

RESEARCH Open Access

A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces

Carmen Alegre, Josefa Marín and Salvador Romaguera*

Dedicated to Professor W. Takahashi on the occasion of his 70th birthday

*Correspondence: sromague@mat.upv.es Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia. 46022. Spain

Abstract

We obtain a fixed point theorem for generalized contractions on complete quasi-metric spaces, which involves w-distances and functions of Meir-Keeler and Jachymski type. Our result generalizes in various directions the celebrated fixed point theorems of Boyd and Wong, and Matkowski. Some illustrative examples are also given.

MSC: 47H10; 54H25; 54E50

Keywords: fixed point; generalized contraction; *w*-distance; complete quasi-metric space

1 Introduction and preliminaries

In their celebrated paper [1], Kada, Suzuki and Takahashi introduced and studied the notion of a *w*-distance on a metric space. By using that notion they obtained, among other results, generalizations of the nonconvex minimization theorem of Takahashi [2], of Caristi's fixed point theorem [3] and of Ekeland's variational principle [4], as well as a general fixed point theorem that improves fixed point theorems of Subrahmanyam [5], Kannan [6] and Ćirić [7]. This study was continued by Suzuki and Takahashi [8], and by Park [9] who extended several results from [1] to quasi-metric spaces. Park's approach was successful continued by Al-Homidan, Ansari and Yao [10], who obtained, among other interesting results, quasi-metric versions of Caristi-Kirk's fixed point theorem and Nadler's fixed point theorem by using *Q*-functions (a slight generalization of *w*-distances). More recently, Latif and Al-Mezel [11], and Marín *et al.* [12–14] have proved some fixed point theorems both for single-valued and multi-valued mappings in complete quasi-metric spaces and preordered quasi-metric spaces by using *Q*-functions and *w*-distances, and generalizing in this way well-known fixed point theorems of Mizoguchi and Takahashi [15], Bianchini and Grandolfi [16], and Boyd and Wong [17], respectively.

In this paper we shall obtain a fixed point theorem for generalized contractions with respect to *w*-distances on complete quasi-metric spaces from which we deduce *w*-distance versions of Boyd and Wong's fixed point theorem [17] and of Matkowski's fixed point theorem [18]. Our approach uses a kind of functions considered by Jachymski in [19, Corollary of Theorem 2] and that generalizes the notion of a function of Meir-Keeler type.

In the sequel the letters \mathbb{R}^+ , \mathbb{N} and ω will denote the set of non-negative real numbers, the set of positive integer numbers and the set of non-negative integer numbers, respectively. By a quasi-metric on a set X we mean a function $d: X \times X \to \mathbb{R}^+$ such that for all

By a quasi-metric on a set X we mean a function $d: X \times X \to \mathbb{R}^+$ such that for all $x, y, z \in X$:

- (i) $d(x, y) = d(y, x) = 0 \Leftrightarrow x = y$, and
- (ii) $d(x, y) \le d(x, z) + d(z, y)$.

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric on X.

Each quasi-metric d on a set X induces a topology τ_d on X which has as a base the family of open balls $\{B_d(x,r): x \in X, \varepsilon > 0\}$, where $B_d(x,\varepsilon) = \{y \in X: d(x,y) < \varepsilon\}$ for all $x \in X$ and $\varepsilon > 0$.

Given a quasi-metric d on X, the function d^{-1} defined by $d^{-1}(x,y) = d(y,x)$ for all $x,y \in X$, is also a quasi-metric on X, and the function d^s defined by $d^s(x,y) = \max\{d(x,y),d(y,x)\}$ for all $x,y \in X$, is a metric on X.

There exist several different notions of Cauchy sequence and of complete quasi-metric space in the literature (see *e.g.* [20]). In this paper we shall use the following general notion.

