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Abstract

In this paper, we consider a hierarchical variational inequality problem (HVIP) defined
over a common set of solutions of finitely many generalized mixed equilibrium
problems, finitely many variational inclusions, a general system of variational
inequalities, and the fixed point problem of a strictly pseudocontractive mapping. By
combining Korpelevich’s extragradient method, the viscosity approximation method,
the hybrid steepest-descent method and Mann'’s iteration method, we introduce and
analyze a multistep hybrid extragradient algorithm for finding a solution of our HVIP.
It is proven that under appropriate assumptions, the proposed algorithm converges
strongly to a solution of a general system of variational inequalities defined over a
common set of solutions of finitely many generalized mixed equilibrium problems
(GMEPs), finitely many variational inclusions, and the fixed point problem of a strictly
pseudocontractive mapping. In the meantime, we also prove the strong convergence
of the proposed algorithm to a unique solution of our HVIP. The results obtained in
this paper improve and extend the corresponding results announced by many others.
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1 Introduction and formulations

1.1 Variational inequalities and equilibrium problems

Let C be a nonempty closed convex subset of a real Hilbert space H and A: C — H be a
nonlinear mapping. A variational inequality problem (VIP) is to find a point x € C such
that

(Ax,y—x) >0, VyeC. 1.1)

The solution set of the VIP (1.1) defined by C and A is denoted by VI(C, A). The theory
of variational inequalities is a well established subject in nonlinear analysis and optimiza-
tion. For different aspects of variational inequalities and their generalizations, we refer to
[1-3] and the references therein. Several solution methods for solving different kinds of
variational inequality have appeared in literature. Korpelevich’s extragradient method [4]
is one of them. It is further studied in [5].
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Let ® : C x C — R be a bifunction. The equilibrium problem (EP) is to find x € C such
that

Ox,y) >0, VyeC. (1.2)

The set of solutions of EP is denoted by EP(®). It is a unified model of several problems,
namely, variational inequalities, Nash equilibrium problems, optimization problems, sad-
dle point problems, etc. For further details of EP, we refer to [6, 7] and the references
therein.

Let ¢ : C — R be a real-valued function and A : H — H be a nonlinear mapping. The
generalized mixed equilibrium problem (GMEP) [8] is to find x € C such that

Ox,y) + () —px) + (Ax,y —x) >0, VyeC. 1.3)

We denote the set of solutions of GMEP (1.3) by GMEP(®, ¢, A). The GMEP (1.3) is very
general in the sense that it includes, as special cases, optimization problems, variational
inequalities, minimax problems, Nash equilibrium problems in noncooperative games,
and others. The GMEP is further considered and studied in [9, 10] and the references
therein.

When A = 0, then GMEP (1.3) reduces to the following mixed equilibrium problem
(MEP): find x € C such that

O,y +9(») -¢x) >0, VyeC.

The set of solutions of MEP is denoted by MEP(®, ¢).

The common assumptions on the bifunction ® : C x C — R to study GMEP (1.3) or EP
(1.2) are the following:

(A1) ©(x,x)=0forallx e C;

(A2) © is monotone, i.e., O(x,y) + O(y,x) <0 for any x,y € C;

(A3) O is upper-hemicontinuous, i.e., for each x,y,z € C,

lim sup © (tz +(1- t)x,y) < O(x,y);
t—0*
(A4) O(x,-)is convex and lower semicontinuous for each x € C;
We use the assumption that the function ¢ : C — R is a lower semicontinuous and convex
function with restriction (B1) or (B2), where
(B1) for each x € H and r > 0, there exists a bounded subset D, C C and y, € C such
that for any z € C \ Dy,

1
O(@7:) + 90x) = 9(2) + ~{x 2,2 2) < 0;

(B2) Cisabounded set.

Given a positive number r > 0. Let T,(@'“’

). H — Cbe the solution set of the auxiliary mixed
equilibrium problem, that is, for each x € H,

T 9 (x) := {ye C:0(5,2)+9(2) -0y + %(y—x,z—w >0,Vze C}‘
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Some elementary conclusions related to MEP are given in the following result.

Proposition 1.1 [11] Let ® : C x C — R satisfy conditions (Al)-(A4) and ¢ : C — R be a
proper lower semicontinuous and convex function such that either (B1) or (B2) holds. For
r>0 and x € H, define a mapping 7% . H—>C by

) 1
T©9)(x) = {ze C:0(z,9) +0(y) — 0(2) + ;(y—z,z—x) >0,Vye C}, Vx e H.

Then the following conclusions hold:
(i) Foreachx e H, Tf@"p)(x) is nonempty and single-valued,;
(ii) 7% is firmly nonexpansive, that is, for any x,y € H,

| T x - TODy|* < (TOPx - TOOy,x - y);

(iii) Fix(T'°*)) = MEP(®, ¢);
(iv) MEP(O, ) is closed and convex;
W) 1TO% - T2 < =t (T~ T, T — %), Vs,t >0 and x € H.

Recently, Cai and Bu [12] considered a problem of finding a common element of the
set of solutions of finitely many generalized mixed equilibrium problems, the set of solu-
tions of finitely many variational inequalities mappings and the set of fixed points of an
asymptotically k-strict pseudocontractive mapping in the intermediate sense [13] in a real
Hilbert space. They proposed and analyzed an algorithm for finding such a solution. The
weak convergence result for the proposed algorithm is also presented.

1.2 General system of variational inequalities
Let F,F, : C — H be two mappings. We consider the general system of variational in-
equalities (GSVI) of finding (x*,y*) € C x C such that

(1.4)

(Vo Fox™ + y* —x™,x — y*) Vx e C,

(EFy* +x* -y, 2—-x*) >0, VxeC,
>0,
where v; > 0 and v, > 0 are two constants. It was considered and studied in [5, 14, 15]. In
particular, if F; = F, = A, then the GSVI (1.4) reduces to the problem of finding (x*,y*) €
C x C such that

(1.5)

(MAY* +x* —y*,x—x*) >0, VxeC,
>0, VxeC.

(VAX™ +y* —x*, 0 —y*)

It is called a new system of variational inequalities (NSVI) [9]. It is worth to mention
that the above system of two variational inequalities could be used to solve Nash equilib-
rium problem. For applications of system of variational inequalities to Nash equilibrium
problems, we refer to [16—19] and the references therein. Further, if x* = y* additionally,
then the NSVI reduces to the classical VIP (1.1). Putting G := Pc(I — vi F1)Pc(I — voF;) and
y* = Pc(I — vaFy)x*, Ceng et al. [15] transformed the GSVI (1.4) into the following fixed
point equation:

Gx™ =x*. (1.6)
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1.3 Hierarchical variational inequalities
A variational inequality problem defined over the set of fixed points of a nonexpansive
mapping, is called a hierarchical variational inequality problem. Let S, T : H — H be non-
expansive mappings. We denote by Fix(T) and Fix(T) the set of fixed points of 7 and S,
respectively. If we replace C by Fix(T) in the formulation of VIP (1.1), then VIP (1.1) is
defined by Fix(T') and A and it is called a hierarchical variational inequality problem.
Yao et al. [20] considered the hierarchical variational inequality problem (HVIP) in
which the mapping A is replaced by the monotone mapping I — S. They considered the
following form of HVIP: find ¥ € Fix(T') such that

(I-9)%p-%)=0, VpeFix(T). 1.7)

The solution set of HVIP (1.7) is denoted by A. It is not hard to check that solving HVIP
(1.7) is equivalent to the fixed point problem of the composite mapping Prix(r) o S, that
is, find x € C such that X = Ppix(17SX. They proposed and analyzed an iterative method for
solving this kind of HTVI. For further details and a comprehensive survey on HVIP, we
refer to [21] and the references therein.

1.4 Variational inclusions
Let B: C — H be a single-valued mapping and R : C — 2/ be a set-valued mapping with
D(R) = C. We consider the variational inclusion problem of finding a point x € C such that

0 € Bx + Rx. (1.8)

We denote by I(B,R) the solution set of the variational inclusion (1.8). In particular, if
B=R=0, then I(B,R) = C. If B =0, then problem (1.8) becomes the inclusion problem
introduced by Rockafellar [22]. It is well known that problem (1.8) provides a convenient
framework for the unified study of optimal solutions in many optimization related areas
including mathematical programming, complementarity problems, variational inequali-

ties, optimal control, mathematical economics, equilibria and game theory, ezc.

1.5 Problem to be considered

In this paper, we introduce and study the following hierarchical variational inequality
problem (HVIP) defined over a common set of solutions of finitely many GMEPs, finitely
many variational inclusions, a general system of variational inequalities, and a fixed point
of a strictly pseudocontractive mapping. Throughout the paper, we denote by M and N
set of the positive integers.

