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1 Introduction and preliminaries
Let (X,d) be ametric space. Denote byN (X) the family of all nonempty subsets of X, C(X)
the class of all nonempty closed subsets of X and CB(X) the family of all nonempty closed
and bounded subsets ofX. For each x ∈ X andA ⊆ X, let d(x,A) = infy∈A d(x, y). A function
H : CB(X)× CB(X)→ [,∞) defined by

H(A,B) =max
{
sup
x∈B

d(x,A), sup
x∈A

d(x,B)
}

is said to be the Hausdorff metric on CB(X) induced by the metric d on X. Let T : X →
N (X) be a multivalued map. A point v in X is said to be a fixed point of T if v ∈ Tv. The set
of fixed points of T is denoted by F (T). The map T is said to have the approximate fixed
point property [–] on X provided infx∈X d(x,Tx) = . It is obvious that F (T) �= ∅ implies
that T has the approximate fixed point property. The symbols N and R are used to denote
the sets of positive integers and real numbers, respectively.
A function ϕ : [,∞) → [, ) is said to be an MT -function (or R-function) [–] if

lim sups→t+ ϕ(s) <  for all t ∈ [,∞). It is evident that if ϕ : [,∞) → [, ) is a nonde-
creasing function or a nonincreasing function, then ϕ is a MT -function. So the set of
MT -functions is a rich class.
Recently, Du [] first proved the following characterizations ofMT -functions.

Theorem . ([]) Let ϕ : [,∞) → [, ) be a function. Then the following statements are
equivalent.
(a) ϕ is anMT -function.
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(b) For each t ∈ [,∞), there exist r()t ∈ [, ) and ε
()
t >  such that ϕ(s)≤ r()t for all

s ∈ (t, t + ε
()
t ).

(c) For each t ∈ [,∞), there exist r()t ∈ [, ) and ε
()
t >  such that ϕ(s) ≤ r()t for all

s ∈ [t, t + ε
()
t ].

(d) For each t ∈ [,∞), there exist r()t ∈ [, ) and ε
()
t >  such that ϕ(s)≤ r()t for all

s ∈ (t, t + ε
()
t ].

(e) For each t ∈ [,∞), there exist r()t ∈ [, ) and ε
()
t >  such that ϕ(s)≤ r()t for all

s ∈ [t, t + ε
()
t ).

(f ) For any nonincreasing sequence {xn}n∈N in [,∞), we have ≤ supn∈N ϕ(xn) < .
(g) ϕ is a function of contractive factor; that is, for any strictly decreasing sequence

{xn}n∈N in [,∞), we have  ≤ supn∈N ϕ(xn) < .

In , Mizoguchi and Takahashi [] proved a famous generalization of Nadler’s fixed
point theorem, which gives a partial answer of Problem  in Reich [].

Theorem . (Mizoguchi and Takahashi []) Let (X,d) be a complete metric space, ϕ :
[,∞) → [, ) be a MT -function and T : X → CB(X) be a multivalued map. Assume
that

H(Tx,Ty) ≤ ϕ
(
d(x, y)

)
d(x, y),

for all x, y ∈ X. Then F (T) �= ∅.

A number of generalizations in various different directions of research of Mizoguchi-
Takahashi’s fixed point theoremwere investigated by several authors; see, e.g., [–, –]
and references therein.
In , Suzuki [] presented a new type of generalization of the celebrated Banach

contraction principle [] which characterized the metric completeness.

Theorem . (Suzuki []) Define a nonincreasing function θ from [, ) onto (  , ] by

θ (r) =

⎧⎪⎪⎨
⎪⎪⎩
, if  ≤ r ≤ 

 (
√
 – ),

–r
r , if 

 (
√
 – ) ≤ r ≤ √

 ,


+r , if √
 ≤ r < .

Then for a metric space (X,d), the following are equivalent:
() X is complete.
() Every mapping T on X satisfying the following has a fixed point:

• There exists r ∈ [, ) such that θ (r)d(x,Tx)≤ d(x, y) implies d(Tx,Ty)≤ rd(x, y)
for all x, y ∈ X .

() There exists r ∈ [, ) such that every mapping T on X satisfying the following has a
fixed point:
• 

,d(x,Tx)≤ d(x, y) implies d(Tx,Ty) ≤ rd(x, y) for all x, y ∈ X .

