-closed if for any sequence of fn ∈ B, the convergence

fn → f (ρ) implies that f belongs to B.
(d) A set B⊂ Lρ is called ρ-bounded if sup{ρ(f – g) : f ∈ B, g ∈ B} < ∞.
(e) A set B⊂ Lρ is called strongly ρ-bounded if there exists β >  such that

Mβ (B) = sup{ρ(β(f – g)) : f ∈ B, g ∈ B} < ∞.

Since ρ fails in general the triangle identity, many of the known properties of limit may
not extend to ρ-convergence. For example, ρ-convergence does not necessarily imply the
ρ-Cauchy condition.However, it is important to remember that the ρ-limit is uniquewhen
it exists. The following proposition brings together a few facts that will be often used in
the proofs of our results.

Proposition . Let ρ ∈ �.
(i) Lρ is ρ-complete.
(ii) ρ-balls Bρ(x, r) = {y ∈ Lρ : ρ(x – y) ≤ r} are ρ-closed and ρ-a.e. closed.
(iii) If ρ(αfn) →  for an α > , then there exists a subsequence {gn} of {fn} such that

gn →  ρ-a.e.
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(iv) ρ(f ) ≤ lim infρ(fn) whenever fn → f ρ-a.e. (Note: this property is equivalent to the
Fatou property.)

We will also need the definition of the �-property of a function modular; see, e.g.,
[, ].

Definition . Let ρ ∈ �. We say that ρ has the �-property if

sup
n

ρ(fn,Dk) → 

whenever Dk ↓ ∅ and supn ρ(fn,Dk)→ .

The modular equivalents of uniform convexity were introduced in [].

Definition . Let ρ ∈ �. We define the following uniform convexity type properties of
the function modular ρ :

(i) Let r > , ε > . Define

D(r, ε) =
{
(f , g) : f , g ∈ Lρ ,ρ(f ) ≤ r,ρ(g)≤ r,ρ(f – g) ≥ εr

}
.

Let

δ(r, ε) = inf

{
 –


r
ρ

(
f + g


)
: (f , g) ∈D(r, ε)

}
if D(r, ε) 
= ∅,

and δ(r, ε) =  if D(r, ε) = ∅. We say that ρ satisfies (UC) if for every r > , ε > ,
δ(r, ε) > . Note that for every r > , D(r, ε) 
= ∅ for ε >  small enough.

(ii) We say that ρ satisfies (UUC) if for every s ≥ , ε >  there exists

η(s, ε) > 

depending on s and ε such that

δ(r, ε) > η(s, ε) >  for r > s.

Let us also introduce the modular definition of strict convexity following [].

Definition . We say that ρ is strictly convex (SC) if ρ(f ) = ρ(g) and

ρ
(
λf + ( – λ)g

)
= λρ(f ) + ( – λ)ρ(g)

imply that f = g , where λ ∈ (, ) and f , g ∈ Lρ .

Proposition . By Proposition . from [] it follows that if ρ is (UUC), then it is also
(SC).

Remark . The notion of a modular function space has been generalized recently to a
more abstract, nonlinear case of a modular metric space; see, e.g., [, ]. Let us recall

http://www.fixedpointtheoryandapplications.com/content/2014/1/4
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that a function ω : (,∞)× X × X → [,∞] is called a convex modular metric on a set X
if: (i) x = y if and only if ωλ(x, y) =  for all λ > ; (ii) ωλ(x, y) = ωλ(y,x) for all λ > , x ∈ X,
y ∈ X; (iii) ωλ+μ(x, y)≤ λ

λ+μ
ωλ(x, z)+ μ

λ+μ
ωμ(z, y). In this context, given x ∈ X, the modular

metric space around x, denoted by Xω(x), is defined as

Xω(x) =
{
x ∈ X : ωλ(x,x) →  as λ → ∞}

.

Furthermore, Xω(x) can be endowed with a metric given by

d∗
ω(x, y) = inf

{
λ >  : ωλ(x, y) ≤ 

}
.

Given amodular function space Lρ , where ρ is a convex functionmodular, it is not difficult
to demonstrate that the formula

ωλ(f , g) = ρ

(
f – g

λ

)

defines a modular metric on Lρ . Moreover, we have

‖f = g‖ρ = d∗
ω(f , g)

for any f , g ∈ Lρ .

Let us also introduce modular definitions of Lipschitzian and nonexpansive mappings
and associated definitions of semigroups of nonlinear mappings acting within a modular
function space.

