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Abstract

We obtain a fixed point theorem for generalized contractions on complete
quasi-metric spaces, which involves w-distances and functions of Meir-Keeler and
Jachymski type. Our result generalizes in various directions the celebrated fixed point
theorems of Boyd and Wong, and Matkowski. Some illustrative examples are also
given.
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1 Introduction and preliminaries

In their celebrated paper [1], Kada, Suzuki and Takahashi introduced and studied the no-
tion of a w-distance on a metric space. By using that notion they obtained, among other re-
sults, generalizations of the nonconvex minimization theorem of Takahashi [2], of Caristi’s
fixed point theorem [3] and of Ekeland’s variational principle [4], as well as a general fixed
point theorem that improves fixed point theorems of Subrahmanyam [5], Kannan [6] and
Ciri¢ [7]. This study was continued by Suzuki and Takahashi [8], and by Park [9] who
extended several results from [1] to quasi-metric spaces. Park’s approach was successful
continued by Al-Homidan, Ansari and Yao [10], who obtained, among other interesting re-
sults, quasi-metric versions of Caristi-Kirk’s fixed point theorem and Nadler’s fixed point
theorem by using Q-functions (a slight generalization of w-distances). More recently, Latif
and Al-Mezel [11], and Marin et al. [12—14] have proved some fixed point theorems both
for single-valued and multi-valued mappings in complete quasi-metric spaces and pre-
ordered quasi-metric spaces by using Q-functions and w-distances, and generalizing in
this way well-known fixed point theorems of Mizoguchi and Takahashi [15], Bianchini
and Grandolfi [16], and Boyd and Wong [17], respectively.

In this paper we shall obtain a fixed point theorem for generalized contractions with re-
spect to w-distances on complete quasi-metric spaces from which we deduce w-distance
versions of Boyd and Wong’s fixed point theorem [17] and of Matkowski’s fixed point theo-
rem [18]. Our approach uses a kind of functions considered by Jachymski in [19, Corollary
of Theorem 2] and that generalizes the notion of a function of Meir-Keeler type.
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In the sequel the letters R*, N and w will denote the set of non-negative real numbers, the
set of positive integer numbers and the set of non-negative integer numbers, respectively.
By a quasi-metric on a set X we mean a function d : X x X — R* such that for all
x,9,z € X:
(i) dx,y) =d(y,x) =04 x=y,and

(i) d(x,y) <d(xz)+d(zy).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric on X.

Each quasi-metric d on a set X induces a topology t,; on X which has as a base the family
of open balls {B;(x,r) : x € X, & > 0}, where B;(x,¢) = {y € X : d(x,y) < ¢} for all x € X and
e>0.

Given a quasi-metric d on X, the function d™! defined by d~(x, y) = d(y,x) forallx,y € X,
is also a quasi-metric on X, and the function d* defined by d*(x, y) = max{d(x, y), d(y, x)} for
all x,y € X, is a metric on X.

There exist several different notions of Cauchy sequence and of complete quasi-metric
space in the literature (see e.g. [20]). In this paper we shall use the following general notion.

A quasi-metric space (X, d) is called complete if every Cauchy sequence (x,),c, in the
metric space (X,d*) converges with respect to the topology 7,1 (i.e., there exists z € X
such that d(x,,z) — 0).

Definition1 ([9,10]) A w-distance on a quasi-metric space (X,d)isafunctiong: X x X —
R* satisfying the following three conditions:
(W1) g(x,y) <qx,z) +q(z,y) forall x,7,z € X;
(W2) g(x,-): X — R* is lower semicontinuous on (X, t;-1) for all x € X;
(W3) for each € > 0 there exists § > 0 such that g(x,y) < 8 and g(x,z) < § imply
d(y,z) <e.

Several examples of w-distances on quasi-metric spaces may be found in [9-12].
Note that if d is a metric on X then it is a w-distance on (X, d). Unfortunately, this does
not hold for quasi-metric spaces, in general. Indeed, in [12, Lemma 2.2] there was observed

the following.

Lemmal Ifqisaw-distance on a quasi-metric space (X, d), then for each ¢ > 0 there exists
8 > 0 such that q(x,y) < 8 and q(x,z) < 8 imply d*(y,z) < e.

It follows from Lemma 1 (see [12, Proposition 2.3]) that if a quasi-metric d on X is also
a w-distance on (X, d), then the topologies induced by d and by the metric d° coincide, so
(X, t4) is a metrizable topological space.

2 Results and examples
Meir and Keeler proved in [21] that if f is a self-map of a complete metric space (X, d)
satisfying the condition that for each ¢ > 0 there is § > 0 such that, for any x,y € X, with
e <d(x,7) < ¢ + 8 we have d(fx,fy) < &, then f has a unique fixed point z € X and f"x — z
forallx € X.