A quasi-metric space (X,d) is called complete if every Cauchy sequence $(x_n)_{n\in\omega}$ in the metric space (X,d^s) converges with respect to the topology $\tau_{d^{-1}}$ (*i.e.*, there exists $z\in X$ such that $d(x_n,z)\to 0$).

Definition 1 ([9, 10]) A *w*-distance on a quasi-metric space (X, d) is a function $q: X \times X \rightarrow \mathbb{R}^+$ satisfying the following three conditions:

- (W1) $q(x, y) \le q(x, z) + q(z, y)$ for all $x, y, z \in X$;
- (W2) $q(x, \cdot): X \to \mathbb{R}^+$ is lower semicontinuous on $(X, \tau_{d^{-1}})$ for all $x \in X$;
- (W3) for each $\varepsilon > 0$ there exists $\delta > 0$ such that $q(x,y) \le \delta$ and $q(x,z) \le \delta$ imply $d(y,z) \le \varepsilon$.

Several examples of w-distances on quasi-metric spaces may be found in [9–12].

Note that if d is a metric on X then it is a w-distance on (X, d). Unfortunately, this does not hold for quasi-metric spaces, in general. Indeed, in [12, Lemma 2.2] there was observed the following.

Lemma 1 If q is a w-distance on a quasi-metric space (X,d), then for each $\varepsilon > 0$ there exists $\delta > 0$ such that $q(x,y) \le \delta$ and $q(x,z) \le \delta$ imply $d^s(y,z) \le \varepsilon$.

It follows from Lemma 1 (see [12, Proposition 2.3]) that if a quasi-metric d on X is also a w-distance on (X, d), then the topologies induced by d and by the metric d^s coincide, so (X, τ_d) is a metrizable topological space.

2 Results and examples

Meir and Keeler proved in [21] that if f is a self-map of a complete metric space (X,d) satisfying the condition that for each $\varepsilon > 0$ there is $\delta > 0$ such that, for any $x,y \in X$, with $\varepsilon \le d(x,y) < \varepsilon + \delta$ we have $d(fx,fy) < \varepsilon$, then f has a unique fixed point $z \in X$ and $f^nx \to z$ for all $x \in X$.

This well-known result suggests the notion of a Meir-Keeler function:

A function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is said to be a Meir-Keeler function if $\phi(0) = 0$, and satisfies the following condition:

(MK) For each $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\varepsilon \le t < \varepsilon + \delta$$
 implies $\phi(t) < \varepsilon$, for all $t \in \mathbb{R}^+$.

Remark 1 It is obvious that if ϕ is a Meir-Keeler function then $\phi(t) < t$ for all t > 0.

Later on, Jachymski proved in [19] the following interesting result and showed that both Boyd and Wong's fixed point theorem and Matkowski's fixed point theorem are easy consequences of it.

Theorem 1 ([19, Corollary of Theorem 2]) Let f be a self-map of a complete metric space (X,d) such that d(fx,fy) < d(x,y) for $x \neq y$, and $d(fx,fy) \leq \phi(d(x,y))$ for all $x,y \in X$, where $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfies the condition

(Ja) for each $\varepsilon > 0$ there exists $\delta > 0$ such that for any $t \in \mathbb{R}^+$,

$$\varepsilon < t < \varepsilon + \delta$$
 implies $\phi(t) \le \varepsilon$.

Then f has a unique fixed point $z \in X$ and $f^n x \to z$ for all $x \in X$.

Theorem 1 suggests the following notion:

A function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ is said to be a Jachymski function if $\phi(0) = 0$ and it satisfies condition (Ja) of Theorem 1.

Remark 2 Obviously, each Meir-Keeler function is a Jachymski function. However, the converse does not follow even in the case that $\phi(t) < t$ for all t > 0: Indeed, let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ defined as $\phi(t) = 0$ for all $t \in [0,1]$ and $\phi(t) = 1$ otherwise. Clearly ϕ is a Jachymski function such that $\phi(t) < t$ for all t > 0. Finally, for $\varepsilon = 1$ and any $\delta > 0$ we have $\phi(\varepsilon + \delta/2) = \varepsilon$, so ϕ is not a Meir-Keeler function.