Remark . ([]) For every r ∈ [, ), θ (r) is the best constant.
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Later, Kikkawa and Suzuki [] proved an interesting generalization of both Theorem .
and Nadler’s fixed point theorem. In fact, Kikkawa-Suzuki’s fixed point theorem can be
regarded as a generalization of Nadler fixed point theorem with a local constraint on the
discussion map.

Theorem . (Kikkawa and Suzuki []) Define a strictly decreasing function η from [, )
onto (  , ] by

η(r) =


 + r
.

Let (X,d) be a complete metric space and let T be a map from X into CB(X). Assume that
there exists r ∈ [, ) such that

η(r)d(x,Tx)≤ d(x, y) implies H(Tx,Ty) ≤ rd(x, y)

for all x, y ∈ X. Then F (T) �= ∅.

In this paper, motivated by Kikkawa-Suzuki’s fixed point theorem, we establish some
new generalizations of Mizoguchi-Takahashi’s fixed point theorem with new local con-
straints on discussion maps. Our new results generalize and improve Mizoguchi-
Takahashi’s fixed point theorem, Nadler’s fixed point theorem and Banach contraction
principle.

2 Main results
Very recently, Du andKhojasteh [] first introduced the concept ofmanageable functions.

Definition . ([]) A function η :R×R →R is calledmanageable if the following con-
ditions hold:

(η) η(t, s) < s – t for all s, t > .
(η) For any bounded sequence {tn} ⊂ (, +∞) and any nonincreasing sequence {sn} ⊂

(, +∞), we have

lim sup
n→∞

tn + η(tn, sn)
sn

< .

We denote the sets of all manageable functions by M̂an(R).

Remark . If η ∈ M̂an(R), then η(t, t) <  for all t > .

Example . Let γ ∈ [, ) and a ≥ . Then the function ηγ : R × R → R defined by
ηγ (t, s) = γ s – t – a is manageable.

Example . ([]) Let f :R×R→R be any function and ϕ : [,∞)→ [, ) be anMT -
function. Define η :R×R →R by

η(t, s) =

⎧⎨
⎩
sϕ(s) – t, if (t, s) ∈ [, +∞)× [, +∞),

f (t, s), otherwise.

http://www.fixedpointtheoryandapplications.com/content/2014/1/31
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Then η is a manageable function. Indeed, one can verify easily that (η) holds. Next, we
verify that η satisfies (η). Let {tn} ⊂ (, +∞) be a bounded sequence and {sn} ⊂ (, +∞)
be a nonincreasing sequence. Then limn→∞ sn = infn∈N sn = a for some a ∈ [, +∞). Since
ϕ is anMT -function, by Theorem ., there exist ra ∈ [, ) and εa >  such that ϕ(s)≤ ra
for all s ∈ [a,a + εa). Since limn→∞ sn = infn∈N sn = a, there exists na ∈N, such that

a ≤ sn < a + εa for all n ∈N with n≥ na.

Hence we have

lim sup
n→∞

tn + η(tn, sn)
sn

= lim sup
n→∞

ϕ(sn) ≤ ra < ,

which means that (η) holds. Thus we prove η ∈ M̂an(R).

In this paper, we first introduce the concepts of weakly transmitted functions and (λ)-
strongly transmitted functions.

Definition . A function ξ :R×R →R is called
(i) weakly transmitted if ξ (t, s) > s – t for all s, t > ;
(ii) (λ)-strongly transmitted if there exists λ > , such that ξ (t, s)≥ s – 

λ
t for all s, t ≥ .

We denote by T̃RA(w) and T̃RA(λ), the sets of all weakly transmitted functions and (λ)-
strongly transmitted functions, respectively. It is quite obvious that T̃RA(λ) ⊆ T̃RA(w) for
all λ > .

Example . Let f : R × R → R, g : [, +∞) → [, +∞) be functions and λ > . Define
ξ :R×R →R by

ξ (t, s) =

⎧⎨
⎩
sg(s) – 

λ
t, if (t, s) ∈ [, +∞)× [, +∞),

f (t, s), otherwise.

Then ξ ∈ T̃RA(λ).

The following simple example shows that there exists a weakly transmitted function
which is not (λ)-strongly transmitted for all λ > . In other words, T̃RA(λ) � T̃RA(w) for
all λ > .

Example . Let ξ :R×R →R be defined by

ξ (t, s) =

⎧⎨
⎩
s – t, if (t, s) ∈ [, +∞)× [, +∞),

, otherwise.

Then ξ is a weakly transmitted function which is not (λ)-strongly transmitted for all λ > .