This well-known result suggests the notion of a Meir-Keeler function:

A function ¢ : R* — R* is said to be a Meir-Keeler function if ¢(0) = 0, and satisfies the
following condition:
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(MK) For each ¢ > 0 there exists § > 0 such that
e<t<e+d implies ¢(t)<e, foralreR".

Remark 1 It is obvious that if ¢ is a Meir-Keeler function then ¢(¢) < ¢ for all £ > 0.

Later on, Jachymski proved in [19] the following interesting result and showed that both
Boyd and Wong’s fixed point theorem and Matkowski’s fixed point theorem are easy con-

sequences of it.

Theorem 1 ([19, Corollary of Theorem 2]) Let f be a self-map of a complete metric space
(X, d) such that d(fx,fy) < d(x,y) for x #y, and d(fx,fy) < ¢(d(x,y)) for all x,y € X, where
¢ : R* — R* satisfies the condition

(Ja) for each e > 0 there exists § > 0 such that for any t € RY,

e<t<e+d implies o¢(t)<e.

Then f has a unique fixed point z € X and f"x — z for all x € X.

Theorem 1 suggests the following notion:
A function ¢ : R* — R" is said to be a Jachymski function if ¢(0) = 0 and it satisfies

condition (Ja) of Theorem 1.

Remark 2 Obviously, each Meir-Keeler function is a Jachymski function. However, the
converse does not follow even in the case that ¢(¢) < ¢ for all £ > 0: Indeed, let ¢ : R* — R*
defined as ¢(¢) = 0 for all £ € [0,1] and ¢(¢) = 1 otherwise. Clearly ¢ is a Jachymski function
such that ¢(¢) < ¢ for all £ > 0. Finally, for ¢ =1 and any § > 0 we have ¢(¢ + 8/2) = ¢,s0 ¢ is
not a Meir-Keeler function.

Now we establish the main result of this paper.
Theorem 2 Let f be a self-map of a complete quasi-metric space (X, d). If there exist a

w-distance q on (X,d) and a Jachymski function ¢ : R* — R* such that ¢(t) < ¢t for all
t>0,and

a(fx.fy) < ¢(q(x,9)), o)
forall x,y € X, then f has a unique fixed point z € X. Moreover q(z,z) = 0.
Proof Fix %9 € X. For each n € w let x,, = f"x¢. Then

qni1, %ns2) < G (G %01)), (2)
foralln € w.

First, we shall prove that {x,},c. is a Cauchy sequence in (X, d*).
To this end put r,, = g(x,,, x,,41) for all n € w.
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If there is ny € w such that r,, = 0, then r, = 0 for all n > ny by (2) and our assump-
tion that ¢(0) = 0. Therefore g(x,,x,) = 0 whenever m > n > ny by condition (W1), and
consequently, d°(x,,x,,) = 0 by Lemma 1. Thus x,, = x,,,41 for all # > no + 1.

Otherwise, we assume, without loss of generality, that r,,,; < 7, forall n € w. Then {r,,},,co
converges to some r € R*. Of course, r <1, for all n € w.

If r > 0 there exists § = §(r) such that

r<t<r+8§ = ¢)<r.

Take #ns € N such that r, < r + § for all n > ns. Therefore ¢(r,) < r, so by condition (2),
rue1 < 1 for all n > ng, a contradiction. Consequently r = 0.

Now choose an arbitrary & > 0. There exists § = §(¢g), with § € (0, €), for which conditions
(W3) and (Ja) hold. Similarly, for §/2 there exists p = £(§/2), with u € (0,8/2) for which
conditions (W3) and (Ja) also hold, i.e.,

q(x,y) < nand q(x,z) < pu, imply d(y,z) <8/2,and forany £ >0,8/2 <t <8/2+pu
implies ¢(t) < §/2.

Since r, — 0, there exists ky € N such that r,, < u for all n > k.

By using a similar technique to the one given by Jachymski in [19, Theorem 2] we shall
prove, by induction, that for each k > ko and each #n € N, we have

8
q(Xpes Xak) < 5 HH- (3)

Indeed, fix k > ky. Since g(xk,xx+1) < i, condition (3) follows for n = 1.

Assume that (3) holds for some n € N. We shall distinguish two cases.