Definition . [] Let ρ ∈ � and let C ⊂ Lρ be nonempty and ρ-closed. A mapping
T : C → C is called ρ-Lipschitzian if there exists a constant L >  such that

ρ
(
T(f ) – T(g)

) ≤ Lρ(f – g) for any f , g ∈ Lρ .

T is called a ρ-nonexpansive mapping if L = .

For any mapping T , by F(T) we denote the set of all fixed points of T .
The following theorem is an immediate consequence of Theorem . in [].

Theorem . Assume that ρ ∈ � is (UUC). Let C be a ρ-closed, ρ-bounded convex
nonempty subset. Then any ρ-nonexpansive mapping T : C → C has a fixed point. More-
over, the set of all fixed points Fix(T) is ρ-closed and convex.

Definition . [] A one-parameter family F = {Tt : t ≥ } of mappings from C into
itself is said to be a ρ-Lipschitzian (resp. ρ-nonexpansive) semigroup on C if F satisfies
the following conditions:

(i) T(x) = x for x ∈ C;
(ii) Tt+s(x) = Tt(Ts(x)) for x ∈ C and t, s≥ ;
(iii) for each t ≥ , Tt is ρ-Lipschitzian (resp. ρ-nonexpansive).

http://www.fixedpointtheoryandapplications.com/content/2014/1/4
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Definition . A semigroup F = {Tt : t ≥ } is called strongly continuous if for every
z ∈ C, the following function

�z(t) = ρ
(
Tt(z) – z

)
(.)

is continuous at every t ∈ [,∞).

Definition . A semigroup F = {Tt : t ≥ } is called continuous if for every z ∈ C,
the mapping t �−→ Tt(z) is ρ-continuous at every t ∈ [,∞), i.e., ρ(Ttn (z) – Tt(z)) → 
as tn → t.

By F(F ) we denote the set of common fixed points of the semigroup F .
Let us finish this section with the existence theorem for semigroups of nonexpansive

mappings acting in modular function spaces.

Theorem . [] Assume that ρ ∈ � is (UUC). Let C be a ρ-closed ρ-bounded convex
nonempty subset. Let F be a nonexpansive semigroup on C. Then the set F(F ) of common
fixed points is nonempty, ρ-closed and convex.

3 Representation theorems
Let us start with the following result which relates to Bruck’s theorem in Banach spaces,
see [].

Theorem . Let ρ ∈ � be a strictly convex function modular. Let C ⊂ Lρ and let T and
S be two ρ-nonexpansive mappings from C into X with a common fixed point. Then, for
each λ ∈ (, ), a mapping U : C → X defined by U(x) = λS(x) + ( – λ)T(x) for x ∈ X is
ρ-nonexpansive and F(U) = F(S)∩ F(T).

Proof A straightforward calculation shows that the mapping U is ρ-nonexpansive. It is
also clear that F(S) ∩ F(T) ⊂ F(U). Therefore, to complete the proof, we need only to
prove the converse inclusion.
To this end, let us fix x ∈ F(U) and w ∈ F(S)∩ F(T). Let us calculate:

ρ(x –w) = ρ
(
λS(x) + ( – λ)T(x) –w

)
≤ λρ

(
S(x) –w

)
+ ( – λ)ρ

(
T(x) –w

)
= λρ

(
S(x) – S(w)

)
+ ( – λ)ρ

(
T(x) – T(w)

)
≤ λρ(x –w) + ( – λ)ρ(x –w). (.)

In particular, (.) yields the following

ρ(x –w) = ρ
(
S(x) –w

)
= ρ

(
T(x) –w

)
. (.)

Indeed, let us assume to the contrary that

ρ
(
S(x) –w

)
< ρ(x –w). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/4
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Combining (.) with (.), we have

ρ(x –w) ≤ λρ
(
S(x) –w

)
+ ( – λ)ρ

(
T(x) –w

)
< λρ(x –w) + ( – λ)ρ(x –w) = ρ(x –w), (.)

which is impossible. Since the same reasoning can be applied assuming that ρ(T(x) –w) <
ρ(x – w), we conclude that the claim (.) holds. Set f = S(x) – w and g = T(x) – w and
observe that (.) implies that ρ(f ) = ρ(g). Straight calculation shows that

ρ
(
λf + ( – λ)g

)
= ρ

(
U(x) –w

)
. (.)

On the other hand, it follows from (.) and from the assumption x ∈ F(U) that

λρ(f ) + ( – λ)ρ(g) = λρ
(
S(x) –w

)
+ ( – λ)ρ

(
T(x) –w

)
= λρ(x –w) + ( – λ)ρ(x –w) = ρ(x –w) = ρ

(
U(x) –w

)
. (.)