Problem 1.1 Assume that

() forj=1,2,F;:C— Hand F: H — H are mappings;

(ii) foreachke{l,2,...,M}, ©r: C x C — Ris a bifunction satisfying conditions
(A1)-(A4) and ¢ : C — R U {+00} is a proper lower semicontinuous and convex
function with restriction (B1) or (B2);

(iii) for each k€ {1,2,...,M}andie€ {1,2,...,N}, R;: C — 2/ is a maximal monotone
mapping, and Ay : H — H and B; : C — H are mappings;

(iv) T:C — Cisamappingand S: H — H is a nonexpansive mapping;

v) 2 := N, GMEP(Oy, o, Ar) N Y, (B, R;) N GSVI(G) NFix(T) # .
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Then the objective is to find x* € §2 such that
(WF =y S)x*,x—x*) >0, Vxe . (1.9)

By combining Korpelevich’s extragradient method, the viscosity approximation method,
the hybrid steepest-descent method [10], and Mann’s iteration method, we introduce and
analyze a multistep hybrid extragradient algorithm for finding a solution of Problem 1.1. It
is proven that under appropriate assumptions, the proposed algorithm converges strongly
to a solution of GSVI (1.4) defined over a common set of solutions of finitely many gener-
alized mixed equilibrium problems (GMEPs), finitely many variational inclusions and the
fixed point problem of a strictly pseudocontractive mapping. In the meantime, we also
prove the strong convergence of the proposed algorithm to a unique solution of Prob-
lem 1.1. The results obtained in this paper improve and extend the corresponding results

announced by many others.

2 Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose inner product
and norm are denoted by (-,-) and | - ||, respectively. Let C be a nonempty closed convex
subset of H. We write x, — x to indicate that the sequence {x,} converges weakly to x
and x, — x to indicate that the sequence {x,} converges strongly to x. Moreover, we use

wy(x,) to denote the weak w-limit set of the sequence {x,}, i.e.,
wy(x,) = {x € H : x,, — x for some subsequence {x,,} of {x,,}}.

Definition 2.1 A mapping A : C — H is called

(i) n-strongly monotone if there exists a constant 1 > 0 such that
(Ax = Ay,x—y) znllx =y, VxyeC;

(i) ¢-inverse-strongly monotone if there exists a constant ¢ > 0 such that
(Ax - Ay,x—y) = CllAx - Ay]%, VxyeC.

It is easy to see that the projection Pc is 1-inverse-strongly monotone. Inverse-strongly
monotone (also referred to as co-coercive) operators have been applied widely in solving
practical problems in various fields. It is obvious that if A is ¢ -inverse-strongly monotone,
then A is monotone and %—Lipschitz continuous. Moreover, we also have, for all u,v € C

and A >0,

| = 2 A)u— (T = 24| = | (=) - AAu - AV)|?
= |lu—v||® = 20 {Au — Av,u — v) + A2||Au — Av|?

< lu=v|* + 2(h = 20)||Au — Av|>. (2.1)

So, if A <2¢, then I — LA is a nonexpansive mapping from C to H.
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Definition 2.2 A mapping 7 : H — H is said to be firmly nonexpansive if 2T — I is non-
expansive, or equivalently, if T is 1-inverse-strongly monotone (1-ism),

(x—y, Tx - Ty) > | Tx - Ty|*, Vx,y € H;
alternatively, T is firmly nonexpansive if and only if T’ can be expressed as

1
T=-(I+S),
S +9)
where S: H — H is nonexpansive; projections are firmly nonexpansive.

It can easily be seen that if T is nonexpansive, then / — T’ is monotone.
It is clear that, in a real Hilbert space H, T : C — C is &-strictly pseudocontractive if and
only if the following inequality holds:
1-&

(Tx = Ty,x—y) < |lx—ylI* - T”(I_ T)x—(I-T)y

2

, VxyeC.

This immediately implies that if 7" is a & -strictly pseudocontractive mapping, then / — T’
is %—inverse—strongly monotone; for further details, we refer to [23] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the
class of nonexpansive mappings and that the class of pseudocontractions strictly includes

the class of strict pseudocontractions.

Lemma 2.1 [23, Proposition 2.1] Let C be a nonempty closed convex subset of a real Hilbert
space Hand T : C — C be a mapping.
(i) If T is a &-strictly pseudocontractive mapping, then T satisfies the Lipschitzian

condition

1+§&

Tx-Ty|| < —
1T~ Tyl < 1

lx—yll, VxyeC.

(i) IfT is a &-strictly pseudocontractive mapping, then the mapping I — T is semiclosed
at 0, that is, if {x,} is a sequence in C such that x, — x and (I — T)x, — 0, then
(I-T)x=0.

(iii) If T is a &-(quasi-)strict pseudocontraction, then the fixed-point set Fix(T) of T is
closed and convex so that the projection Prix(ry is well defined.

Lemma 2.2 [24] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T :C — C be a &-strictly pseudocontractive mapping. Let y and § be two nonnegative real
numbers such that (y + 8)&€ <y. Then

lyGe—9) +8(Tx—Ty)| < (y +d)llx—yl, Vx,yeC.

Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some
notations. Let A be a number in (0,1] and let u > 0. Associated with a nonexpansive map-
ping T : C — H, we define the mapping T*: C — H by

T x:= Tx - \uF(Tx), VxeC,
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where F : H — H is an operator such that, for some positive constants «,n > 0, F is k-
Lipschitzian and n-strongly monotone on H, that is, F satisfies the conditions

I|Ex—Fy| <«llx—y| and (Fx—Fy,x—y) > nlx—yl>
forallx,y € H.

Remark 2.1 Since F is «-Lipschitzian and 7-strongly monotone on H, we get 0 < n < k.
Hence, whenever 0 < i < i—;’, we have

0<(1-pun)?=1-2un+u’n’
51—2w7+,u2/<2 <1-2un+ i—z,u/cz =1,
which implies
0<1—+/1-2un+u?c?<1.
So, T =1-/1-u@2n-ux?) € (0,1].

Finally, recall that a set-valued mapping 7 : D(T) C H — 2/ is called monotone if for all
x,y € D(T), f € Tx and g € Ty imply

f—gx-y =0.

A set-valued mapping 7 is called maximal monotone if T is monotone and (I + AT)D(T) =
H for each A > 0, where [ is the identity mapping of H. We denote by G(T') the graph of T'.
It is well known that a monotone mapping T is maximal if and only if, for (x,f) € H x H,
(f —g,x—y) > 0 for every (y,g) € G(T) implies f € Tx. Next we provide an example to
illustrate the concept of a maximal monotone mapping.

Let A: C — H be a monotone, k-Lipschitz-continuous mapping and let Ncv be the
normal coneto CatveC,i.e,

Ncv= {ueH: (v—p,u) >0,Vp e C}.
Define

~ Av+Ncv, ifveC,
Tv=
@, ifveC.

Then T is maximal monotone (see [22]) such that
0ecTv <= veVICA). (2.2)

Let R : D(R) C H — 2" be a maximal monotone mapping. Let A, u > 0 be two positive
numbers. Associated with R and X, we define the resolvent operator Jr; : H — D(R) by

Jro=U+AR), VxeH,

where A is a positive number.
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The lemma shows that the resolvent operator Jz; : H — D(R) is nonexpansive.

Lemma 2.3 [25] Jr, is single-valued and firmly nonexpansive, i.e.,

Urox = ooy % =y) = rax = Jroyll>,  Va,y € H.
Consequently, Jr, is nonexpansive and monotone.

Lemma 2.4 [26] Let R be a maximal monotone mapping with D(R) = C. Then for any
given A >0, u € C is a solution of problem (1.5) if and only if u € C satisfies

u = Jg;(u — ABu).

Lemma 2.5 [27] Let R be a maximal monotone mapping with D(R) = C and let B: C — H
be a strongly monotone, continuous, and single-valued mapping. Then for each z € H, the
equation z € (B + AR)x has a unique solution x;_for A > 0.

Lemma 2.6 [26] Let R be a maximal monotone mapping with D(R) = C and B: C -~ H
be a monotone, continuous and single-valued mapping. Then (I + A(R + B))C = H for each
A > 0. In this case, R + B is maximal monotone.

Lemma 2.7 [28] We have the resolvent identity

Jr% =]R,p,(%x + (1 - %)]R,Ax), Vx e H.

Remark 2.2 For A, 1 > 0, we have the following relation:

1 1
Wrax = TRyl < llx =yl + [A — ] (X IJrox =yl + " |E _]R,uy”); Vx,ye H. (2.3)

Indeed, whenever A > u, utilizing Lemma 2.7 we deduce that

TR, (%x + (1 - %)]R,Ax> — TRy

0 Iz
= 1-Z -
oo (15 o]

Wrax = Jruyll =

=<

< Slx-yl+ (1 - %) Vs =91
1A — nl
< =l + == Vrsx =31l

Similarly, whenever A < i, we get

[A =l

Wrax = TRyl < X =yl + % = Trudll-

Combining the above two cases we conclude that (2.3) holds.