+ Case 1: g(xx, %y4k) > 8/2. Then we deduce from the induction hypothesis and
condition (Ja) that

¢(q(xk’ xn+k)) <46/2,

50 by (1), g(k+1, Xpiks1) < 8/2. Therefore

q(xk: xn+k+l) =< q(x/o xk+1) + q(xk+l» xn+k+l) <H+ E

o Case 2: q(xg, Xpik) < 8/2.
If g(xx, x41%) = 0, we deduce that g(xk41, %414+1) = 0 by (1). So, by (W1),

1)
q(xkvxn+k+l) < q(xk:xk-d) <pu<p+ 5

If q(xkr xn+k) > 0, we deduce that ¢(q(xkr xn+k)) < q(xk: Xnk) < 8/2, 50

GXo Xprier1) < Gk Kier1) + GXker1, Xskr1)
b

< q(okr Xka1) + (ks Xnik)) < 1+ 2

Now take i,j € N with i,j > k. Then i = n + k and j = m + k for some n,m € N. Hence,
by (3),

F) 8
q(xr, %) = q(Xis Xnak) < g HH< 8§ and  q(xe, %) = g(xi, Ximek) < g tH< 3.
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Now, from Lemma 1 it follows that d*(x;,x;) < ¢ whenever i,j > k. We conclude that
{x1}nen is a Cauchy sequence in (X, d°).

Since (X, d) is complete, there exists z € X such that d(x,,z) — 0.

Next we show that g(x,,z) — 0: Indeed, choose an arbitrary ¢ > 0. We have proved (see
(3)) that there is ky € N such that g(x, x,.4x) < € for all k > ky and n € N. Fix k > kq. Since
d(x,,z) — 0 it follows from condition (W2) that, for #n sufficiently large,

q(%x,2) < (XK Xpak) + €.

Hence q(xy, z) < 2¢ for all k > ky. We deduce that g(x,,z) — 0.
From (1) it follows that g(x,.1,fz) = 0. So d*(z,fz) = 0 by Lemma 1. Consequently z = fz,
i.e., is a fixed point of f. Furthermore ¢(z,z) = 0. In fact, otherwise we have

4(z,2) = q(fz,2) < ¢(q(z,2)) < q(z,2),

a contradiction.
Finally, let # € X such that u = fu and u # z. If (1, z) > 0 we deduce that

q(u,2) = q(fu,fz) < ¢(q(u,2)) < q(u, 2),

a contradiction. So g(u,z) = 0. Similarly we check that g(u,u) = 0. Since g(z,z) = 0, we
deduce from Lemma 1 that d*(u,z) = 0, i.e., u = z. We conclude that z is the unique fixed
point of f. d

Corollary1 Letf bea self-map of a complete metric space (X, d). If there exist a w-distance
q on (X,d) and a Jachymski function ¢ : R* — R* such that ¢(t) <t forall t >0, and

q(fx.fy) < ¢(q(x,9)),
forall x,y € X, then f has a unique fixed point z € X. Moreover q(z,z) = 0.

Corollary 2 Let f be a self-map of a complete quasi-metric space (X,d). If there exist a
w-distance q on (X, d) and a Meir-Keeler function ¢ : R* — R* such that

a(fx.fy) < ¢(q(x,)),
forall x,y € X, then f has a unique fixed point z € X. Moreover q(z,z) = 0.
Proof Apply Remarks 1 and 2, and Theorem 2. O

Corollary 3 [13] Let f be a self-map of a complete quasi-metric space (X, d). If there exist
a w-distance q on (X, d) and a right upper semicontinuous function ¢ : R* — R* such that
¢(0)=0,¢(t)<tforallt>0,and

a(fx.fy) < ¢(q(x,)),

forall x,y € X, then f has a unique fixed point z € X. Moreover q(z,z) = 0.
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Proof It suffices to show that ¢ is a Meir-Keeler function. Assume the contrary. Then there
exist € > 0 and a sequence {f,},cn of positive real numbers such that ¢ <, <& + 1/n but
¢(t,) > ¢ for all n € N. Since ¢ — ¢(¢) > 0, it follows from right upper semicontinuity of ¢
that ¢(t,) — ¢(e) < € — ¢(e) eventually, i.e., ¢(,) < &, a contradiction. We conclude that f
has a unique fixed point by Corollary 2. O

Corollary 4 Let f be a self-map of a complete quasi-metric space (X, d). If there exist a
w-distance q on (X,d) and a non-decreasing function ¢ : R* — R* such that ¢(0) = 0,
@"(t) > O forallt >0, and

q(fx.fy) < d(q(x.y)), @
forall x,y € X, then f has a unique fixed point z € X. Moreover q(z,z) = 0.

Proof Again it suffices to show that ¢ is a Meir-Keeler function. Assume the contrary.
Then there exist ¢ > 0 and a sequence {¢,},cn of positive real numbers such that ¢ <t, <
¢ + 1/n but ¢(t,) > ¢ for all n € N. Since ¢ is non-decreasing we deduce that ¢(¢) > ¢
whenever ¢ > €. Hence ¢"(¢) > ¢ whenever ¢ > ¢, which contradicts the hypothesis that
@"(t) — 0 for all £ > 0. We conclude that f has a unique fixed point by Corollary 2. 0

Remark 3 In [22] the authors proved Corollary 2 for the case that (X, d) is a complete
metric space. Note also that Boyd and Wong’s fixed point theorem [17] and Matkowski’s
fixed point theorem [18] are special cases of Corollaries 3 and 4, respectively, when (X, d)
is a complete metric space and ¢ is the metric d.