Comparing (.) to (.), we obtain immediately

ρ
(
λf + ( – λ)g

)
= λρ(f ) + ( – λ)ρ(g), (.)

which by the strict convexity of ρ implies that f = g , and consequently that S(x) = T(x).
Compute

x =U(x) = λS(x) + ( – λ)T(x) = λS(x) + ( – λ)S(x) = S(x), (.)

and hence x ∈ F(S). Similarly, we can prove that x ∈ F(T). Hence, x ∈ F(S) ∩ F(T) as
claimed. �

Theorem . Let ρ ∈ � and let F = {Tt : t ≥ } be a continuous semigroup of mappings
on a subset C of Lρ . Let {αn} be a sequence of nonnegative numbers converging to α ∈ [,∞)
such that αn 
= α for all n ∈ N. Then the following representation of the set of all common
fixed points of F holds

F(F ) =
∞⋂
n=

F(Tαn ). (.)

Proof We only need to prove that
⋂∞

n= F(Tαn ) ⊂ F(F ) as the other direction is trivial. Let
z ∈ C be such that Tαn (z) = z for every n ∈ N.
Observe first that if {tn} is a sequence of nonnegative real numbers such that Ttn (z) = z

and tn → t, where t ∈ [,∞), then Tt(z) = z. Indeed,

ρ

(
Tt(z) – z



)
≤ 


ρ
(
Tt(z) – Ttn (z)

)
+


ρ
(
Ttn (z) – z

)

=


ρ
(
Tt(z) – Ttn (z)

) → , (.)

by the continuity of F . Hence Tt(z) = z as claimed.

http://www.fixedpointtheoryandapplications.com/content/2014/1/4
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The above observation implies in particular thatTα(z) = z. Let us define βn = |αn–α| > ,
where n ∈ N. From assumptions it follows that each βn is a positive real number and that
βn → . Note that

max{αn,α} =min{αn,α} + βn. (.)

Hence, denoting mn =min{αn,α} andMn =max{αn,α}, we have

Tβn (z) = Tβn ◦ Tmn (z) = Tβn+mn (z) = TMn (z) = z. (.)

Fix any t > . By Lemma  in [], there exists a sequence {kn} in N∪ {} such that

t =
∞∑
i=

kiβi. (.)

Denoting

sn =
n∑
i=

kiβi, (.)

we obtain for each n ∈ N with sn > 

Tsn (z) = Tkn
βn ◦ Tkn–

βn–
◦ · · · ◦ Tk

β
◦ Tk

β
(z) = z. (.)

Since T(z) = z, it follows that Tsn (z) = z for every n ∈ N. Because sn → t and F is a con-
tinuous semigroup, we conclude, as previously observed, that Tt(z) = z which concludes
the proof of the theorem. �

The following technical result about real numbers (Lemma  in []) will be used in the
proof of our next representation theorem.

Lemma . [] Let α and β be positive real numbers satisfying α/β /∈Q.Define sequences
{αn} in (,∞) and {kn} in N as follows:

(i) α =max{α,β};
(ii) α =min{α,β};
(iii) kn = [αn/αn+] for all n ∈N;
(iv) αn+ = αn – knαn+ for all n ∈ N.
Then the following hold:
(a)  < αn+ < αn for all n ∈ N;
(b) kn ∈N for all n ∈N;
(c) αn/αn+ /∈Q for all n ∈N;
(d) {αn} converges to .

Theorem . Let ρ ∈ � and let F = {Tt : t ≥ } be a continuous semigroup of mappings
on a subset C of Lρ . Let α >  and β >  be two real numbers such that α/β /∈ Q. Then

F(F ) = F(Tα)∩ F(Tβ ). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/4
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Proof We only need to prove that

F(Tα)∩ F(Tβ ) ⊂ F(F ) (.)

as the converse inclusion is obvious. To this end, let us fix z ∈ C be such that z ∈ F(Tα) ∩
F(Tβ ). Let {αn} in (,∞) and {kn} in N be two sequences defined as in Lemma  in [].
We will show that

Tαn (z) = Tαn+ (z) = z (.)

for every n ∈N,

Tα (z) = z and Tα (z) = z. (.)

Thus, equation (.) holds for n = .
Now suppose that Tαn (z) = Tαn+ (z) = z. Then we have

Tαn+ (z) = Tαn+ ◦ Tkn
αn+ (z) = Tαn++knαn+ (z) = Tαn (z) = Tαn+ (z) = z. (.)