Now we establish the main result of this paper.

Theorem 2 Let f be a self-map of a complete quasi-metric space (X,d). If there exist a w-distance q on (X,d) and a Jachymski function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\phi(t) < t$ for all t > 0, and

$$q(fx, fy) \le \phi(q(x, y)),\tag{1}$$

for all $x, y \in X$, then f has a unique fixed point $z \in X$. Moreover q(z, z) = 0.

Proof Fix $x_0 \in X$. For each $n \in \omega$ let $x_n = f^n x_0$. Then

$$q(x_{n+1}, x_{n+2}) \le \phi(q(x_n, x_{n+1})), \tag{2}$$

for all $n \in \omega$.

First, we shall prove that $\{x_n\}_{n\in\omega}$ is a Cauchy sequence in (X, d^s) .

To this end put $r_n = q(x_n, x_{n+1})$ for all $n \in \omega$.

If there is $n_0 \in \omega$ such that $r_{n_0} = 0$, then $r_n = 0$ for all $n \ge n_0$ by (2) and our assumption that $\phi(0) = 0$. Therefore $q(x_n, x_m) = 0$ whenever $m > n \ge n_0$ by condition (W1), and consequently, $d^s(x_n, x_m) = 0$ by Lemma 1. Thus $x_n = x_{n_0+1}$ for all $n \ge n_0 + 1$.

Otherwise, we assume, without loss of generality, that $r_{n+1} < r_n$ for all $n \in \omega$. Then $\{r_n\}_{n \in \omega}$ converges to some $r \in \mathbb{R}^+$. Of course, $r < r_n$ for all $n \in \omega$.

If r > 0 there exists $\delta = \delta(r)$ such that

$$r < t < r + \delta \implies \phi(t) < r$$
.

Take $n_{\delta} \in \mathbb{N}$ such that $r_n < r + \delta$ for all $n \ge n_{\delta}$. Therefore $\phi(r_n) \le r$, so by condition (2), $r_{n+1} \le r$ for all $n \ge n_{\delta}$, a contradiction. Consequently r = 0.

Now choose an arbitrary $\varepsilon > 0$. There exists $\delta = \delta(\varepsilon)$, with $\delta \in (0, \varepsilon)$, for which conditions (W3) and (Ja) hold. Similarly, for $\delta/2$ there exists $\mu = \mu(\delta/2)$, with $\mu \in (0, \delta/2)$ for which conditions (W3) and (Ja) also hold, *i.e.*,

$$q(x,y) \le \mu$$
 and $q(x,z) \le \mu$, imply $d(y,z) \le \delta/2$, and for any $t > 0$, $\delta/2 < t < \delta/2 + \mu$ implies $\phi(t) \le \delta/2$.

Since $r_n \to 0$, there exists $k_0 \in \mathbb{N}$ such that $r_n < \mu$ for all $n \ge k_0$.

By using a similar technique to the one given by Jachymski in [19, Theorem 2] we shall prove, by induction, that for each $k \ge k_0$ and each $n \in \mathbb{N}$, we have

$$q(x_k, x_{n+k}) < \frac{\delta}{2} + \mu. \tag{3}$$

Indeed, fix $k \ge k_0$. Since $q(x_k, x_{k+1}) < \mu$, condition (3) follows for n = 1.

Assume that (3) holds for some $n \in \mathbb{N}$. We shall distinguish two cases.

• Case 1: $q(x_k, x_{n+k}) > \delta/2$. Then we deduce from the induction hypothesis and condition (Ja) that

$$\phi(q(x_k,x_{n+k})) < \delta/2,$$

so by (1), $q(x_{k+1}, x_{n+k+1}) \le \delta/2$. Therefore

$$q(x_k, x_{n+k+1}) \le q(x_k, x_{k+1}) + q(x_{k+1}, x_{n+k+1}) < \mu + \frac{\delta}{2}.$$

• Case 2: $q(x_k, x_{n+k}) \le \delta/2$.