Page 8 of 35
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We need following fact and lemmas to establish the strong convergence of the sequences

generated by the proposed algorithm.

Lemma 2.8 Let X be a real inner product space. Then
-+ 1% < llxl® + 20y, + ), Va,yeX.

Lemma 2.9 Let H be a real Hilbert space. Then:
(@) Il =12 = IlxI12 = llyll2 - 2(x - 3,) for all x,y € H;
(b) N2+ pyll2 = Al + iyl = Auellx —y11® for all x,y € H and 3, u € [0,1] with
A+u=1
(c) If{xn} is a sequence in H such that x, — x, it follows that

limsup [}, - y[1? = limsup |, x> + [x =yl VyeH.
n— 00 n— 00

Lemma 2.10 (Demiclosedness principle [29]) Let C be a nonempty closed convex subset
of a real Hilbert space H. Let S be a nonexpansive self-mapping on C with Fix(S) # 0. Then
I - S is demiclosed, that is, whenever {x,} is a sequence in C weakly converging to some
x € C and the sequence {(I — S)x,} strongly converges to some y, it follows that (I — S)x =y,
where 1 is the identity operator of H.

Lemma 2.11 [30, Lemma 3.1] T is a contraction provided 0 < . < i—g; that is,
|T" % - Ty <@ -r0)llx-yll, VxyeC,

where t =1— /1 - u(2n - uk?) € (0,1].

Remark 2.3 (a) Since F is «-Lipschitzian and 75-strongly monotone on H, we get 0 <

n < k. Hence, whenever 0 < u < i—g, we have
0<(l-pun)?®=1-2un+u’n’
<1-2un+ wric?
2
<1-2un+ —Z;uczzl,
K
which implies
0<1-+/1-2un+u’? <1
Therefore, T =1 — /1 - (21 — ux?) € (0,1].

(b) In Lemma 2.11, put F = %Iandu =2.Then we know thatx =7 = %,O <pu=2< i—g =4

and

ot yimun ) 1 122 b (1))

Page 9 of 35
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Lemma 2.12 [30] Let {s,} be a sequence of nonnegative numbers satisfying the conditions
Sn+l =< (1 - an)sn + 0[,,,/3,,, Vn > L

where {a,} and {B,} are sequences of real numbers such that
() {an} C[0,1] and "7, oy = 00, or equivalently,

(o) n
]_[(1 —a,):= lim ]_[(1 —ag) =0;
n=1 oo k=1

(b) Timsup, o0 Br < 0, 0r 32, [atuBul < 00.
Then lim,_, S, = 0.

3 Algorithms and convergence results
In this section, we will introduce and analyze a multistep hybrid extragradient algorithm
for finding a solution of the HVIP (1.9) (over the fixed point set of a strictly pseudocon-
tractive mapping) with constraints of several problems: GSVI (1.4), finitely many GMEPs,
and finitely many variational inclusions in a real Hilbert space. This algorithm is based
on Korpelevich’s extragradient method, the viscosity approximation method, the hybrid
steepest-descent method [10], and Mann’s iteration method. We prove the strong conver-
gence of the proposed algorithm to a unique solution of HVIP (1.9) under suitable condi-
tions.

We propose the following algorithm to compute the approximate solution of Prob-
lem 1.1.

Algorithm 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. For
each k € {1,2,...,M}, let ®;: C x C — R be a bifunction satisfying conditions (A1)-(A4)
and ¢ : C — R U {+00} be a proper lower semicontinuous and convex function with
restriction (B1) or (B2). For each k € {1,2,...,M}, i € {1,2,...,N},let R;: C — 2" be a
maximal monotone mapping, and Ay : H — H and B; : C — H be u-inverse-strongly
monotone and 7);-inverse-strongly monotone, respectively. Let 7: C — C be a &-strictly
pseudocontractive mapping, S : H — H is a nonexpansive mapping and V : H — H be
a p-contraction with coefficient p € [0,1). For each j = 1,2, let F;: C — H be {;-inverse-
strongly monotone and F : H — H be «-Lipschitzian and n-strongly monotone with pos-
itive constants k,n >0 suchthat0 <y <tand 0 < u < ﬁ—;’ wheret =1- \/l—l,L(277——/JJ(2)
Assume that 2 := ()3, GMEP(O, ¢x, Ax) N (Y, 1(B, R) N GSVI(G) N Fix(T) # @. Let
{an}, {An} C (0,1, {Bu} {yu}: {8u} C [0,1], {pu} C (0,2a], {Ain} C [ai 5] C (0,21;) and
{rin} C [ck,di] C (0,2uy) where i € {1,2,...,N} and k € {1,2,..., M}. For arbitrarily given
x0 € H, let {x,} be a sequence generated by

Uy = TS;f,\f’wM)(l ~ T;nAm) Tr(ﬁﬁ;l'm_l)(l —rpM-1nAm-) Tr(l(?}m)(f — 11,1A1)%n,

Vi = TR L = ANt BN Ry i1 L = AN-1,0BN-1) -+ TRy (L = A1,nB1) iy

Vn = Bukn + YnGVn + 8, TGV,

Xni1 = An (@n Vn + (1= @n)Sxn) + (I = AttF)yn, V=0,

(3.1)

where G := Pc(l - U1F1)Pc(1 - U2F2) with Vi € (0,29) fOI'j =1,2.
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Theorem 3.1 In addition to the assumption in Algorithm 3.1, Suppose that
() limy—oory =0, Y oog Ay =00 and lim,_o Al 1l =

(ii) limsup,_, o T" < 00, lim,_y o0 - pw |— - —| =0 omd hm,Hoo iu— k;'—;1| =0

(i) Timy o0 P8oll = 0 and lim,, . o —'y’inﬁ"n 1l _ .
(iV) llm}’l*)OO % =0and ]lmnaoo 7”/(";;2(:_1' = Ofor i=12,.. .,N and
k=1,2,...,M;
V) Bu+¥u+8n=1and (y,+8,)§ < yuforalln>0;
(vi) {8} C [a,b] C (0,1) and liminf,_, 8, > 0.
Then

. X141 =%,
(a) lim,,_, oo I ngn all — 0;

(b) wwlxn) C £2;
(c) {x,) converges strongly to a point x* € §2, which is a unique solution of HVIP (1.9),
that is,

((,uF —yS)x*,p —x*) >0, Vpef.
Proof First of all, observe that
un>=t < un=1-/1-pu(2n-puc?)

= 1-p(2n—pe?) =1-pun

1-2un+ k> > 1-2un + u*n’

—
— K°=n
—

and

((WF = yS)x— (WF - yS)y,x —y) = i(Fx - Fy,x —y) = y (Sx — Sy, 2 — y)
> unllx-yI* - yllx -yl
= (un=p)lx=yl*, VxyeH.
Since 0 <y < 7 and k > 5, we know that un > 7 > y and hence the mapping uF — yS is
(un — y)-strongly monotone. Moreover, it is clear that the mapping uF — ¥ S is (uk + y)-
Lipschitzian. Thus, there exists a unique solution x* in §2 to the VIP
(WF =y S)x*,p—x*)>0, Vpeg.
That is, {x*} = VI(£2, uF — yS). Now, we put
= TSR = 1y A Ty (1 = rapAi) - Tio M (1 = rAn),

Tk-1,n

forall k €{1,2,...,M}and n > 1,

w = TRiriy I = i B, 1 piy I = Mic1nBic1) - - - JRyay, (L = AruB1)
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forallie{1,2,...,N}, A% =Iand A = I, where [ is the identity mapping on H. Then we
have u,, = Affxn and v, = A],Yun.

We divide the rest of the proof into several steps.

Step 1. We prove that {x,} is bounded.

Indeed, take a fixed p € 2 arbitrarily. Utilizing (2.1) and Proposition 1.1(ii), we have

it =1l = [ T = o B) ALty = TH 1, Bu) A

< [0 = raguBan) A5 20 = (I = raa,0Bar) 4, p

< || 43 - AYp|

= | 43x. - A3p|

= Il ~pll- (32)

Utilizing (2.1) and Lemma 2.3, we have

1V =2l = [Trasinn = At AN) AN 1ty = T i T = AnnAn) AN |
< [T = AnwAN) AT sy = (I = Ay AN) AN ||

S O

< | A - A5p

= |lu, - pll. (33)
Combining (3.2) and (3.3), we have

Ve = pll < %0 = Pl (3.4)

Since p = Gp = Pc(I — vwF1)Pc(I — voF>)p, Fj is {j-inverse-strongly monotone for j = 1,2,
and 0 < v; < 2¢; for j = 1,2, we deduce that, for any n > 0,
IGv, - plI?