Hence, by induction, Tαn (z) = z for every n ∈N and consequently,

F(Tα)∩ F(Tβ ) ⊂
∞⋂
n=

F(Tαn ). (.)

Since, by construction, {αn} is a sequence of positive numbers converging to  ∈ [,∞), it
follows from Theorem . that

F(F ) =
∞⋂
n=

F(Tαn ). (.)

Combining (.) with (.), we obtain the desired inclusion (.) which completes the
proof. �

The next result is an immediate consequence of the fact that the uniform convexity
(UUC) implies the strict convexity (SC) of ρ (Proposition .), and of Theorems ., .
and ..

Theorem . Let ρ ∈ � be (UUC), and let F = {Tt : t ≥ } be a continuous semigroup of
ρ-nonexpansive mappings on a ρ-closed, ρ-bounded, convex, nonempty subset of Lρ . Let
α >  and β >  be two real numbers such that α/β /∈Q. Fix an arbitrary λ ∈ (, ). Then

F(F ) = F
(
λTα + ( – λ)Tβ

)
. (.)

Remark . Using different methods, the conclusion of Theorem . can be proved with-
out the assumption of the uniform convexity but assuming instead the strong continuity
of the semigroup F , see Theorem . in [].
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4 Convergence of Mann iteration processes
We concluded the previous section with Theorem . which says that, under suit-
able assumptions, the set of all common fixed points of a continuous semigroup of
ρ-nonexpansivemappings is nonempty and can be represented as the set of all fixed points
of just one ρ-nonexpansivemapping. In this sectionwe demonstrate how this result can be
applied to the construction of such a common fixed point. This idea can be summarized as
follows: using the results of the previous sections, we can reduce a problemof constructing
a common fixed point for a semigroup of mappings to a problem of constructing a fixed
point for just one ρ-nonexpansive mapping. There exist well-known algorithms for solv-
ing the latter problem using generalized Mann and Ishikawa iteration processes, see [].
In the current section, we prove the convergence of the Mann iterative process to a

common fixed point of a continuous semigroup. Let us start with the definition of the
Mann process, see [].

Definition . Let ρ ∈ �, C ⊂ Lρ , and let T be a ρ-nonexpansive self-mapping on C. Let
σ ∈ (, ). The Mann iteration process generated by the mapping T and the constant σ ,
denoted by M(T ,σ ), is defined by the following iterative formula:

xk+ = σT(xk) + ( – σ )xk , where x ∈ C is chosen arbitrarily. (.)

We will need the following technical results.

Lemma . [, ] Let ρ ∈ � be (UUC) and let σ ∈ (, ). If there exists R >  such that

lim sup
n→∞

ρ(fn) ≤ R, lim sup
n→∞

ρ(gn) ≤ R, (.)

lim
n→∞ρ

(
σ fn + ( – σ )gn

)
= R, (.)

then

lim
n→∞ρ(fn – gn) = .

Lemma . Let ρ ∈ � be (UUC), C ⊂ Lρ be a ρ-closed, ρ-bounded and convex set. Let
T : C → C be ρ-nonexpansive, and let σ ∈ (, ). Denote by {xk} a sequence of elements of
C generated by a Mann process M(T ,σ ). Assume that w is a fixed point of T . Then there
exists r ∈R such that

lim
k→∞

ρ(xk –w) = r. (.)

Proof Since

ρ(xk+ –w) ≤ σρ
(
T(xk) –w

)
+ ( – σ )ρ(xk –w)

= σρ
(
T(xk) – T(w)

)
+ ( – σ )ρ(xk –w)

≤ σρ(xk –w) + ( – σ )ρ(xk –w)

= ρ(xk –w),

http://www.fixedpointtheoryandapplications.com/content/2014/1/4
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it follows that {xk} is a nonincreasing sequence of nonnegative numbers hence it is con-
vergent to a number r ∈R. �

Lemma . Let ρ ∈ � be (UUC), C ⊂ Lρ be a ρ-closed, ρ-bounded and convex set. Let
T : C → C be ρ-nonexpansive, and let σ ∈ (, ). Denote by {xk} a sequence of elements of
C generated by a Mann process M(T ,σ ). Then

lim
k→∞

ρ
(
T(xk) – xk

)
=  (.)

and

lim
k→∞

ρ(xk+ – xk) = . (.)