If $q(x_k, x_{n+k}) = 0$, we deduce that $q(x_{k+1}, x_{n+k+1}) = 0$ by (1). So, by (W1),

$$q(x_k, x_{n+k+1}) \le q(x_k, x_{k+1}) < \mu < \mu + \frac{\delta}{2}.$$

If $q(x_k, x_{n+k}) > 0$, we deduce that $\phi(q(x_k, x_{n+k})) < q(x_k, x_{n+k}) \le \delta/2$, so

$$q(x_k, x_{n+k+1}) \le q(x_k, x_{k+1}) + q(x_{k+1}, x_{n+k+1})$$

$$\le q(x_k, x_{k+1}) + \phi(q(x_k, x_{n+k})) < \mu + \frac{\delta}{2}.$$

Now take $i, j \in \mathbb{N}$ with i, j > k. Then i = n + k and j = m + k for some $n, m \in \mathbb{N}$. Hence, by (3),

$$q(x_k, x_i) = q(x_k, x_{n+k}) < \frac{\delta}{2} + \mu < \delta$$
 and $q(x_k, x_j) = q(x_k, x_{m+k}) < \frac{\delta}{2} + \mu < \delta$.

Now, from Lemma 1 it follows that $d^s(x_i, x_j) \le \varepsilon$ whenever i, j > k. We conclude that $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, d^s) .

Since (X, d) is complete, there exists $z \in X$ such that $d(x_n, z) \to 0$.

Next we show that $q(x_n, z) \to 0$: Indeed, choose an arbitrary $\varepsilon > 0$. We have proved (see (3)) that there is $k_0 \in \mathbb{N}$ such that $q(x_k, x_{n+k}) < \varepsilon$ for all $k \ge k_0$ and $n \in \mathbb{N}$. Fix $k \ge k_0$. Since $d(x_n, z) \to 0$ it follows from condition (W2) that, for n sufficiently large,

$$q(x_k, z) < q(x_k, x_{n+k}) + \varepsilon$$
.

Hence $q(x_k, z) < 2\varepsilon$ for all $k \ge k_0$. We deduce that $q(x_n, z) \to 0$.

From (1) it follows that $q(x_{n+1},fz) \to 0$. So $d^s(z,fz) = 0$ by Lemma 1. Consequently z = fz, *i.e.*, is a fixed point of f. Furthermore q(z,z) = 0. In fact, otherwise we have

$$q(z,z) = q(fz,fz) \le \phi(q(z,z)) < q(z,z),$$

a contradiction.

Finally, let $u \in X$ such that u = fu and $u \neq z$. If q(u, z) > 0 we deduce that

$$q(u,z) = q(fu,fz) \le \phi(q(u,z)) < q(u,z),$$

a contradiction. So q(u,z) = 0. Similarly we check that q(u,u) = 0. Since q(z,z) = 0, we deduce from Lemma 1 that $d^s(u,z) = 0$, *i.e.*, u = z. We conclude that z is the unique fixed point of f.

Corollary 1 *Let f be a self-map of a complete metric space* (X,d). *If there exist a w-distance q on* (X,d) *and a Jachymski function* $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ *such that* $\phi(t) < t$ *for all* t > 0, *and*

$$q(fx, fy) \le \phi(q(x, y)),$$

for all $x, y \in X$, then f has a unique fixed point $z \in X$. Moreover q(z, z) = 0.

Corollary 2 *Let f be a self-map of a complete quasi-metric space* (X,d)*. If there exist a w-distance q on* (X,d) *and a Meir-Keeler function* $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ *such that*

$$q(fx,fy) \le \phi(q(x,y)),$$

for all $x, y \in X$, then f has a unique fixed point $z \in X$. Moreover q(z, z) = 0.

