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Abstract
In this paper, the existence and the uniqueness of a common fixed point for two
self-mappings satisfying some generalized Berinde-type contractions which involve
an altering distance function with λ ∈ [0, 1] is established. Our theorems extend, unify,
and generalize several existing results in the literature. An application of an integral
equation is presented.
MSC: 54H25; 54C60; 54E50

Keywords: metric space; common fixed point; generalized Berinde-type
contractions; Urysohn integral equations

1 Introduction and preliminaries
Fixed-point theory is one of the most fruitful and effective tools in mathematics which
has enormous applications within as well as outside mathematics. In , Banach estab-
lished the famous fixed-point theorem which is called the Banach contraction principle.
This principle is a forceful tool in nonlinear analysis. It has many applications in solving
nonlinear equations.
Later, Berinde [–] studied many interesting fixed-point theorems for many kinds of

contraction mappings. In [] and [], he defined the almost contraction map as follows.

Definition . Let (X,d) be a metric space. A map f : X → X is called an almost contrac-
tion if there exist a constant λ ∈ [, ) and some L ≥  such that

d(fx, fy) ≤ λd(x, y) + Ld(y, fx)

for all x, y ∈ X.

Let (X,d) be a metric space. A map f : X → X is said to satisfy ‘condition (B)’ if there
exist a constant λ ∈ [, ) and some L ≥  such that for all x, y ∈ X.

d(fx, fy) ≤ λd(x, y) + Lmin
{
d(x, fx),d(y, fy),d(x, fy),d(y, fx)

}
.

Recently, Babu et al. [] considered the class of mappings that satisfy ‘condition (B)’.
More recently, Abbas and Ilic in [] introduced the following definition.
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Definition . Let f and g be two self-maps on a metric space (X,d). A map f is called
generalized almost g-contraction if there exist a constant λ ∈ [, ) and some L ≥  such
that

d(fx, fy) ≤ λM(x, y) + Lmin
{
d(gx, fx),d(gy, fy),d(gx, fy),d(gy, fx)

}

for all x, y ∈ X, whereM(x, y) =max{d(gx, gy),d(gx, fx),d(fy, gy),  (d(fx, gy) + d(gx, fy))}.

If g = IX , IX is the identity map on X, then they note that f satisfies ‘generalized condi-
tion (B)’.
Furthermore, Ćirić et al. [] introduced the concept of the almost generalized contrac-

tive condition as follows.

Definition . Let f and g be two self-maps on a metric space (X,d). They are said to sat-
isfy almost generalized contractive condition if there exist a constant λ ∈ [, ) and some
L ≥  such that

d(fx, gy) ≤ λmax

{
d(x, y),d(x, fx),d(y, gy),



(
d(fx, y) + d(x, gy)

)}

+ Lmin
{
d(x, fx),d(y, gy),d(x, gy),d(y, fx)

}

for all x, y ∈ X.

A new category of contractive fixed-point problems was addressed by Khan et al. []. In
their study they introduced the notion of an altering distance function, which is a control
function that alters the distance between two points in a metric space.

Definition . The function ψ : [,∞)→ [,∞) is called an altering distance function if
the following properties are satisfied:

(i) ψ is continuous and nondecreasing;
(ii) ψ(t) =  ⇔ t = .

In the literature, there has been extensive research on common fixed points by using
Berinde-type contractions, see [, ], by using an altering distance function, see [–]
and by using many other kinds of methods, see [–].
The aim of this work is to prove that there is a unique common fixed point for two self-

mappings satisfying some generalizedBerinde-type contractionswhich involve an altering
distance function with λ ∈ [, ]. These results extend and generalize several well-known
compatible recent and classical results in the literature. As an application, the existence of
a solution for the Urysohn integral equation is presented.

2 Main results
Theorem . Let (X,d) be a complete metric space. Suppose ψ : [,∞) → [,∞) is an
altering distance function and ϕ : [,∞)→ [,∞) is a lower semi-continuous functionwith
ϕ(t) =  if and only if t = . Moreover, suppose that f and g are self-maps satisfying the
inequality

ψ
(
d(fx, gy)

) ≤ ψ
(
λu(x, y)

)
– ϕ

(
λu(x, y)

)
+ LN(x, y), (.)
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where

u(x, y) ∈
{
d(x, y),d(x, fx),d(y, gy),



(
d(fx, y) + d(x, gy)

)}

and

N(x, y) =min
{
d(x, y),d(x, fx),d(y, gy),d(fx, y),d(x, gy)

}
,

with L≥  and  ≤ λ ≤ . Then f and g have a unique common fixed point.