Proof By Theorem ., T has at least one fixed point w ∈ C. In view of Lemma ., there
exists r ∈R such that

lim
k→∞

ρ(xk –w) = r. (.)

Note that

lim sup
k→∞

ρ
(
T(xk) –w

)
= lim sup

k→∞
ρ
(
T(xk) – T(w)

) ≤ lim sup
k→∞

ρ(xk –w) ≤ r, (.)

and that

lim
k→∞

ρ
(
σ
(
T(xk) –w

)
+ ( – σ )(xk –w)

)
= lim

k→∞
ρ(xk+ –w) = r. (.)

Set fk = T(xk) – w, gk = xk – w, and note that lim supk→∞ ρ(gk) ≤ r by (.), and
lim supk→∞ ρ(fk) ≤ r by (.). Observe also that

lim
k→∞

ρ
(
σ fk + ( – σ )gk

)
= lim

k→∞
ρ
(
σT(xk) + ( – σ )xk –w

)

= lim
k→∞

ρ(xk+ –w) = r. (.)

Hence, it follows from Lemma . that

lim
k→∞

ρ
(
T(xk) – xk

)
= lim

k→∞
ρ(fk – gk) = , (.)

which by the construction of the sequence {xk} is equivalent to

lim
k→∞

ρ(xk+ – xk) = , (.)

as claimed. �

Remark . Please note that Lemma . and Lemma . are special cases of analogous
but more general results obtained for asymptotic pointwise nonexpansive mappings, see
Lemma . and Lemma . in []. Since the proofs for the ρ-nonexpansive mappings are
much simpler, the authors decided to include them in the current paper for the sake of
clarity and completeness.
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Let us recall now the definition of the Opial property and the strong Opial property in
modular function spaces [, ].

Definition . We say that Lρ satisfies the ρ-a.e. Opial property if for every {fn} ∈ Lρ

which is ρ-a.e. convergent to  such that there exists β >  for which

sup
n

{
ρ(βfn)

}
<∞, (.)

the following inequality holds for any g ∈ Eρ not equal to 

lim inf
n→∞ ρ(fn) ≤ lim inf

n→∞ ρ(fn + g). (.)

Definition . We say that Lρ satisfies the ρ-a.e. strong Opial property if for every {fn} ∈
Lρ which is ρ-a.e. convergent to  such that there exists β >  for which

sup
n

{
ρ(βfn)

}
<∞, (.)

the following equality holds for any g ∈ Eρ

lim inf
n→∞ ρ(fn + g) = lim inf

n→∞ ρ(fn) + ρ(g). (.)

Remark . Note that the ρ-a.e. strong Opial property implies the ρ-a.e. Opial prop-
erty [].

Remark . Also note that, by virtue of Theorem . in [], every convex, orthogonally
additive function modular ρ has the ρ-a.e. strong Opial property. Let us recall that ρ is
called orthogonally additive if ρ(f ,A∪B) = ρ(f ,A)+ρ(f ,B) wheneverA∩B = ∅. Therefore,
all Orlicz and Musielak-Orlicz spaces must have the strong Opial property.

Note that the Opial property in the norm sense does not necessarily hold for several
classical Banach function spaces. For instance, the normOpial property does not hold for
Lp spaces for ≤ p 
= , while the modular strong Opial property holds in Lp for all p ≥ .
The version of the demiclosedness principle we use in this paper requires the uniform

continuity of the functionmodular ρ in the sense of the following definition (see, e.g., []).

Definition . We say that ρ ∈ � is uniformly continuous if for every ε >  and L > ,
there exists δ >  such that

∣∣ρ(g) – ρ(g + h)
∣∣ ≤ ε, (.)

provided ρ(h) < δ and ρ(g)≤ L.

Let us mention that the uniform continuity holds for a large class of function modulars.
For instance, it can be proved that in Orlicz spaces over a finite atomless measure [] or
in sequence Orlicz spaces [], the uniform continuity of the Orlicz modular is equivalent
to the �-type condition.
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Theorem . (Demiclosedness principle []) Let ρ ∈ �. Assume that
() ρ is (UUC),
() ρ has the strong Opial property,
() ρ has the � property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, convex, strongly ρ-bounded and ρ-closed, T : C → C be ρ-non-
expansive, and x ∈ C. If xn → x ρ-a.e. and ρ(T(xn) – xn) → , then x ∈ F(T).

We are now ready to prove the following version of the Mann process convergence the-
orem for a single ρ-nonexpansive mapping.