The following result is simple, but it is very crucial in our proofs.
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Lemma . Let (X,d) be a metric space, W be a nonempty subset of X × X and T : X →
CB(X) be a multivalued map. Suppose that there exists η ∈ M̂an(R) such that

η
(
H(Tx,Ty),d(x, y)

) ≥  for all (x, y) ∈W .

If (p,q) ∈W with p �= q, then H(Tp,Tq) < d(p,q).

Proof Since p �= q, d(p,q) > . If H(Tp,Tq) = d(p,q) > , then, by Remark ., we have  ≤
η(H(Tp,Tq),d(p,q)) < , a contradiction. IfH(Tp,Tq) > d(p,q) > , then, by (η), we have

 ≤ η
(
H(Tp,Tq),d(p,q)

)
< d(p,q) –H(Tp,Tq) < ,

which also leads a contradiction. ThereforeH(Tp,Tq) < d(p,q). �

Now, we establish an existence theorem for approximate fixed point property and fixed
points by using manageable functions and transmitted functions which is one of the main
results of this paper.

Theorem . Let (X,d) be a metric space and T : X → CB(X) be a multivalued map.
Assume that there exist ξ ∈ T̃RA(w) and η ∈ M̂an(R) such that

η
(
H(Tx,Ty),d(x, y)

) ≥  for all (x, y) ∈W , (.)

where

W =
{
(x, y) ∈ X ×X : ξ

(
d(x,Tx),d(x, y)

) ≥ 
}
.

Then T has the approximate fixed property on X .
Moreover, if (X,d) is complete and ξ ∈ T̃RA(λ), then F (T) �= ∅.

Proof Let x ∈ X. If x ∈ Tx, then x is a fixed point of T and we are done. Suppose that
x /∈ Tx. Then d(x,Tx) > . Since Tx �= ∅, we can find x ∈ Tx with x �= x. Thus

d(x,x) > .

Since ξ ∈ T̃RA(w), we get

ξ
(
d(x,Tx),d(x,x)

)
> d(x,x) – d(x,Tx) ≥ ,

which means that (x,x) ∈W . Therefore, by (.), we obtain

η
(
H(Tx,Tx),d(x,x)

) ≥ .

By Lemma ., we have

H(Tx,Tx) < d(x,x).

http://www.fixedpointtheoryandapplications.com/content/2014/1/31
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If x ∈ Tx, then we have nothing to prove. So we assume that x /∈ Tx. Hence we have

 < d(x,Tx) ≤H(Tx,Tx). (.)

Define h :R×R →R by

h(t, s) =

⎧⎨
⎩

t+η(t,s)
s , if t, s > ,

, otherwise.

By (η), we know that

 < h(t, s) <  for all t, s > . (.)

SinceH(Tx,Tx) >  and d(x,x) > , by the definition of h and (.), we have

d(x,Tx)≤H(Tx,Tx) ≤ d(x,x)h
(
H(Tx,Tx),d(x,x)

)
. (.)

Take

ε =
(

√
h(H(Tx,Tx),d(x,x))

– 
)
d(x,Tx).

Then ε > . Since

d(x,Tx) < d(x,Tx) + ε

=
√

h(H(Tx,Tx),d(x,x))
d(x,Tx),

there exists x ∈ Tx such that x �= x and

d(x,x) <
√

h(H(Tx,Tx),d(x,x))
d(x,Tx)

≤ d(x,x)
√
h
(
H(Tx,Tx),d(x,x)

)
.

If x ∈ Tx, then the proof is finished. Otherwise, we have

 < d(x,Tx) ≤H(Tx,Tx). (.)

By (.) and x �= x, we get

ξ
(
d(x,Tx),d(x,x)

) ≥ d(x,x) – d(x,Tx) ≥ ,

which implies (x,x) ∈W . By (.), we obtain

η
(
H(Tx,Tx),d(x,x)

) ≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/31
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By Lemma . and (.), we have

 <H(Tx,Tx) < d(x,x). (.)

Taking into account (.), (.) and the definition of h conclude that

d(x,Tx) ≤ d(x,x)h
(
H(Tx,Tx),d(x,x)

)
.

By taking

ε =
(

√
h(H(Tx,Tx),d(x,x))

– 
)
d(x,Tx),

there exists x ∈ Tx with x �= x such that

d(x,x) < d(x,x)
√
h
(
H(Tx,Tx),d(x,x)

)
.