Proof Apply Remarks 1 and 2, and Theorem 2.

Corollary 3 [13] Let f be a self-map of a complete quasi-metric space (X,d). If there exist a w-distance q on (X,d) and a right upper semicontinuous function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\phi(0) = 0$, $\phi(t) < t$ for all t > 0, and

$$q(fx,fy) \le \phi(q(x,y)),$$

for all $x, y \in X$, then f has a unique fixed point $z \in X$. Moreover q(z, z) = 0.

Proof It suffices to show that ϕ is a Meir-Keeler function. Assume the contrary. Then there exist $\varepsilon > 0$ and a sequence $\{t_n\}_{n \in \mathbb{N}}$ of positive real numbers such that $\varepsilon \le t_n < \varepsilon + 1/n$ but $\phi(t_n) \ge \varepsilon$ for all $n \in \mathbb{N}$. Since $\varepsilon - \phi(\varepsilon) > 0$, it follows from right upper semicontinuity of ϕ that $\phi(t_n) - \phi(\varepsilon) < \varepsilon - \phi(\varepsilon)$ eventually, *i.e.*, $\phi(t_n) < \varepsilon$, a contradiction. We conclude that f has a unique fixed point by Corollary 2.

Corollary 4 Let f be a self-map of a complete quasi-metric space (X,d). If there exist a w-distance q on (X,d) and a non-decreasing function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\phi(0) = 0$, $\phi^n(t) \to 0$ for all t > 0, and

$$q(fx,fy) \le \phi(q(x,y)),\tag{4}$$

for all $x, y \in X$, then f has a unique fixed point $z \in X$. Moreover q(z, z) = 0.

Proof Again it suffices to show that ϕ is a Meir-Keeler function. Assume the contrary. Then there exist $\varepsilon > 0$ and a sequence $\{t_n\}_{n \in \mathbb{N}}$ of positive real numbers such that $\varepsilon \le t_n < \varepsilon + 1/n$ but $\phi(t_n) \ge \varepsilon$ for all $n \in \mathbb{N}$. Since ϕ is non-decreasing we deduce that $\phi(t) \ge \varepsilon$ whenever $t \ge \varepsilon$. Hence $\phi^n(t) \ge \varepsilon$ whenever $t \ge \varepsilon$, which contradicts the hypothesis that $\phi^n(t) \to 0$ for all t > 0. We conclude that f has a unique fixed point by Corollary 2.

Remark 3 In [22] the authors proved Corollary 2 for the case that (X, d) is a complete metric space. Note also that Boyd and Wong's fixed point theorem [17] and Matkowski's fixed point theorem [18] are special cases of Corollaries 3 and 4, respectively, when (X, d) is a complete metric space and q is the metric d.

We conclude the paper with some examples that illustrate and validate the obtained results.

The first example shows that condition ' $\phi(t) < t$ for all t > 0' in Theorem 2 cannot be omitted.

Example 1 Let $X = \{0, 1\}$ and let d be the discrete metric on X, *i.e.*, d(x, x) = 0 for all $x \in X$ and d(x, y) = 1 whenever $x \neq y$. Let $f: X \to X$ defined as f = 1 and f = 0, and $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ defined as $\phi(1) = 1$ and $\phi(t) = 0$ for all $x \in \mathbb{R}^+ \setminus \{1\}$. It is clear that ϕ is a Jachysmki function such that

$$d(fx, fy) \le \phi(d(x, y)),$$

for all $x, y \in X$. However, f has no fixed point.

The next is an example where we can apply Theorem 2 for an appropriate w-distance q on a complete quasi-metric space (X,d) but not for d. Moreover, Corollary 1 cannot be applied for any w-distance on the metric space (X,d^s) .