Theorem . Let ρ ∈ �. Assume that
() ρ is (UUC),
() ρ has the strong Opial property,
() ρ has the � property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, ρ-a.e. compact, convex, strongly ρ-bounded and ρ-closed. Let
T : C → C be ρ-nonexpansive and σ ∈ (, ). Denote by {xk} a sequence of elements of C
generated by a Mann process M(T ,σ ). Then there exists x ∈ F(T) such that xn → x ρ-a.e.

Proof Observe that by Theorem . the set of fixed points F(T) is nonempty, convex and
ρ-closed. By Lemma . the sequence {xk} is an approximate fixed point sequence, that is,

ρ
(
T(xk) – xk

) →  (.)

as k → ∞. Consider y, z ∈ C, two ρ-a.e. cluster points of {xk}. There exist then {yk}, {zk}
subsequences of {xk} such that yk → y ρ-a.e., and zk → z ρ-a.e. By Theorem ., y ∈ F(T)
and z ∈ F(T). By Lemma ., there exist ry, rz ∈R such that

ry = lim
k→∞

ρ(xk – y), rz = lim
k→∞

ρ(xk – z). (.)

We claim that y = z. Assume to the contrary that y 
= z. Then, by the strong Opial property,
we have

ry = lim inf
k→∞

ρ(yk – y) < lim inf
k→∞

ρ(yk – z)

= lim inf
k→∞

ρ(zk – z) < lim inf
k→∞

ρ(zk – y) = ry. (.)

The contradiction implies that y = z. Therefore, {xk} has at most one ρ-a.e. cluster point.
Since C is ρ-a.e. compact, it follows that the sequence {xk} has exactly one ρ-a.e. cluster
point, which means that ρ(xk) → x ρ-a.e. Using Theorem . again, we get x ∈ F(T) as
claimed. �

Let us combine now Theorem . with Theorem . to demonstrate the convergence of
an iterative algorithm to a common fixed point of a semigroup of nonlinear mappings in
modular function spaces.

Theorem . Let ρ ∈ �. Assume that
() ρ is (UUC),
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() ρ has the strong Opial property,
() ρ has the � property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, ρ-a.e. compact, convex, strongly ρ-bounded and ρ-closed. Let
F = {Tt : t ≥ } be a continuous semigroup of ρ-nonexpansive mappings on C. Assume
that α >  and β >  are two real numbers such that α/β /∈ Q. Fix λ,κ ∈ (, ) such that
κ + λ < . Define a sequence {xn} in C by x ∈ C and

xn+ = κTα(xn) + λTβ (xn) + ( – κ – λ)xn (.)

for natural n≥ . Then {xn} ρ-a.e. converges to a common fixed point of the semigroup F .

Proof Define a mapping S by

S =
κ

κ + λ
Tα +

λ

κ + λ
Tβ , (.)

and observe that S : C → C is ρ-nonexpansive. Fix any x ∈ C and let {xn} be generated by
the Mann processM(S,σ ) where σ = κ + λ

xn+ = σS(xn) + ( – σ )xn, (.)

which is exactly the sequence defined by (.). By Theorem . there exists x ∈ F(S) such
that xn → x ρ-a.e. By Theorem . F(F ) = F(S), hence x ∈ F(F ). The proof is complete.

�

5 Convergence of Ishikawa iteration processes
The Ishikawa iteration process [] is a two-step process generalization of the Mann pro-
cess. From the numerical point of view, the Ishikawa iteration process provides more flex-
ibility in defining the algorithm parameters, and hence providing a better control over the
speed of convergence of the algorithm.

Definition . Let ρ ∈ �, C ⊂ Lρ and let T be a ρ-nonexpansive self-mapping on C. Let
σ , τ ∈ (, ). The Ishikawa iteration process generated by themapping T and the constants
σ and τ , denoted by I(T ,σ , τ ), is defined by the following iterative formula:

xk+ = σT
(
τT(xk) + ( – τ )xk

)
+ ( – σ )xk , where x ∈ C is chosen arbitrarily. (.)

Lemma . Let ρ ∈ � be (UUC). Let C ⊂ Lρ be a ρ-closed, ρ-bounded and convex set. Let
T : C → C be ρ-nonexpansive, and let σ , τ ∈ (, ). Denote by {xk} a sequence of elements
of C generated by the Ishikawa process I(T ,σ , τ ). Assume that w is a fixed point of T . Then
there exists r ∈ R such that limk→∞ ρ(xk –w) = r.