= | Pc = vF)Pc(I = vaFy)vy, — Pe(I = viFy)Pc(I - Vze)P||2

< |t = vF)Pc = vaFy)v, = (I = viFy)Pc(l - 1)2F2)P||2

= | [Pc = vaF2)vy = Pcll = vaFs)p] = w[FiPc = vaFy)v, — EPc(I - v Fo)p] |

< | Pc = vaFy)v, = Pc(l - \121'"2)1?9”2

+ (v = 200) | FiPc( — voFa)vy — FiPc(I - V2F2)P||2
< |Pcl = voFy)v, — Pl - \}21‘"2)19”2
< || = voF)v,— (I - 1)21:2)10”2

= | v = p) = v2(Fov - Eop)|?

Page 12 of 35
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< Vn =l + v2(v2 = 282) | Favy — Fopl|?

<|lv. - pl*. (3.5)

(This shows that G : C — C is a nonexpansive mapping.) Since (y, +8,)& < y, foralln >0
and T is & -strictly pseudocontractive, utilizing Lemma 2.2, we obtain from (3.1), (3.4), and

(3.5)

190 =PIl = 1| Bukn + Yu GV + 8, TGV, — p|
= || Bu(®n = P) + Yu(Gvi — p) + 8,(TGv, — p)
< Bulln = pll + | Vu(Gvi = p) + 8,(TGv, — p) |
< Bull%n = Il + (v + 801G — pl
< Bullxn = pll + (v + 8)lve — pli
< Bulln = Il + (v + 80)llxn —

= ll%n = plI-

Utilizing Lemma 2.11, we deduce from (3.1), (3.6),and 0 < y < 7 thatforalln >0

%51 = Pl
= | Any (on Vatn + (1 = ) Sxn) + (I = AuttF)y — p|
= | &y (0t Vit + (1 = 00)S%) = At Ep + (I = Ayt F)y — (I = Ayt F)p||
< 2y (n View + (A = @n)Sx) = AuptEp|| + | = AyptF)y, — (I = kuptF)p |
= Moty Vaty = wEp) + (1= ) (y Sy = Ep)|| + | (I = o F)y = (I = A F)p |
< hnleally Vau = wEpll + (1= )|y Sxn = wEpl ] + | (I = At F)y = (I = du i F)p |
< M[en (¥ 1 Van = Vol + ly Vo — uEpll) + (1= ) (v 1Sxs = Spll + ly Sp — nEpll) ]
+ [ = AuttF)yn = (I = AuF)p |
< M[en(yoll%n = pll + 1y Vo = wEpll) + @ = ) (v s = pll + Iy Sp — nEpll) ]
+ (1 =2, 0)llyn = pll
<[ (1= a = p))y Ixn — pll + max{lly Vo — uEpll, |y Sp — nFpl }]
+ (1 =2, 7)llxn - pll
= (1= an(1 = p))y llxn — pll + Aymax{lly Vo — uFpll, lySp - nEpll}
+ (1= A7) llxn = pll
< hn 1% = pll + kymax{|ly Vo — uEpll, Ily Sp — uFpll} + (1= 1,7) 1%, — pll

= (1= tul(t =) Il%n — pll + Aymax{lly Vp — wEpll, |y Sp — uEpl }
max{|ly Vp — ukp|, |y Sp — nkpll}
Ty

= (1= Au(z = )l =Pl + Anlz = 7)

ly Vo — ukpll \lySp - nkpl }

Smax{”xn_p”r )
T-Y T-V
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By induction, we get

’

ly Vo - npll llySp - nkpl
||xn—p||smax{||xo—p||, o W0

Thus, {x,} is bounded and so are the sequences {u,}, {v,}, and {y,}
Step 2. We prove that lim,,_, » W =0.

Indeed, utilizing (2.1) and (2.3), we obtain
Vi1 = vull
Y it~ A
= a0 = ANt BN) AN Tttt = Ty = ANnBN) AN 1t
< |V rainger @ = A1t BN) AN T 1 = TRy g n I = AnnBN) AN 1t |
||]RN i = AN, WBN) AN 1 = Try,, o = AN, BN AN, ||
< || = A1 BN) AN T 1 — (I = Ay uBN) AN Tt |

+ (T = AnuBN) AN it = (= AnBN) Ay ™ || + [Amar = Al

1
X ( I rn i esr I = AninBN) AN thnar = (I = Ay uBa) AN 1|
AN+l

aBN) AN i1 = T i I = AnnBN) AN 1ty n)

= |)\N,n+1 - )\N,n|(||BNAiI\[+11Mn+1 ” + M) + “An+1 Upsl — Az[_lun ”

< Anmet = Al (| BN AN thnn | + M)

+ |)\N Ln+l — )‘-N 1n|(||BN 1An+1 Upsl || +M) + ||An+1 Upil — A],Y_Zun ||

< Anmst = Al (| BN AN T st | + X/I) + N-1s1 = AN-tl (|| Bror A st || + M)

e Dot = Al (1B Ayt | + 1) + [ A2 0,00 = A%

N
0 Z [Aipe1 = M| + | Ua1 — 1 I,

where

1
Sup{ ”]RN,AN el - AN, nBN)An+1 Up1 — ([ = }\N,nBN)A;\[_lun ”
n>0 )\N,n+

BN) ANttt = Tryg e 4 = AnuBN) A | } <M

for some M > 0 and supn>0{zl LIBiAT | +]~VI} < M, for some M > 0.
Utilizing Proposition 1.1(ii), (v), we deduce that

l2ty41 — |

= [ A = A3

Page 14 of 35


http://www.fixedpointtheoryandapplications.com/content/2014/1/222

Ceng et al. Fixed Point Theory and Applications 2014, 2014:222
http://www.fixedpointtheoryandapplications.com/content/2014/1/222

= || TEMT — raga Ane) AN swer = TN = ragAng) A |

IA

H T;ﬁyff}M ([ - ™ n+1AM)An+1 KXn+l — T(OMWM) (1 ™ nAM)An+1 Xn+l ||

+ | T — rpg M) AN 90000 = TP = g Apg) AN 26, |

<[ TS = ragaAng) AR wer = TP = 1ot Ap) A e |
+ || Tfﬁf’w)(f — Fat 1 Aan) AN g — T,(,%f’wM)(l — It Aan) AN H
+ | (I = ranAan) AL 1 = (I = rag nApg) AN, |

T ©rem)

7M1 = Tt M- M-
=< — R || M+l (1 - rM,n+1AM)An+11xn+1 - (1 - rM,n+1AM)An+11xn+1 ||

FM,n+1

+ |rM n+l — rMn| “AMA;H.l Xn+l H + || An+1 Xn+l — Ayilxn ||

1 _
= 7atns1 = Tatnl |:”AMA,,+1 X || + P I T,Eﬁ‘ffM (I = rarn1Aa) AV %0
M,n+1

)8 |4 28|

— Tt 0 = v As) A5

< Mmns1 = Tamnl |:“AMAH+1 Xn+l ” + Al 4l xn+1

- (1 - rM,n+1AM)A%.11xn+l ||i| L |rl,n+1 - rl,n| |:||A1A2+1xn+l ||
rl . H T,«S}HW I r, n+1A1) n+1xn+l - (1 n, n+lA1) n+1xn+1 ||i|
n+
+ || A% % — A, ||

M
<MY [Fignet = Tionl + [1%ne1 = %all, (3.8)
k=1
where }V[l > 0 is a constant such that for each n > 0

M

Z[ |4 ak, | +

k=1

Ot - -1
7 || Tr(]i nk:]ﬂk)(l - rk,n+1Ak)A];,+ixn+1 - (1 - rk,n+1Ak)A;lf,+1xn+1 ||]
k,n+l !

<M.