Hence, by induction, we can establish a sequences {xn} in X satisfying for each n ∈ N,

xn ∈ Txn–,

d(xn–,xn) > ,

 < d(xn,Txn) ≤H(Txn–,Txn) < d(xn–,xn),

η
(
H(Txn–,Txn),d(xn–,xn)

) ≥ ,

(.)

and

d(xn,xn+) < d(xn–,xn)
√
h
(
H(Txn–,Txn),d(xn–,xn)

)
. (.)

We claim that {xn}n∈N is a Cauchy sequence in X. For each n ∈N, let

ρn :=
√
h
(
H(Txn–,Txn),d(xn–,xn)

)
.

By (.), we know that

 < h
(
H(Txn–,Txn),d(xn–,xn)

)
<  for all n ∈N, (.)

so, from (.) and (.), we obtain ρn ∈ (, ) and

d(xn,xn+) < ρnd(xn–,xn) for all n ∈N. (.)

Hence the sequence {d(xn–,xn)}n∈N is strictly decreasing in (,+∞). Thus

lim
n→∞d(xn,xn+) = inf

n∈N
d(xn,xn+) ≥  exists. (.)

By (.), we get

H(Txn–,Txn) ≤ d(xn–,xn) for all n ∈N,

http://www.fixedpointtheoryandapplications.com/content/2014/1/31
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which means that {H(Txn–,Txn)}n∈N is a bounded sequence. By (η) and the definition of
h, we have

lim sup
n→∞

h
(
H(Txn–,Txn),d(xn–,xn)

)
< ,

which implies lim supn→∞ ρn < . So, there exists c ∈ [, ) and n ∈N, such that

ρn ≤ c for all n ∈N with n≥ n. (.)

For any n ≥ n, since ρn ∈ (, ) for all n ∈ N and c ∈ [, ), taking into account (.) and
(.), we conclude

d(xn,xn+) < ρnd(xn–,xn)

< · · ·
< ρnρn–ρn– · · ·ρnd(x,x)

≤ cn–n+d(x,x).

Put αn = cn–n+
–c d(x,x), n ∈ N. For m,n ∈ N with m > n ≥ n, from the last inequality, we

have

d(xn,xm)≤
m–∑
j=n

d(xj,xj+) < αn.

Since c ∈ [, ), limn→∞ αn =  and hence

lim
n→∞ sup

{
d(xn,xm) :m > n

}
= . (.)

So {xn} is a Cauchy sequence in X. Combining (.) and (.), we get

inf
n∈N

d(xn,xn+) = lim
n→∞d(xn,xn+) = . (.)

Since xn ∈ Txn– for each n ∈ N, we have

inf
x∈X d(x,Tx)≤ d(xn,Txn) ≤ d(xn,xn+) for all n ∈N. (.)

Combining (.) and (.) yields

inf
x∈X d(x,Tx) = ,

which means that T has the approximate fixed property on X.
Now, we assume that (X,d) is complete and ξ ∈ T̃RA(λ). Since {xn} is a Cauchy sequence

in X, by the completeness of X, there exists v ∈ X such that xn → v as n → ∞. We will
proceed with the following claims to prove v ∈ F (T).
Claim . d(v,Tx)≤ d(v,x) for all x ∈ X�{v}.

http://www.fixedpointtheoryandapplications.com/content/2014/1/31
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Given x ∈ X with x �= v. Let

S = {n ∈N : xn = x}.

Suppose that �(S) = ∞, where �(S) is the cardinal number of S. Then there exists {xnj} ⊂
{xn} such that xnj = x for all j ∈N. So xnj → x as j → ∞. By the uniqueness of the limit, we
get x = v, a contradiction. Hence �(S) < ∞ which deduces that there exists 
 ∈ N such that
xn �= x for all n ∈N with n≥ 
. For any n ∈N, put

wn = xn+
–.

Thus we have
• wn �= x for all n ∈N;
• wn+ ∈ Twn for all n ∈N;
• wn → v as n→ ∞.
Since d(x, v) > , there exists n >  such that

d(v,wn) ≤ 

d(x, v) for all n ∈N with n≥ n. (.)

For n ∈N with n≥ n, from (.), we have

ξ
(
d(wn,Twn),d(wn,x)

)
> d(wn,x) – d(wn,Txn)

≥ d(x, v) – d(wn, v) – d(wn,Twn)

≥ d(x, v) – d(wn, v) – d(wn,wn+)

≥ d(x, v) – d(wn, v) – d(wn, v) – d(wn+, v)

= d(x, v) – d(wn, v) – d(wn+, v)

> d(x, v) –


d(x, v) –



d(x, v)

= ,

which implies that (wn,x) ∈W . Applying Lemma .,

H(Twn,Tx) < d(wn,x) for all n ∈N with n ≥ n.