Proof Using a similar calculation to the one used in the proof of Lemma ., it is not
difficult to prove that {xk} is a nonincreasing sequence of nonnegative numbers, hence it
is convergent to a number r ∈R. �

Lemma . Let ρ ∈ � be (UUC). Let C ⊂ Lρ be a ρ-closed, ρ-bounded and convex set. Let
T : C → C be ρ-nonexpansive, and let σ , τ ∈ (, ). Denote by {xk} a sequence of elements

http://www.fixedpointtheoryandapplications.com/content/2014/1/4


Alsulami and Kozlowski Fixed Point Theory and Applications 2014, 2014:4 Page 15 of 19
http://www.fixedpointtheoryandapplications.com/content/2014/1/4

of C generated by the Ishikawa process I(T ,σ , τ ). Define

yk = τT(xk) + ( – τ )xk . (.)

Then

lim
k→∞

ρ
(
T(yk) – xk

)
=  (.)

or, equivalently,

lim
k→∞

ρ(xk+ – xk) = . (.)

Proof By Theorem ., F(T) 
= ∅. Let us fix w ∈ F(T). By Lemma ., limk→∞ ρ(xk – w)
exists. Let us denote it by r. Since w ∈ F(T), T ∈ Tr(C) and limk→∞ ρ(xk – w) = r, by
Lemma . we have the following:

lim sup
k→∞

ρ
(
T(yk) –w

)
= lim sup

k→∞
ρ
(
T(yk) – T(w)

)

≤ lim sup
k→∞

ρ(yk –w)

= lim sup
k→∞

ρ
(
τT(xk) + ( – τ )xk –w

)

≤ lim sup
k→∞

(
τρ

(
T(xk) –w

)
+ ( – τ )ρ(xk –w)

)

≤ lim sup
k→∞

(
τρ(xk –w) + ( – τ )ρ(xk –w)

) ≤ r. (.)

Note that

lim
k→∞

ρ
(
σ
(
T(yk) –w

)
+ ( – σ )(xk –w)

)

= lim
k→∞

ρ
(
σT(yk) + ( – σ )xk –w

)
= lim

k→∞
ρ(xk+ –w) = r. (.)

Applying Lemma . with uk = T(yk) – w and vk = xk – w, we obtain the desired equality
limk→∞ ρ(T(yk) – xk) = , while (.) follows from (.) via the construction formulas for
xk+ and yk . �

Remark . Please note that Lemma . and Lemma . are special cases of analogous
but more general results obtained for asymptotic pointwise nonexpansive mappings, see
Lemma . and Lemma . in []. Since the proofs for the ρ-nonexpansive mappings are
much simpler, the authors decided to include them in the current paper for the sake of
clarity and completeness.

Lemma . Let ρ ∈ � be (UUC) satisfying �. Let C ⊂ Lρ be a ρ-closed, ρ-bounded and
convex set. Let T : C → C be ρ-nonexpansive, and let σ , τ ∈ (, ). Denote by {xk} a se-
quence of elements of C generated by the Ishikawa process I(T ,σ , τ ). Then

lim
k→∞

ρ
(
T(xk) – xk

)
= . (.)
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Proof Let yk = τT(xk) + ( – τ )xk . Hence

T(xk) – xk =


 – τ

(
T(xk) – yk

)
. (.)

Since τ ∈ (, ), there exists  < s <  such that τ ≤ s. Hence,

ρ
(
T(xk) – xk

)
= ρ

(


 – τ

(
T(xk) – yk

)) ≤ ρ

(


 – s
(
T(xk) – yk

))
. (.)

The right-hand side of this inequality tends to zero because ρ(T(xk) – yk) →  by
Lemma . and because ρ satisfies �. �

Using Lemma . instead of Lemma ., and Lemma . instead of Lemma ., and
arguing in a similar way as in the proof of Theorem ., we can obtain the following con-
vergence result for the Ishikawa process.

Theorem . Let ρ ∈ �. Assume that
() ρ is (UUC),
() ρ has the strong Opial property,
() ρ has the � property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, ρ-a.e. compact, convex, strongly ρ-bounded and ρ-closed. Let T :
C → C be ρ-nonexpansive and σ ∈ (, ), τ ∈ (, ).Denote by {xk} a sequence of elements of
C generated by an Ishikawa process I(T ,σ , τ ). Then there exists x ∈ F(T) such that xn → x
ρ-a.e.

Again, let us combine Theorem . with Theorem . to demonstrate the convergence
of an Ishikawa-type, two-step iterative algorithm to a common fixed point of a semigroup
of nonlinear mappings in modular function spaces. Please note that, as said before, typ-
ical implementations of the Ishikawa algorithm are convergent at a faster pace than the
corresponding Mann schema.