Furthermore, we define y, = 8,x, + (1 — 8,)w,, for all n > 0. It follows that
Wyl — Wy

_ yn+1 - ,3n+1xr1+1 _ yn - lgnxn

1-Bun 1- 8,
V1 GVp1 + 8,1 TGV ¥uGVy + 8, TGV,
) 1- B  1-B
_ Vurt(GVii1 = GVy) + 8,1(TGVya — TGyy)
B 1-Bua

n+ n S Sn
. <L v )GV” . <71 _ )mw (3.9)
1_,3n+l l—ﬂn 1_,3n+1 l_ﬂ}’l
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Since (yy, + 8,)& < y, for all n > 0, utilizing Lemma 2.2, we have

||Vn+l(GVn+1 - Gvy) + 8,1 (TGV, — TGYy) ” < (Vna1 + 8u) |GVir — Gyl (3.10)
Hence it follows from (3.7)-(3.10) that
Wis1 — Wl
< ||yn+1(GVn+l - GV,,,) + 8n+1(TGVn+1 - TGVVI)”
B 1- :Bn+1
1) )
‘ Td G, + ‘ O TG, |
l_ﬁnﬂ l_ﬂn l_lgnﬂ 1_,3;4
(Vne1 + Bpa1) Vn+l Vn
S IGVp1 = G| + - 1GVull + I TG, ||
1- ﬂn+1 s 8 1- ﬂ}’H—l 1- ﬁn ( " ! )
Vn+l VYn
= |GV — Gyl + - Gv, |l + | TGy
” n+l n” ’1 _ '8"+1 1- ‘3}1 (” n” ” n”)
VYn+l Yn
< - — - ——\(1G G
S Wpsr —vall + 1-By 1-B, ‘(” Vall + || Vn”)
a Vi Vi
~ 1
< Mo ) it = di] + ltnr = | + | ——— = (I GV, |l + | TG, )
i=1 1- :Bn+1 1- ,3;1
N M
< MO Zp"i,nﬂ - )"i,n| + MlZVk,rH—l - rk,nl + ||xn+1 _xn”
i=1 k=1
Y+l Yn
- GV, + I TGv,l). (3.11)
‘l_ﬁml l_ﬂn ( " n)
In the meantime, simple calculation shows that
yn+l _yn = ﬂn(xwrl _xn) + (1 - ﬁn)(wwrl - Wn) + (ﬂnﬂ - ﬂﬂ)(x}’l+l - Wn+1)-
So, it follows from (3.11) that
1yni1 = Yull
< Bull®ner = %ull + (L= B)IWns1 = Wall + | Busr — Bul %1 — Woaa ||
N M
< Bull®n —xull + 1 - ﬁn)[MOZMi,nH = Ain| + MlZVk,rHl = Tinl + %041 — %4l
i=1 k=1
Vi Vi
’ﬁ - ﬁ (”Gvn” + ”TGVHH):| + |,Bn+1 - ,Bn| ||xn+1 - Wn+1||
N M
< ||xn+1 _xn” + MOZMLVH—I - )\i,n| +MIZ|rk,n+l - rk,n|
i=1 k=1
— 1- + —
+ [Vie1 = Vul (L = Bu) + Vul Brs1 — Bul (||GV,,|| + ||TGV,,||)
1- ,BVH-I

+ |,Bn+1 - ,Bn| ”xn+1 — Wil ”
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N M
< ne1 = %ull + Mo Y [Rinr = Al + M1 Y _[Pkir = Tl
i=1 k=1
Gl + I TG, |l IGvall + I TGy |l
Vi1 = Vol ————— + Bur1 = Bul| I%ns1 = W | + ————
1-b 1-b
N
S ||xn+1 _xn” + M2 <Z|)ti,n+1 - )\i,n|
i=1
M
+ erk,nﬂ - rk,n| + |Vn+1 - yn| + |,Bn+1 - ﬂn|): (312)
k=1

where sup, .o {[%411 = Waall + W +]\7IO +]T/Il} < Mz for some ]T/Iz > 0.
On the other hand, we define z,, := o, Vx,, + (1 —,,)Sx,, for all # > 0. Then it is well known
that x,,.1 = A,yz, + (I = AyuF)y, for all n > 0. Simple calculations show that

Zne1 = Zn = (0ns1 — ) (VR — S%) + 1 (Vi1 — V)
+ (1 = 041) (SX41 — S%),
Xns2 = Xni1 = A1 = An) (V2w = WEYn) + A1y (Zns1 — Zn)
+ (I = Apa lF YY1 — (I = At E)y .

Since V is a p-contraction with coefficient p € [0,1) and S is a nonexpansive mapping, we
conclude that
”Zn+1 - Zn” = |an+1 - an| ” Vxn - an” + O5;'1+1|| Vxn+1 - Vxn”
+ (1= 1) [1S%041 — Sl
= |an+1 - an| ” Vxn - an ” + an+1p”xn+1 - xn” + (1 - an+l)”xn+l —Xn ||

= (1 - O5;f1+1(1 - )0)) ”xn+1 _xn” + |05r1+1 - an| ” Vxn - an”:
which together with (3.12) and 0 < y < t implies that

19642 = %41l
< NAnrt = Aalllyzn = REYull + Anr ¥ 12ns1 — 2l
+ | (I = At F)ynar = (I = ApiaptF)y|
< s = Al 1y zn = REYull + Ans1¥ 121 = Zull + (1= X1 T Y1 = Il

< Awrt = Anlllyzn — nEyull + )Vn+1)/[(1 o (l- :0)) %41 = %4l

N
+ ltnr = ot | Vaty = Sx[]] + (1 —Amlr){nxm — | + My (Zw,m — Jin]
i=1

k=1

M
+ erk,nﬂ =Tkl + Vsl = Yl + 1Bns —ﬂn|>:|
=< (1 - )"n+1(7: - y))”xnﬂ _xn” + |)‘n+1 - )\n“lyzn - /’LFyn” + |an+1 _an| “Vxn - an”

N M
+M; <Z|)"i,n+1 — Aip| + Z|Vk,n+1 = Tinl + Vst = Yl + 1Bus1 — ﬁnl)
i=1

k=1
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N M
< (1= A (T = ) 11 = 2l +M3IZM"'"” =il + Dkt = Tin]
i=1 k=1

+ A1 = Al + 101 — @yl + | Busr = Bl + Vi1 — Vn|}’

where sup, .o {2y — wFyall + || Vi, — Sx,|| + My} < Mj for some Ms > 0. Consequently,

141 — %5
Ay

% — s N i = Ainal e P = P
<(1=n(r—y)) 2210 2 : A +§ : kn — Tkn-1
_( n( V)) o 3 o a,

n i=1 n k=1

|)‘n - )"n—1| |O[,, - an—ll |IBVI - ,Bn—l| |Vn - yn—l|
+ + + +
oy ay Ay Oy

= (1= Anlz - y))”x”o{_$1|| + (L= 20T =) 0 — X | (oei - 0131)

n-1 n

M
+M3 prn i,n— 1|+Z|rkn_rkn 1| |)\n_)\n—1|
i=1 Cn k=1 Cin Cin

lan =1l 1Bu—Bual  |¥u—Vul }
+ + +

oy oy oy
1% = %l M, 1)1 1
< (1= npfr-y) BBl oy M L
Oyl T—-Y Qy  Oy-1
N M
+Z|A tn—l| + |rkn Tkn— 1| il_}w—l
o Ay o Al ay An
~h- Q1 + |81 — Bu-1l + (Vi = Vn-1l ) (3.13)
n oy Anlly A0y,

where sup, . {[[%; — %11 + Mg,} < M, for some M, > 0. From conditions (i)-(iv) it follows

that ) 2 A,(t — y) = o0 and

N M
M 11 1 Min— Aip— Tkn — Vin—
lim 4 il Bl +Z| in in 1| +Z| k,n k,n 1|
n=>0T =y )\n oy Uy-1 i-1 )\nan k=1 )\nan
1 Ay 1 Oy — Bu- — V-
- n-1 i n-1 +|,3n ﬂn 1|+|Vn Vn 1| - 0. (3‘14)
oy Ao | A oy MOty AnQly

Thus, utilizing Lemma 2.12, we immediately conclude that

. X+l — X,
i Mo =l
n—00 oy

So, from «,, — 0 it follows that

lim (%, —x,] =0
n— 00
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Step 3. We prove that lim,,_, « [|x, — || = 0,lim,_ « ||lx, =V, || = 0, lim,,_ « ||V, —Gv,] =0
and lim,,_, ||V, — Tv,,|| = 0.
Indeed, utilizing Lemmas 2.8 and 2.9(b), from (3.1), (3.4)-(3.5),and 0 < y < t we deduce

that
lyn - plII*
= ”,ann + ynGVn + (SnTGVn —P||2
YuGv, + 8, TGy 2
= ‘:Bn(xn —19) + (l_ﬂn)(% —-p
_lgn
YuGv, + 8, TGy 2
= Bullu—pI” + (L= )| = —— P
_13n
VuGVy + 8, TGV, 2
- }’l]'_ n - 5 5, —Ym
ol = i) | P
2 2
2 Yu(GVy = p) + 8,(TGv,, — p) i —%n
= Pull¥n — 1- n - nl_ n)|| 57 5,
Ballta —plI> + (1~ ) v Bul1 =) =5
(Vn + (Sn)ZHGVn —P||2 Bu 2
< Bullxw —pII* + (1 - B2) - 1y = %
(1_,371)2 1_,3;1
B
:ﬁn”xn_P”Z+(1_,3n)||GVn_P”2_ ||J’n—xn||2
l_ﬂn
B
Sﬂn||xn—l’||2+(1—/3n)||Vn—P||2—q”)’n—xnﬂz
B
fﬂn”xn_p”2+(1_ﬂn)||xn_p”2_ 1-8 ”yn_xn”Z
O A (315)
1_13;1
and hence
”xn+l_p||2