Example 2 Let $X = \omega$ and let d be the quasi-metric on X defined as

$$d(x,x) = 0$$
 for all $x \in X$;
 $d(n,0) = 1/n$ for all $n \in \mathbb{N}$;

$$d(0,n) = 1$$
 for all $n \in \mathbb{N}$;
 $d(n,m) = |1/n - 1/m|$ for all $n, m \in \mathbb{N}$.

Clearly (X,d) is complete (observe that $\{n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in (X,d^s) with $d(n,0) \to 0$).

Let *q* be the *w*-distance on (X, d) given by q(x, y) = y for all $x, y \in X$.

Now define $f: X \to X$ as f = 0 and f = n - 1 for all $n \in \mathbb{N}$, and $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ as $\phi(0) = 0$ and $\phi(t) = n - 1$ where $t \in (n - 1, n]$, $n \in \mathbb{N}$.

It is routine to check that ϕ is a Jachymski function satisfying $\phi(t) < t$ for all t > 0 (in fact, it is a Meir-Keeler function).

Since q(fx, f0) = 0 for all $x \in X$, and for each $n, m \in X$ with $m \neq 0$, we have

$$q(fn, fm) = fm = m - 1 = \phi(m) = \phi(q(n, m)),$$

it follows that all conditions of Theorem 2 are satisfied. In fact z = 0 is the unique fixed point of f.

However, the contraction condition (1) is not satisfied for d. Indeed, for any n > 1 we have

$$d(f0,fn) = d(0,n-1) = 1 > 0 = \phi(1) = \phi(d(0,n)).$$

Finally, note that we cannot apply Corollary 1 because (X, d^s) is not complete (observe that $\{n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in (X, d^s) that does not converge in (X, d^s)).

We conclude with an example where we can apply Corollary 2 but not Corollaries 3 and 4.

Example 3 Let d be the quasi-metric on \mathbb{R}^+ given by $d(x,y) = \max\{y-x,0\}$ for all $x,y \in \mathbb{R}^+$. Since d^s is the usual metric on \mathbb{R}^+ it immediately follows that (\mathbb{R}^+,d) is complete.

Define $q: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ as q(x,y) = y. It is clear that q is a w-distance on (\mathbb{R}^+, d) .

Now let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$, defined by $\phi(t) = t/2$ if $t \in (1,2]$, and $\phi(t) = 0$ otherwise.

Then ϕ is a Meir-Keeler function: Indeed, we first note that $\phi(0) = 0$. Now, given $\varepsilon > 0$ we distinguish the following cases:

- (1) if $0 < \varepsilon < 1$, we take $\delta = 1 \varepsilon$, and thus, from $\varepsilon \le t < \varepsilon + \delta = 1$, it follows $\phi(t) = 0 < \varepsilon$;
- (2) if $\varepsilon = 1$, we take $\delta = 1/2$, and thus, from 1 < t < 3/2, it follows $\phi(t) = t/2 < 3/4 < \varepsilon$, whereas $\phi(1) = 0 < \varepsilon$;
- (3) if $1 < \varepsilon < 2$, we take $\delta = 2 \varepsilon$, and thus, from $\varepsilon \le t < \varepsilon + \delta = 2$, it follows $\phi(t) = t/2 < 1 < \varepsilon$;
- (4) if $\varepsilon \ge 2$, we fix $\delta > 0$, and thus, from $\varepsilon \le t < \varepsilon + \delta$, it follows $\phi(t) < \varepsilon$ because $\phi(2) = 1$ and $\phi(t) = 0$ for t > 2.

Finally, taking $f = \phi$, we obtain $q(fx, fy) \le \phi(q(x, y))$ for all $x, y \in X$, because

$$q(fx, fy) = fy = \phi(y) = \phi(q(x, y)).$$

Therefore, all conditions of Corollary 2 are satisfied. In fact, z = 0 is the unique fixed point of f.