Theorem . Let ρ ∈ �. Assume that
() ρ is (UUC),
() ρ has the strong Opial property,
() ρ has the � property and is uniformly continuous.

Let C ⊂ Lρ be nonempty, ρ-a.e. compact, convex, strongly ρ-bounded and ρ-closed. Let
F = {Tt : t ≥ } be a continuous semigroup of ρ-nonexpansive mappings on C. Assume
that α >  and β >  are two real numbers such that α/β /∈ Q. Fix λ,κ ∈ (, ) such that
κ + λ < . Define a sequence {xn} in C by x ∈ C and

xn+ = κTα

(
κTα(xn) + λTβ (xn) + ( – κ – λ)xn

)
+ λTβ

(
κTα(xn) + λTβ (xn) + ( – κ – λ)xn

)
+ ( – κ – λ)xn (.)

for natural n≥ . Then {xn} ρ-a.e. converges to a common fixed point of the semigroup F .

Proof Similarly as in the Mann process case, let us define a mapping S by

S =
κ

κ + λ
Tα +

λ

κ + λ
Tβ (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/4


Alsulami and Kozlowski Fixed Point Theory and Applications 2014, 2014:4 Page 17 of 19
http://www.fixedpointtheoryandapplications.com/content/2014/1/4

and note that S : C → C is ρ-nonexpansive. Fix any x ∈ C and let {xn} be generated by the
two-step Ishikawa process I(S,σ , τ ), where σ = κ + λ and τ = κ + λ,

xn+ = σS
(
τS(xn) + ( – τ )xn

)
+ ( – σ )xn, (.)

which is exactly the sequence defined by (.). By Theorem . there exists x ∈ F(S) such
that xn → x ρ-a.e. By Theorem . F(F ) = F(S), hence x ∈ F(F ), which completes the
proof. �

6 Application to construction of a stationary point of the Urysohn process
In this section we provide an example how the results of the preceding sections can be
utilized for constructing a stationary point of a process defined by the Urysohn operator

T(f )(x) =
∫ 


k
(
x, y,

∣∣f (y)∣∣)dy + f(x),

where f is a fixed function and f : [, ]→ R is Lebesgue measurable. For the kernel k, we
assume that
(a) k : [, ]× [, ]×R+ →R+ is Lebesgue measurable,
(b) k(x, y, ) = ,
(c) k(x, y, ·) is continuous, convex and increasing to +∞,
(d)

∫ 
 k(x, y, t)dx >  for t >  and y ∈ (, ).

Assume in addition that for almost all t ∈ [, ] and for any two measurable functions f , g ,
there holds

∫ 



{∫ 


k
(
t,u,

∣∣k(u, v, ∣∣f (v)∣∣) – k
(
u, v,

∣∣g(v)∣∣)∣∣)dv
}
du

≤
∫ 


k
(
t,u,

∣∣f (u) – g(u)
∣∣)du.

Setting ρ(f ) =
∫ 
 {∫ 

 k(x, y, |f (y)|)dy}dx and using Jensen’s inequality, it is easy to show that
ρ is a convex function modular on the space of measurable functions defined in [, ], and
that ρ(T(f ) –T(g)) ≤ ρ(f – g), that is, T is nonexpansive with respect to ρ . Let us fix r > 
and setC = {f ∈ Eρ : ρ(f – f)≤ r}. It is easy to see thatT : C → C. If we assume additionally
that there exist a constant M >  and a Lebesgue-integrable function h : [, ] × [, ] →
[,∞) such that for every u ≥  and x, y ∈ [, ],

k(x, y, u)≤Mk(x, y,u) + h(x, y),

then the modular ρ has the property � in the sense of Definition .. It can be shown,
see [], that, given f ∈ C, the following initial value problem

⎧⎨
⎩
u() = f ,

u′(t) + (I – T)u(t) = 
(.)

has a solution uf : [, +∞] → C. As proved by Khamsi in [], the formula

St(f ) = uf (t)
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defines the semigroup of ρ-nonexpansivemappings. Note that ρ in this example is orthog-
onally additive and hence it has the strong Opial property, see []. Therefore, assuming
ρ is (UUC) and uniformly continuous, see [, , ] for several criteria, we can use our
methods (Theorem . and Theorem .) to construct a common fixed point of the semi-
group {St}whichwill be a stationary point of theUrysohn process defined by the evolution
function (t, f ) → uf (t) ∈ C.
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