= [ 2ony (@0 Vit + (1= @,)S,) + (I = i)y, - p|*

= | Any (ot Vit + (1 = @) S%) = dnttEp + (I = At E)y — (I = A E)p |

= | Anftn(y Vitw = wEp) + (1 = ) (y S = EP)] + (I = kit F)y — (I = At Fp |

= | Anfen(y View = v V) + (1= ) (¥ S — ¥ Sp) | + I = At F)yn = (I = i F)p
+ Anfan(y Vo — wFp) + (1 - ) (v Sp — nEp)]||”

< | Anfetn(y Vatw = ¥ Vi) + (= ) (v Sty = ySp) | + (U = At F)y = (= dutF)p |
+ 200tu{ (¥ VI = WED), %1 — p) + 22n(1 = ) (v Sp = WEP), %1 — p)

< [l enly Vtu = ¥ Vi) + (1 = ) (v Sz = ySp) | + | = ntt )y = (I = 2t F)p|| |
+ 2000 ((y Vio = WEP), %insr — P) + 220(1 — (v Sp — WEP), Xpi1 — )

< [Mn(enypll%n = pll + @ = )y 1%, — pll) + @ = 2aT) 1y —Pll]2

+ 220n((y VI = WEP), %ni1 — p) + 2(1 = o) don{ (v Sp — ED), %ni1 — D)


http://www.fixedpointtheoryandapplications.com/content/2014/1/222

Ceng et al. Fixed Point Theory and Applications 2014, 2014:222
http://www.fixedpointtheoryandapplications.com/content/2014/1/222

= [Mn (1= @l = 0))¥ 2 — pll + (A = 2 D)llyn — 2I1]

+ 2000{ (¥ Vo = WED), %1 — p) + 22n(1 = ) (v Sp = WEp), %1 — p)
< [Mny 10 = pll + (1= 20y — pII ]

+ 2Xn0u( (¥ VI = WEP)s X1 — p) + 2201 = )((y Sp — WEP)s %1 — D)

2
Y
= [knt F e = pll + A= 2uT)llyn —PII}

+ 225,00 ((¥ VI = WED), %1 — ) + 22n(1 — (¥ Sp — ED), %1 — P)
»?
< ?»n7 % = pll + (1 = 2uT) lyu - pII*
+ Z}Lnan((y Vp - MFP)’xn+1 —P> + 2)‘;’1(1 - an)((J/SP - :u‘Fp)»anrl —P)

P
l_ﬂn

+ 2200n((y VI = WED), %na1 — p) + 22n(1 = 0,){ (v Sp — Ep), %ni1 — D)
-y’ Bu(l = 1,7)
=(1—)»n . )IIxn -pI* = "y — xall?

2
4
= hn " lln = pll + o —an)[llxn -pl* -

”yn _xn||2]

1- :8;1
+ 22,0 ((¥ VI = WED), %1 — ) + 22n(1 = (¥ Sp — WED), X1 — P)
ﬂn(l - )Lnf)
< ”xn _p||2 - T”yn _xn”2

+ 20,50,y Vo — wEpl|1%0s1 = PNl + 22411y Sp — uEpll|%0s1 — Pl

which together with {8,} C [a,b] C (0,1), immediately yields

a(l-x,T) (1= A7)
A =rnt) gt < P2 AnT)

2
1-2 1-8, lyn — %l

< ll%n = 21> = %01 = pI* + 2An0ully Vo = nEp|ll|%ns1 - pl|

+ ZAnllySp - V«FP” ”xn+1 —P”
= ”xn - xn+1|| (”xn —PH + ||xn+1 —P”)
+ 20n0|ly Vo — nEp||[1%na — pli
+200lly Sp — nEpl %1 — plI.-
Since A, — 0, &, = 0, ||x,451 — x| = 0, and {x,,} is bounded, we have

lim |y, =%, = 0.
n—00

Observe that
| Akn —p||* = | T ~ 1) Ay = T — 1 uA)p |
< | = rindi) AK s — (U = riudip |
< | A% % — b + 1 (i — 200 | Ak ARt — Agp|)?

< 1196 =PI + raon i — 2000) Ak AN, — Agp |

(3.16)

(3.17)

(3.18)
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and

| At = | = R U = 2inB) AL = T, I = MinBi)p|)
< (= AiuB) A s = (1 = 2iBi)p |
< | AT = p|)* + i — 20) | Bi AL 1, — B
< Netw =PI + Aot — 20| Bi AL 11— Bip?

< 6w =PI + Ri(hin = 205) | B AL 1~ Bip® (3.19)
forie{1,2,...,N}and k € {1,2,...,M}. Combining (3.15), (3.18), and (3.19), we get

P
1_:371

2
lyn =%l

Iy = pII* < Bullxtn = plI*> + X = B)llva — pII* -

< Bulln —pI? + (= B) v - pII®
< Ballxn - pI* + (L= B) | Al - p||*
< Bulln = pI* + U= B[l =PI + Ai i — 205)| Bi AL 11 — Bip|) ]
< Bulltn = 2% + (1= B[ | Ak = p|* + ki i = 201) | BiAT s — Bip ]
< Bullxn = pI% + (L= Ba)[I16n =PI + P (rion — 2000) | A AK L — Agp
+ hinhin — 200 || BAT s, - Bip|)?]
= s = I + (L= B) [Pl (ke — 2000) | Ak AX 5, — Agp |

+ hihin — 200 | BAT s, - Bip|)?],
which immediately leads to
(1= B)[rin @itk — rin) [ Ak AN %, = Aap|* + 2@ = 2i0) || BiA - Bip|)?]

<% = pI* = lyn - pII?

< 110 = yull (Ilxn =PIl + 1y = p1I)-

Since ”xn _yn” g 0’ {ﬁn} - [Ll,b] - (O: 1); {}\i,n} C [ai:bi] - (O:ZYh‘); {rk,n} C [Ckrdk] C
(0,2uk), i €{1,2,...,N}, ke {1,2,...,M}, and {x,}, {y,} are bounded sequences, we have

lim |AxAS %, —Awp| =0 and  lim ||B;A T u, - Bip|| =0 (3.20)
n—00 n—00

forall k €{1,2,...,M}andiec{1,2,...,N}.
Furthermore, by Proposition 1.1(ii) and Lemma 2.9(a), we have
2
| A% |
o _ o 2
= | T,(,f_),f"‘pk)(f — TenA) AN x, — Tr(,fZ“(pk)(l ~ i Ap |

< (U = renA) AL 5 — (I = 1 nAi)ps ARy, -p)

1
= 5 (10 =0 83, ~ U o] + | Al |

Page 21 of 35
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— |t = 7w A, — (I = i Ar)p — (A% — p) ||2)

B P O L e T 1 )
which implies that

| A% - |
< [ A% Y = p [P = | A5 0 = Al = i (Ak A 0~ Awp) |
= | Ay xn = p|* = [ A5 0 - Ak - 2, [ AR A 0 - Avp |
+ 27k (AR o — A, Ak AN %, — Arp)
< [t~ A = Al |+ 2] A8, — Ak [ Ax Al — A

<%, —pl*> - H Aﬁ’lxn - Aln‘x,, ||2 + 2rkpn H Aﬁ’lx,, - A'n‘x,, || ||A/<A’,‘,’1x,, —Akp||. (3.21)
By Lemma 2.9(a) and Lemma 2.3, we obtain

| AL —p|°
= R I = 2B A = T, (I = 2P|

< (U = 2iuB) AT uy — (I = 23 B)p, Aluy, — p)

1 ) .
= (10 = 20B) AT s = (= 2B |+ | At =

— 7 = 2B A sy = (I = 2iBi)p — (Als - p) )

1 X i X X X

= (45w, —p|)* + | ALy~ p|* ~ | A s~ At = 2 (B AL s - Bip) )
1 , , , .

< 5 (It = pI + | A0 -’ = A5 = ALy = 2 (BiAE 1, - Bip) %)
1 . . . .

< E(Hxn —plI? + | Al —p||* = | Ay — ALty = i (B AT 1, - Bip) ),

which immediately leads to

| At =
< ot = pI% = | AL 1 = ALty = A (BiAS 11— Bip) |
=l = pI? = [ A sty = Afpan|* = 22, | B, — B |
+ 20 ALy — ALy, Bi A wy, — Bip)

<l —pl? = | AL s — Al Hz + 2| AL = Alyus|| | BiA s — Bip . (3.22)
Combining (3.15) and (3.22), we conclude

IBn 2
gl =l

< Bullxn = plI* + @ = B) Ve — pII?