Proof We prove the theorem in several steps.
Step . Let x ∈ X be an arbitrary point.
Taking x = fx and x = gx, then let x = fx and x = gx. Continue in this way, we can

choose a sequence {xn} in X so that

xn+ = fxn

and

xn+ = gxn+

for all n = , , , . . . . Let

dn = d(xn,xn+). (.)

We will prove that {dn} is a decreasing sequence which converges to .
If n is an even number, put x = xn and y = xn– in (.). We get

ψ
(
d(xn+,xn)

)
= ψ

(
d(fxn, gxn–)

)
≤ ψ

(
λu(xn,xn–)

)
– ϕ

(
λu(xn,xn–)

)
+ LN(xn,xn–), (.)

where

u(xn,xn–) ∈
{
d(xn,xn–),d(xn, fxn),d(xn–, gxn–),



(
d(fxn,xn–) + d(xn, gxn–)

)}

and

N(xn,xn–) =min
{
d(xn,xn–),d(xn, fxn),d(xn–, gxn–),d(fxn,xn–),d(xn, gxn–)

}
,

i.e.,

N(xn,xn–) = .

Thus, we have

ψ
(
d(xn,xn+)

) ≤ ψ
(
λu(xn,xn–)

)
– ϕ

(
λu(xn,xn–)

)
,
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where

u(xn,xn–) ∈
{
d(xn–,xn),d(xn,xn+),



d(xn–,xn+)

}
.

If xn = xn+ for some n ≥ , then the proof will be finished. Therefore, we suppose that
xn �= xn+ for all n ≥ . Now, we shall show that d(xn,xn+) ≤ d(xn–,xn). Arguing by con-
tradiction, we assume d(xn,xn+) > d(xn–,xn). Therefore, we have three cases.
Case : u(xn,xn–) = d(xn–,xn). Then

ψ
(
d(xn,xn+)

) ≤ ψ
(
λd(xn–,xn)

)
– ϕ

(
λd(xn–,xn)

)
<ψ

(
λd(xn–,xn)

)
.

Since ψ is increasing, we have d(xn,xn+) < λd(xn–,xn), which is a contradiction.
Case : u(xn,xn–) = d(xn,xn+). Then

ψ
(
d(xn,xn+)

) ≤ ψ
(
λd(xn,xn+)

)
– ϕ

(
λd(xn,xn+)

)
< ψ

(
λd(xn,xn+)

)
.

Since ψ is increasing, we have d(xn,xn+) < λd(xn,xn+), which is impossible.
Case : u(xn,xn–) = 

d(xn–,xn+). Then

ψ
(
d(xn,xn+)

) ≤ ψ

(
λ


d(xn–,xn+)

)
– ϕ

(
λ


d(xn–,xn+)

)
≤ ψ

(
λ


d(xn–,xn+)

)
.

Since ψ is increasing, we have

d(xn,xn+) ≤ λ


d(xn–,xn+) ≤ λ


(
d(xn–,xn) + d(xn,xn+)

)
,

which leads to

d(xn,xn+) ≤ λ

 – λ
d(xn–,xn),

but d(xn,xn+) > d(xn–,xn), therefore

d(xn,xn+) <
λ

 – λ
d(xn,xn+),

which is impossible since λ/( – λ) ≤ . Hence, from the above we obtain d(xn,xn+) ≤
d(xn–,xn).
Similarly, we can prove that d(xn,xn+) ≤ d(xn–,xn) also in the case when n is an odd

number.
Therefore, we find that {dn} is a decreasing sequence and bounded below. Thus, {dn} is

convergent. Let

dn → d as n→ ∞. (.)

Next, we want to show that d = . We have two cases.
Case . When u(xn,xn–) ∈ {d(xn–,xn),d(xn,xn+)}, as ψ is continuous and ϕ is lower

semi-continuous and from (.) we get

ψ(d)≤ ψ(λd) – ϕ(λd).
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If λ = , then we have ψ(d) ≤  ⇒ d = . If λ �= , then we have ϕ(λd)≤ ψ(λd) –ψ(d)≤ .
Thus ϕ(λd) = , which implies d = .
Case . When u(xn,xn–) = 

d(xn–,xn+), we suppose that d �= ; then

ψ(dn) ≤ ψ

(
λ


d(xn–,xn+)

)
– ϕ

(
λ


d(xn–,xn+)

)

≤ ψ

(
λ


d(xn–,xn+)

)

≤ ψ

(
λ


(
d(xn–,xn) + d(xn,xn+)

))
.