Since wn → v as n→ ∞ and

d(wn+,Tx) ≤H(Twn,Tx) < d(wn,x) for all n ∈N with n≥ n, (.)

by taking the limit from both sides of (.), we get

d(v,Tx)≤ d(v,x).

Claim . v ∈F (T).

http://www.fixedpointtheoryandapplications.com/content/2014/1/31
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We first prove (x, v) ∈ W for all x ∈ X�{v}. Suppose that there exists u ∈ X with u �= v
such that (u, v) /∈W . So

ξ
(
d(u,Tu),d(u, v)

)
< .

Note that for any n ∈ N, there exists zn ∈ Tu such that

d(v, zn) < d(v,Tu) +

n
d(v,u).

Thus, for any n ∈N, by Claim , we have

d(u,Tu) ≤ d(u, zn)

≤ d(u, v) + d(v, zn)

≤ d(u, v) + d(v,Tu) +

n
d(v,u)

≤
(
 +


n

)
d(v,u).

Hence we get d(u,Tu) ≤ d(v,u). Since ξ ∈ T̃RA(λ), there exists λ > , such that ξ (t, s) ≥
s – 

λ
t for all s, t ≥ . So, we obtain

 > ξ
(
d(u,Tu),d(u, v)

)

≥ d(u, v) –

λ
d(u,Tu)

> d(u, v) –


d(u,Tu)

≥ ,

a contradiction. Therefore (x, v) ∈W for all x ∈ X�{v}. By Lemma ., we have

H(Tx,Tv) < d(x, v) for all x ∈ X�{v}.

Therefore,

H(Tx,Tv) ≤ d(x, v) for all x ∈ X. (.)

From (.), we obtain

d(xn+,Tv) ≤H(Txn,Tv)≤ d(xn, v) for all n ∈ N. (.)

By taking limit from both side of (.), we get d(v,Tv) = . By the closedness of Tv, we
have v ∈F (T). The proof is completed. �

Theorem. Let (X,d) be a complete metric space, T : X → CB(X) be amultivaluedmap
and λ > . Assume that there exist an MT -function α : [,∞) → [, ) and a function

http://www.fixedpointtheoryandapplications.com/content/2014/1/31
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β : [, +∞)→ [, +∞) such that, for x, y ∈ X,


λ
d(x,Tx)≤ β

(
d(x, y)

)
d(x, y) implies H(Tx,Ty) ≤ α

(
d(x, y)

)
d(x, y). (.)

Then F (T) �= ∅.

Proof Define ξ :R×R →R and η :R×R →R, respectively, by

ξ (t, s) =

⎧⎨
⎩
sβ(s) – 

λ
t, if (t, s) ∈ [, +∞)× [, +∞),

, otherwise,

and

η(t, s) =

⎧⎨
⎩
sα(s) – t, if (t, s) ∈ [, +∞)× [, +∞),

, otherwise.

Thus ξ ∈ T̃RA(λ). By Example ., we know η ∈ M̂an(R). By (.), we obtain

η
(
H(Tx,Ty),d(x, y)

) ≥  for all (x, y) ∈W ,

where

W =
{
(x, y) ∈ X ×X : ξ

(
d(x,Tx),d(x, y)

) ≥ 
}
.

Therefore the desired conclusion follows from Theorem . immediately. �

In Theorem ., if we take β(t) =  for all t ≥ , then we obtain the following new gen-
eralization of Mizoguchi-Takahashi’s fixed point theorem.

Theorem . Let (X,d) be a complete metric space, T : X → CB(X) be a multivalued
map and λ > . Assume that there exists anMT -function α : [,∞) → [, ) such that for
x, y ∈ X,

d(x,Tx)≤ λd(x, y) implies H(Tx,Ty) ≤ α
(
d(x, y)

)
d(x, y).

Then F (T) �= ∅.

Remark . Theorems ., . and . generalize and improve Mizoguchi-Takahashi’s
fixed point theorem, Nadler’s fixed point theorem, and Banach contraction principle.

Finally, a question arises naturally.

Question Can we give new generalizations of Mizoguchi-Takahashi’s fixed point theo-
rem with other new local constraints which also extend Kikkawa-Suzuki’s fixed point the-
orem?

http://www.fixedpointtheoryandapplications.com/content/2014/1/31
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