Iy = pI* < Balln =PI + A= B Iva = pII* -
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< Bulln —plI* + (1= B Akt - p|*
< Bullxn =PI + A= B)[I1%0 - pI? = | A5 00 — Al

+ 2 | ALty — Aljus|| | Bi AL 1 = Bip ]

2

< [l%n —P||2 -(1-8) ”Ai_lun - quun ”2

+ 2050 | ATy — Aluy || B AL i — Bip

which yields

(- B | AL — Al |
< 1% = pI* = lyn — PI* + 20| AL tay — Apyua ||| BiAL 1 — Bip |
< Ntn = yull (1% = 21l + 1y = PI) + 204 AG 0y — Al || | BiAL i — Bip| .

Since {IBH} C [ar b] C (Orl)r {)"i,n} C [ai» bl] - (0,2771), i= 1’ 21 .. ';N; and {l/ln}, {xt’l}: and {)’n}
are bounded sequences, we deduce from (3.20) and ||x, — y,|| — O that

lim | AL, — Abu,| =0, Vie{l,2,...,N}. (3.23)

n—00

Also, combining (3.3), (3.15), and (3.21), we deduce

Bn
1_/3n

2
”yn _xn”

ly = pI* < Bullxn = pII* + (L= B)llvs - plI* -

< Bullxn = pl* + A= B)lIva - plI®

< Bulln = pI* + @ = B luw - pI?

< Bullxn —pI% + (1= B) | At~ p|)*

< Bulln = pI* + (1 = B[l — pI* — | A5, — Ak, |
+ 21 || 457 00 = A ||| Ak A3 s = Avp ] ]

< 2w —pI? = (A= B) | AK T, — Ak, |

+ 2rkn || A',‘,’lx,, - A/;x,, H HAkA];_lx,, —Awp

which yields

(1- )| Ak, — Ak, |
< Nn = I = lyw =PI + 2100 | AN, — Al | || Ak A 5 - Arp |
< Nt = 9l (1% = Il + Iy = pIl) + 2700 | AX o — AR || A A %, — Arp|.

Since {B,} C [a,b] C (0,1), {rx,n} C [cxrdi] C (0,2p4) for k =1,2,...,M, and {x,}, {y,} are
bounded sequences, we deduce from (3.20) and ||x,, — y,|| — O that

lim | A% %, - A¥x, | =0, Vke{L2,...,M). (3.24)

n—00
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Hence from (3.23) and (3.24), we get

I = il = | A% — 420,
S || Ag‘x” - A}q‘xn” + || A,qu,, — Aixn || + oo+ || A;V[—lxn _ Ai[\/[xn ||

—0 asn— o0 (3.25)
and

26w = vull = | Auy — AN usy|
< || AQun — A | + || Apthn — At || + - + | AN sy — Ay

—0 asn— o0, (3.26)
respectively. Thus, from (3.25) and (3.26), we obtain
16 = Vil < %0 — tull + lttg = vl > 0 asm— o0. (3.27)

On the other hand, for simplicity, we write p = Pc(I — v, Fy)p, v, = Pc(I — v F,)v,, and
k, = Gv, = Pc(I — viF)V, for all » > 1. Then

p=Gp=Pc(I—viF)p=Pc(I—vF)Pc(I—-viF)p.

We now show that lim,,_, o |Gv,, — v, || = 0, i.e., lim,, . ||k, — v, || = 0. As a matter of fact,
for p € £2, it follows from (3.4), (3.5), and (3.15) that

B
1_1371

2
||yn _xn”

192 = 21? < Bullxn = pII* + (L= B)IGV, - plI* -

< Bullxu —pII* + A= B GV - plI?
= Bullxn —plI* + (1= Bo)llku — plI?
< Bullxn = pII* + A= B[94 = BI* + vi(v1 — 200) | Frvw — Fipl|]
< Bullxn = pII* + A= B[ 1Iva = pII* + v2(v2 = 285) | Fvyy — Fop|?
+v1(v1 = 20) 1Py — Fip||]
< Bulln = pI* + A= B[ 1% = pII* + v2(v2 = 28) | Fav, — Fop|®
+ (v = 200) | Fyvy, — Fyp?]
= |lxn = pII? + (1 = Bu)[va(v2 = 282) | Fovy — Fop?
+v1(v = 28) |Fy v, — FipI1), (3.28)

which immediately yields

1= B)[v2(282 = v)IIFavy = Fapll? + vi(281 — v1) | Fyv — Fipl|]
<l%n = pI* = lyn —pI?

<% _yn”(”xn =pl +lyn _P”)-
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Since ||, — yull = 0, {84} C [a,b] C (0,1), v; € (0,2¢),j = 1,2, and {x,}, {y,} are bounded

sequences, we have
lim ||Fv, —Fp||=0 and lim |F¥V, - Fp| =0. (3.29)
n—00 n—oo

Also, in terms of the firm nonexpansivity of Pc and the ¢;-inverse-strong monotonicity of
F; for j = 1,2, we obtain from v; € (0,2¢;),j = 1,2,

19 = BI* = | Pl = vaFa)v, - Pe(l - vaFo)p||
= <(1 - VZFZ)VVI - (1 - Vze)P: Vi _ZJ>
= = By = = vaEp| + -1
2
— T =v2Es)v, = U= v2Eo)p - (70— )]
1 - - - -
< S =pI? + 130 =PI = | 020 = 7) = va(Fava = Fp) = (0 - P)| ]
1 - . - .
= S lvn =PI + 17 =51 = v =) - w-pn|°

+ 2V2((Vn — V)= —-p)Favy — F219> - V§||F2Vn - F2l9||2]
and

ks = pII* = || Pl = viFy)7y — Pell - i F)p|

IA

(I = viF)Vu — (I = viF)p ku — p)
- %[H (I~ P — I~ vF)B|” + llky — pII?
~ (4 = 1R~ I~ DB ~ (ke — )| ]
< S (03B + Iy = I = |G =) + (o~ D)
+ 201(F1Vy = F1p, (7 = k) + (p = P)) = v} | F1¥, — FipI|*]
< S [ =l + 1w =1 = [ G~ ) + (=)

+ 2v1(Fiv — F1p, (Vn — k) + (0 — D))

Thus, we have

19 =PI < 1vn =1 = | =) = (0 - D)
+205((Vy = V) = (p = P), Favyy — Fyp) = v3||Fov, — Fop|? (3.30)

and

Ik = 11 < v =PI = | G = k) + (0 - )|

+ 201 | Eyiy — Fipll | — k) + (0 = D) .- (3.31)
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Consequently, from (3.4), (3.28), and (3.30), it follows that

lyn =PI < Balltn = pI? + A= B)[17 = BI? + vi(v1 = 260 | Fin — Fi|1%]
< Bullxn = pl* + A= BV - pII
< Bulltn —pI? + A= B [Iva — I = | n = V) = @ - D)|”
+203((Vy = 9) = (p = P), Fav — Fop) = v3 | Favy — Fapl*]
< Bulln — I + (= B)[Il5n — pI* = | = ) — (0 - D)
+203 | (v = 9) = (0 = D) || Favu — Fapl]
< % =PI = (= B) |V = 7) ~ (0= P) |

+2v9 ||(Vn — V) — (P—i?)” | F2vi — Fopll,

which hence leads to

1= B) | v =) - 0 -D)|
< %n = pII* = lyn =PI + 202 || (vis = V) = (p = D) | | F2vs — Fopll
< Nn = yull (1% = 21l + 1y = pIl) + 202 || (v = 9) = (p = B) | |1 Favis = Fpll.