Now, we have two subcases.
Subcase . λ < . Then as n→ ∞ we obtain

ψ(d)≤ ψ(λd),

which leads to a contradiction if d �= .
Subcase . λ = . Then

ψ(dn)≤ ψ

(


d(xn–,xn+)

)
≤ ψ

(


(
d(xn–,xn) + d(xn,xn+)

))
.

As n→ ∞, we have

ψ(d)≤ ψ

(



lim
n→∞d(xn–,xn+)

)
≤ ψ(d).

Since ψ is an increasing function, we get

lim
n→∞d(xn–,xn+) = d. (.)

By taking n→ ∞ in ψ(dn) ≤ ψ( λ
d(xn–,xn+)) – ϕ( λ

d(xn–,xn+)) and using (.), we have

ψ(d)≤ ψ

(


(d)

)
– ϕ

(


(d)

)
,

i.e.

ϕ(d) ≤ .

Hence, ϕ(d) =  and then d = .
From the above we obtain d = , i.e.,

dn = d(xn,xn+) →  as n → ∞. (.)

Step . We prove that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy
sequence, then there exists ε >  for which we can find subsequences {xn(k)} and {xm(k)} of
{xn} with n(k) >m(k)≥ k such that

d(xn(k),xm(k))≥ ε/k. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/24
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Furthermore, corresponding tom(k), we can choose n(k) in such a way that it is the small-
est integer with n(k) >m(k) and satisfying (.). Then

d(xn(k)–,xm(k)) < ε/k.

Then we have

ε/k ≤ d(xn(k),xm(k)) ≤ d(xn(k),xn(k)–) + d(xn(k)–,xm(k))

≤ d(xn(k),xn(k)–) + ε/k,

by taking k → ∞, we obtain

lim
k→∞

d(xn(k),xm(k)) = ,

which is a contradiction. So, {xn} is a Cauchy sequence in a complete metric space X and
hence it is convergent in X. Let

lim
n→∞xn = x∗.

Step . Let us now prove that x∗ is a common fixed point of f and g . Put x = x∗ and
y = xn+ in (.) for all n, and we obtain

ψ
(
d
(
fx∗, gxn+

)) ≤ ψ
(
λu

(
x∗,xn+

))
– ϕ

(
λu

(
x∗,xn+

))
+ LN

(
x∗,xn+

)
,

where

u
(
x∗,xn+

) ∈
{
d
(
x∗,xn+

)
,d

(
x∗, fx∗),d(xn+, gxn+), 

(
d
(
fx∗,xn+

)
+d

(
x∗, gxn+

))}

and

N
(
x∗,xn+

)
=min

{
d
(
x∗,xn+

)
,d

(
x∗, fx∗),d(xn+, gxn+),d(

fx∗,xn+
)
,d

(
x∗, gxn+

)}
.

Let n→ ∞, we get

ψ
(
d
(
fx∗,x∗)) ≤ ψ

(
λ lim
n→∞u

(
x∗,xn+

))
– ϕ

(
λ lim
n→∞u

(
x∗,xn+

))
,

where

lim
n→∞u

(
x∗,xn+

) ∈
{
,d

(
x∗, fx∗), 


d
(
x∗, fx∗)}.

If d(x∗, fx∗) �= , then

ψ
(
d
(
x∗, fx∗)) <ψ

(
λd

(
x∗, fx∗)) or ψ

(
d
(
x∗, fx∗)) < ψ

(
λ


d
(
x∗, fx∗)),

which is a contradiction. Hence, we obtain

d
(
x∗, fx∗) =  or x∗ = fx∗. (.)
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Similarly, when we take x = xn and y = x∗ in (.) for all n we get

x∗ = gx∗. (.)