However, ϕ is not right upper semicontinuous at t=1, so we cannot apply Corollary 3. Similarly, we cannot apply Corollary 4 because ϕ is not a non-decreasing function.

Observe also that the *w*-distance *q* cannot be replaced by the quasi-metric *d* because for $1 < y \le 2$ we have

$$d(f1,fy) = d\left(0,\frac{y}{2}\right) = \frac{y}{2} > 0 = \phi(y-1) = \phi(d(1,y)).$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The three authors contributed equally in writing this article. They read and approved the final manuscript.

Acknowledgements

The authors are grateful to the referees for several useful suggestions. They also thank the support of the Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01.

Received: 30 September 2013 Accepted: 4 February 2014 Published: 14 Feb 2014

References

- Kada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381-391 (1996)
- Takahashi, W: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Théra, MA, Baillon, JB (eds.) Fixed Point Theory and Applications. Pitman Research Notes in Mathematics Series, vol. 252, pp. 397-406. Longman, Harlow (1991)
- 3. Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. **215**, 241-251 (1976)
- 4. Ekeland, I: Nonconvex minimization problems. Bull. Am. Math. Soc. 1, 443-474 (1979)
- Subrahmanyam, PV: Remarks on some fixed point theorems related to Banach's contraction principle. J. Math. Phys. Sci. 8, 445-457 (1974). Erratum 9, 195 (1975)
- 6. Kannan, R: Some results on fixed points. II. Am. Math. Mon. 76, 405-408 (1969)
- 7. Ćirić, L: A generalization of Banach's contraction principle. Proc. Am. Math. Soc. 45, 267-273 (1974)
- 8. Suzuki, T, Takahashi, W: Fixed point theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. **8**, 371-382 (1996)
- 9. Park, S: On generalizations of the Ekeland-type variational principles. Nonlinear Anal. TMA 39, 881-889 (2000)
- Al-Homidan, S, Ansari, QH, Yao, JC: Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Anal. TMA 69, 126-139 (2008)
- Latif, A, Al-Mezel, SA: Fixed point results in quasimetric spaces. Fixed Point Theory Appl. 2011, Article ID 178306 (2011)
- 12. Marín, J, Romaguera, S, Tirado, P: Q-functions on quasi-metric spaces and fixed points for multivalued maps. Fixed Point Theory Appl. 2011, Article ID 603861 (2011)
- Marín, J, Romaguera, S, Tirado, P: Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces. Fixed Point Theory Appl. 2011, Article ID 2 (2011)
- Marín, J, Romaguera, S, Tirado, P: Generalized contractive set-valued maps on complete preordered quasi-metric spaces. J. Funct. Spaces Appl. 2013, Article ID 269246 (2013)
- 15. Mizoguchi, N, Takahashi, W: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177-188 (1989)
- Bianchini, RM, Grandolfi, M: Trasformazioni di tipo contrattivo generalizzato in uno spazio metrico. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8) 45, 212-216 (1968)
- 17. Boyd, DW, Wong, JSW: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458-464 (1969)
- 18. Matkowski, J.: Integrable solutions of functional equations, Diss. Math. 127, 1-68 (1975)
- 19. Jachymski, J. Equivalent conditions and the Meir-Keeler type theorems. J. Math. Anal. Appl. 194, 293-303 (1995)
- Künzi, HPA: Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology. In: Aull, CE, Lowen, R (eds.) Handbook of the History of General Topology, vol. 3, pp. 853-968.
 Kluwer Academic, Dordrecht (2001)
- 21. Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969)
- 22. Alegre, C, Marín, J, Romaguera, S: Fixed points for generalized contractions with respect to w-distances and Meir-Keeler functions. In: Proceedings of the Conference in Applied Topology WiAT'13, Bilbao, Spain, pp. 53-58 (2013)

10.1186/1687-1812-2014-40

Cite this article as: Alegre et al.: A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications 2014, 2014:40