We conclude the paper with some examples that illustrate and validate the obtained
results.

The first example shows that condition ‘¢(£) < ¢ for all £ > 0’ in Theorem 2 cannot be
omitted.

Example 1 Let X = {0,1} and let d be the discrete metric on X, i.e., d(x,x) = 0 forallx € X
and d(x,y) = 1 whenever x #y. Let f : X — X definedas f0 =1and f1 =0, and ¢ : R* — R*
defined as ¢(1) =1 and ¢(¢) = 0 for all x € R*\{1}. It is clear that ¢ is a Jachysmki function
such that

d(fx.fy) < ¢(d(x,)),
for all x,y € X. However, f has no fixed point.

The next is an example where we can apply Theorem 2 for an appropriate w-distance
q on a complete quasi-metric space (X, d) but not for d. Moreover, Corollary 1 cannot be
applied for any w-distance on the metric space (X, d*).

Example 2 Let X = w and let d be the quasi-metric on X defined as

d(x,x) =0 forallx e X;

d(n,0)=1/n forallneN;
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d0,n)=1 forallneN;

d(n,m)=|1/n-1/m| forall n,meN.

Clearly (X,d) is complete (observe that {n},cy is a Cauchy sequence in (X, d*) with
d(n,0) — 0).

Let g be the w-distance on (X, d) given by g(x,y) =y for all x,y € X.

Now definef: X — XasfO=0andfu=n—-1forallmeN,and ¢ :R* - R" as ¢(0) =0
and ¢(t) =n—-1wherete (n-1,n],neN.

It is routine to check that ¢ is a Jachymski function satisfying ¢(¢) < ¢ for all £ > 0 (in fact,
it is a Meir-Keeler function).

Since gq(fx, f0) = 0 for all x € X, and for each n, m € X with m # 0, we have

q(fn.fm) = frm = m =1 = ¢(m) = ¢(q(n, m)),

it follows that all conditions of Theorem 2 are satisfied. In fact z = 0 is the unique fixed
point of f.

However, the contraction condition (1) is not satisfied for d. Indeed, for any n > 1 we
have

d(f0,fn) =d(0,n-1) =1> 0 = ¢(1) = ¢(d(0,n)).

Finally, note that we cannot apply Corollary 1 because (X, d*) is not complete (observe
that {n},cy is a Cauchy sequence in (X, d°) that does not converge in (X, d%)).

We conclude with an example where we can apply Corollary 2 but not Corollaries 3
and 4.

Example 3 Letd be the quasi-metric on R* given by d(x,y) = max{y—wx, 0} forallx,y € R*.
Since d* is the usual metric on R* it immediately follows that (R*,d) is complete.
Define g: R* x R* — R* as g(x, ) = y. It is clear that g is a w-distance on (R*, d).
Now let ¢ : R* — R*, defined by ¢(¢) = ¢/2 if t € (1,2], and ¢(¢) = O otherwise.
Then ¢ is a Meir-Keeler function: Indeed, we first note that ¢(0) = 0. Now, given ¢ > 0
we distinguish the following cases:
(1) if 0<e <1, wetake § =1 —¢, and thus, from e <t <& + 8 =1, it follows ¢(¢) = 0 < ¢;
(2) if e =1, we take 8 = 1/2, and thus, from 1 < £ < 3/2, it follows ¢(¢) = £/2 < 3/4 < ¢,
whereas ¢(1) =0 < &;
(3) if1<e <2, wetake § =2 — ¢, and thus, from & <t < e + 6 =2, it follows
ot)=t/l2<1<g¢;
(4) if e > 2, we fix § >0, and thus, from & <t < & + §, it follows ¢(¢) < € because ¢(2) =1
and ¢(¢) =0 for ¢t > 2.
Finally, taking f = ¢, we obtain g(fx, fy) < ¢(g(x,y)) for all x,y € X, because

a(fx.fy) =fy = () = ¢(q(x,)).

Therefore, all conditions of Corollary 2 are satisfied. In fact, z = 0 is the unique fixed
point of f.
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However, ¢ is not right upper semicontinuous at ¢ = 1, so we cannot apply Corollary 3.
Similarly, we cannot apply Corollary 4 because ¢ is not a non-decreasing function.
Observe also that the w-distance g cannot be replaced by the quasi-metric d because

for 1<y <2 wehave

A1) =d(0.3) = >0-60-1) - p(d01.9).
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