Equations (.) and (.) show that x∗ is a common fixed point of f and g .
Step . Let us now show the uniqueness. Let y∗ be another common fixed point of f

and g . Then from (.) we have

ψ
(
d
(
fx∗, gy∗)) =ψ

(
d
(
x∗, y∗)) ≤ ψ

(
λu

(
x∗, y∗)) – ϕ

(
λu

(
x∗, y∗)) + LN

(
x∗, y∗),

where

u
(
x∗, y∗) ∈ {

,d
(
x∗, y∗)} and N

(
x∗, y∗) = .

Then we obtain x∗ = y∗. �

Corollary . Let (X,d) be a complete metric space. Suppose ψ : [,∞) → [,∞) is an
altering distance function and ϕ : [,∞)→ [,∞) is a lower semi-continuous functionwith
ϕ(t) =  if and only if t = . If f and g are self-maps satisfying the inequality

ψ
(
d(fx, gy)

) ≤ ψ
(
λM(x, y)

)
– ϕ

(
λM(x, y)

)
+ LN(x, y),

where

M(x, y) =max

{
d(x, y),d(x, fx),d(y, gy),



(
d(fx, y) + d(x, gy)

)}

and

N(x, y) =min
{
d(x, y),d(x, fx),d(y, gy),d(fx, y),d(x, gy)

}
,

with L≥  and  ≤ λ ≤ , then f has a unique fixed point.

Proof SinceM(x, y) ∈ {d(x, y),d(x, fx),d(y, gy),  (d(fx, y) +d(x, gy))}, the result follows from
Theorem .. �

Remark . In Corollary .:
(i) If g = f and λ = , we obtain a metric version of Theorem  of Aydi et al. [].
(ii) If L =  and λ = , we get Theorem . of Doric [].
(iii) If ψ(t) = t, L =  and λ = , we get Theorem . of Zhang and Song [].

By taking f = g and L =  in Corollary ., we obtain the following result.

Corollary . Let (X,d) be a complete metric space. Suppose ψ : [,∞) → [,∞) is an
altering distance function and ϕ : [,∞)→ [,∞) is a lower semi-continuous functionwith
ϕ(t) =  if and only if t = . If f is a self-map satisfying the inequality

ψ
(
d(fx, fy)

) ≤ ψ
(
λu(x, y)

)
– ϕ

(
λu(x, y)

)
, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/24
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where u(x, y) ∈ {d(x, y),d(x, fx),d(y, fy),  (d(fx, y) + d(x, fy))},  ≤ λ ≤ , then f has a unique
fixed point.

Remark . Corollary . extends the main fixed-point result of Dutta and Choudhury
[, Theorem .] and Theorem . of Doric [].

If we take ψ(t) = t and ϕ(t) = ( – k)t with k <  in Theorem ., we have the following
corollary.

Corollary . Let (X,d) be a complete metric space. If f and g are self-maps satisfying the
inequality

d(fx, gy) ≤ αu(x, y) + LN(x, y), (.)

where

u(x, y) ∈
{
d(x, y),d(x, fx),d(y, gy),



(
d(fx, y) + d(x, gy)

)}

and

N(x, y) =min
{
d(x, y),d(x, fx),d(y, gy),d(fx, y),d(x, gy)

}
,

with L≥  and  ≤ α < , then f and g have a unique common fixed point.

If we take f = g in Corollary . we obtain the following result.

Corollary . Let (X,d) be a complete metric space. If f is a self-map satisfying the in-
equality

d(fx, fy) ≤ αu(x, y) + LN(x, y),

where

u(x, y) ∈
{
d(x, y),d(x, fx),d(y, fy),



(
d(fx, y) + d(x, fy)

)}

and

N(x, y) =min
{
d(x, y),d(x, fx),d(y, fy),d(fx, y),d(x, fy)

}
,

with L≥  and  ≤ α < , then f has a unique fixed point.

By the aid of Lemma . of [], we have the following result as a consequence of Corol-
lary ..

Corollary . Let (X,d) be a complete metric space. If f and g are self-maps satisfying the
inequality

d(fx, fy) ≤ αu(gx, gy) + LN(gx, gy),

http://www.fixedpointtheoryandapplications.com/content/2014/1/24
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where

u(gx, gy) ∈
{
d(gx, gy),d(gx, fx),d(gy, fy),



(
d(fx, gy) + d(gx, fy)

)}

and

N(gx, gy) =min
{
d(gx, gy),d(gx, fx),d(gy, fy),d(fx, gy),d(gx, fy)

}
,

with L≥  and  ≤ α < , then f and g have a unique common fixed point.

Remark . Corollary . extends the results of Abbas et al. [, Theorem .] and Jleli
et al. [, Corollary .].

3 Applications: existence of a common solution to Urysohn integral equations
Throughout this section we take X = C([a,b],R) (the set of continuous functions defined
in I = [a,b]). We define the metric d : X × X → R by d(x, y) = ‖x – y‖∞ for every x, y ∈ X.
Let ϕ :R+ →R

+ be a function such that
• ϕ is lower semi-continuous;
• ϕ is increasing;
• ϕ(t) = ⇔ t = .

Theorem . Consider the Urysohn integral equations

x(t) =
∫ b

a
K

(
t, s,x(s)

)
ds + h(t),

x(t) =
∫ b

a
K

(
t, s,x(s)

)
ds + q(t),

(.)

where t ∈ I ⊂R and x,h,q ∈ X. Assume that, for K,K : I × I ×R→R, we have

∣∣∣∣
∫ b

a
K

(
t, s,x(s)

)
ds–

∫ b

a
K

(
t, s,x(s)

)
ds+h(t)–q(t)

∣∣∣∣ ≤ ∣∣x(t)–y(t)∣∣–ϕ
(
sup
t∈I

∣∣x(t)–y(t)∣∣).

Then there exists a solution to (.).

Proof Define f , g : X → X by f (x) =
∫ b
a K(t, s,x(s))ds + h(t) and g(x) =

∫ b
a K(t, s,x(s))ds +

q(t). It is obvious that

‖f – g‖∞ ≤ ‖x – y‖∞ – ϕ
(‖x – y‖∞

)
.

Thus

d(fx, gy) ≤ d(x, y) – ϕ
(
d(x, y)

)

for all x, y ∈ X. Now, all the assumptions of Theorem . are satisfied with ψ(t) = t, for all
t ∈ R

+, u(x, y) = d(x, y), and L = . Therefore, f and g have a common fixed point, that is,
a solution to the integral equation (.). �
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J. Math. 24, 10-19 (2008)
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15. Aghajani, A, Radenović, S, Roshan, JR: Common fixed point results for four mappings satisfying almost generalized

(S, T )-contractive condition in partially ordered metric spaces. Appl. Math. Comput. 218, 5665-5670 (2012)
16. Shobkolaei, N, Sedghi, S, Roshan, JR, Altun, I: Common fixed point of mappings satisfying almost generalized

(S, T )-contractive condition in partially ordered partial metric spaces. Appl. Math. Comput. 219, 443-452 (2012)
17. Roshan, JR, Parvaneh, V, Sedghi, S, Shobkolaei, N, Shatanawi, W: Common fixed points of almost generalized

(ψ ,ϕ)s-contractive mappings in ordered b-metric spaces. Fixed Point Theory Appl. 2013, 159 (2013)
18. Doric, D: Common fixed point for generalized (ψ ,ϕ)-weak contractions. Appl. Math. Lett. 22, 1896-1900 (2009)
19. Zhang, Q, Song, Y: Fixed point theory for generalized ϕ-weak contractions. Appl. Math. Lett. 22, 75-78 (2009)
20. Dutta, PN, Choudhury, BS: A generalisation of contraction principle in metric spaces. Fixed Point Theory Appl. 2008,

Article ID 406368 (2008)
21. Haghi, RH, Rezapour, S, Shahzad, N: Some fixed point generalizations are not real generalizations. Nonlinear Anal. 74,

1799-1803 (2011)
22. Abbas, M, Babu, GVR, Alemayehu, GN: On common fixed points of weakly compatible mappings satisfying

generalized condition (B). Filomat 25, 9-19 (2011)
23. Jleli, M, Karapınar, E, Samet, B: Fixed point results for almost generalized cyclic (ψ ,ϕ)-weak contractive type

mappings with applications. Abstr. Appl. Anal. 2012, Article ID 917831 (2012)

10.1186/1687-1812-2014-24
Cite this article as: Shaddad et al.: Common fixed-point results for generalized Berinde-type contractions which
involve altering distance functions. Fixed Point Theory and Applications 2014, 2014:24

http://www.fixedpointtheoryandapplications.com/content/2014/1/24

	Common ﬁxed-point results for generalized Berinde-type contractions which involve altering distance functions
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Applications: existence of a common solution to Urysohn integral equations
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