Since %, — ¥4l = 0, {B.} C [a,b] C (0,1), vy € (0,282), and {x,}, {yu}, {vu}, {Vn} are
bounded sequences, we obtain from (3.29)

lim ||(vn V) - —fa)“ =0. (3.32)
n—0oQ
Furthermore, from (3.4), (3.28), and (3.31), it follows that

lyn = I < Ballx = pI* + A = B) 1K - pII?
< Bulltn = pI* + @ = B [Ive = pI* = | B = k) + (p - )
+ 201 | Fyig = Bl | 5 = k) + (0 = )]
< Bulltn = pI* + A= B) [l — pI* = | G — k) + (0 - )|
+ 20| Fy — Fpll|| 5 — ko) + (0 - )]
= % =pI? = U= B) || P = k) + (0 - D)
+2v1 | Fyvy = Fipll | (9 — k) + (0 = D)

I

’

which hence yields

1= B)|Gn—k) + 0 -D)|”
<[l = pII* = lyn =PI + 201 | Es, — Bl || — k) + (0 — D) |

< 1% = yull (Il = 1l + lyn = p1I) + 20111 F19 — Bl | (7 — ki) + (p = D) |-
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Since |lx, — yull = 0, {Bn} C [a,b] C (0,1), v € (0,281), and {x,}, {yu}, {kn}, {Vn} are
bounded sequences, we obtain from (3.29)

nlijglo”(f/n -k,)+@-p) || =0. (3.33)
Note that
Vi =kall < [ v =) = (0= D) + |70 =) + (0= D)
Hence from (3.32) and (3.33), we get
lim ||V, — G|l = lim [|v, — ku|| = O. (3.34)
n>00 n>00
Also, observe that
In = %n = Vn(GVy = %) + 84(TGVy — %), Vn = 0.
Hence we find that

Sull TGV = Vull < 8,1TGVy = Xl + Sl — Vil
= [lym = % = Vu(Gvis = 2) | + 8yl = Vil
< Nyn = xull + Vull GV = 2l + 8nll% = viall
< NYn = %ull + Vull GV = Vil + VillVie = %]l + 8156 = vl
= 90 = %ull + VullGVi = Vil + (Vi + 8) 1 = vinl

=< ”yn _xn” + ”GVn - Vn” + ”xn - Vn”'
So, from liminf,_, » &, > 0, (3.17), (3.27), and (3.34), it follows that
lim | TGv,, —v,| = 0. (3.35)
n— 00
In addition, noticing that

1Ty = vall < 1TV = TGVl + | TGV — Vil

< |ve = Gvull + TGV = vaull,
we know from (3.34) and (3.35) that
lim || Tv,, — v,|| = 0. (3.36)

Step 4. We prove that w,,(x,) C £2.

Indeed, since H is reflexive and {x,} is bounded, there exists at least a weak convergence
subsequence of {x,}. Hence it is well known that w,,(x,) # #. Now, take an arbitrary w €
wy(x,). Then there exists a subsequence {x,,} of {x,} such that x,,, — w. From (3.23)-(3.25),
and (3.27), we have u,,, = w, v,, = w, A:,”iu,,l. — w,and A',‘,L,x,,l. — w,wherem € {1,2,...,N}
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and k € {1,2,...,M}. Utilizing Lemma 2.1(ii), we deduce from v,, — w and (3.36) that
w € Fix(T). In the meantime, utilizing Lemma 2.10, we obtain from v,; — w and (3.34)
w € GSVI(G). Next, we prove that w € ﬂzr\n[zl I(B,n, R;y). As a matter of fact, since B,, is
nm-inverse-strongly monotone, B,, is a monotone and Lipschitz continuous mapping. It
follows from Lemma 2.6 that R, + B,, is maximal monotone. Let (v,g) € G(R,, + By,), i.e.,
g — B,,v € R,,v. Again, since Au, =Ji, I - )Lm,an)A;”’lun, n>1mel{l,2,...,N},

JAmn

we have
A = KB ATy € (T4 Mgy R) Ay,
that is,

1
—— (A = Aty = DB A ) € Ry A1

m,n

In terms of the monotonicity of R,,, we get

1
<V— Ay, g — Byv— .

m,n

(A7 — Ay — Am,anA;”-lun)> >0
and hence

(v—Au,,g)

> <V — AV Uy, By + (A:,"_lu,, - Ay, — Am,y,BW,A;”_lun)>

m,n

= <V — A", By = By A wy + By Ay — By A7y + (A7 uy, — A;”un)>

m,n

1

> (v— A, By ALty — B A 1) + <v - Au,, (A7 uy, — Afu,,)>.

mn

In particular,
(v- AL’:u,,l.,g) >(v- Aty B Ay, —BmAZ;‘luni>

1

+ <v - Ay, —— (A My, — A;”,uy,i)>.
i Am’ni i i

Since || A" u, — A7 'y, || — 0 (due to (3.23)) and ||B,, A7 u,, — B,y A7 'u,|| — 0 (due to the

Lipschitz continuity of B,,), we conclude from A}u,, — w and {%;,} C [a;,b:] C (0,2n;)

that

lim (v — Al u,,g) = (v-w,g) > 0.

i—00 ¢
It follows from the maximal monotonicity of B,, + R,, that 0 € (R,, + B,)w, i.e, w €
1(B,;, R,). Therefore, w € ﬂi\nlzl I(B,;, R,,). Next we prove that w € ﬂﬁl GMEP(Oy, @i, Ax).
Since Aﬁxn = T,(Z)}f’wk)(l - rk,nAk)AZ’lx,,, n>1,kefl,2,...,M}, we have

Ok (Asxny) + 0 y) — i (Antn) + (A Ay Hn y — Ali)

1
+ —(y - Ak, Alx, - AFx,) > 0.
Tkn
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By (A2), we have
1
ok () — ox (ARx) + Ak AL,y — Al )+ ;(y— Ay, Afxy— A% x,) > Op(y, Afx).
o

Letz, =ty + (1 -t)wforall £ € (0,1] and y € C. This implies that z; € C. Then we have

(ze— A’;xn,Akzt)
> i (Afxn) — @uc(ze) + (20 = Al Arze) = (20 — A, A Ay %)
- <zt - Ak, M> + O (2, A’;x,,)
Tkn
= oi(ARx,) — oilze) + (2 - ARx,, Az —AkA],‘,xy,> +(z: - ARx,, Ay Akx, —AkA’;‘lx,,>
AkRx, — ARy,

k
- <zt - A, =
k,n

> + Oz, Afxy). (3.37)

By (3.24), we have ||AkA’;x,, —AkA’;’lx,, | = 0 as n — oo. Furthermore, by the monotonic-
ity of Ay, we obtain (z; — A’,‘lx,,,Akzt - AkA’,‘lxn) > 0. Then by (A4) we obtain

(ze = w, Akze) = or(W) = @ie(20) + Okl(ze, w). (3.38)
Utilizing (A1), (A4), and (3.26), we obtain
0 = Ozt 21) + i(z:) — oi(z:)
< tOk(z1,y) + (L= 1) Oz, w) + tre(y) + (1 = ) (W) — i (22)
< t[Ok(z9) + o) — or(z) | + A = 1) (2 — w, Axzy)
= t[Ok(z6,y) + 0k (y) — oi(2) ] + (L= D)ty — w, Aiz),
and hence
0 < Ok(z0,9) + i (y) = i) + A =) (y — w, Axz).
Letting t — 0, we have, for each y € C,
0 < Ocw,y) + k() — k(W) + (y — w, Agw).

This implies that w € GMEP(Ox, ¢k, Ax), and hence, w € ﬂkle GMEP(Oy, ¢x, Ar). Thus,
we 2=\ Fix(T,) N ﬂﬁl GMEP(Oy, ¢, Ax) N ﬂ%:l I(B,y,R,;). Consequently, w €
ML, GMEP(Oy, o1, Ax) N (_ 1By, R,) N GSVI(G) N Fix(T) =: £2. This shows that
wy(x,) C £2.

Step 5. We prove that w,(x,) C .

Indeed, take an arbitrary w € w,/(x,). Then there exists a subsequence {x,,} of {x,} such
that x,;, — w. Utilizing (3.16), we obtain, for all p € £2,

2
”xn+l —-p ”

2 —y? Bu(1 = 1,T)
= <1_)Ln - >||xn_P”2_%”yn_xn”2
- n
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+ 2}\;10[;1((7 Vp — KEp), Xni1 —P> +24,(1 - an)((VSP — WEp), Xni1 —P>

< Nlotn = pII* + 2200((y V = WF)p, %1 — p) + 2201 — ){(y Sp — wEP) %1 — p),

which implies that

((WF = yS)p, %0 - p)
< ((WF =y S)p, %y — %1 + ((LE = Y S)P, %01 — P)

e = pII* = llns1 = pII*
241~ aty)

< ||(wF = yS)p | 1% = usa || +

477

1-q,

+ <(VV - /*LF)p’erl _p>

%6 = X 1l = PNl + %01 — pII)

< |[(WF =y S)p | 1%s = xnsa |l +

20,1 —ay)
o
+ T |0V = 1B %01 - P (3.39)
— oy,
Since a,, — 0, |lx, — %41 || — 0 and
lim 1% — %l - lim 1% — %l ) Ol_n -0,
n—00 A n—00 oy A

from (3.39), we conclude that

((WF =y S)p,w = p) = lim ((WF =y S)p, %, — p)

<lim sup((uF —yS)p, %y —19)

Hn— 00
<0, Vpef,
that is,
((uWF -yS)p,w-p)<0, Vpeg. (3.40)

Since uF — yS is (un — y)-strongly monotone and (uk + y)-Lipschitz continuous, by
Minty’s lemma [29] we know that (3.40) is equivalent to the VIP

((/LF —-yS)w,p— w) >0, Vpef. (3.41)
This shows that w € VI(£2, uF — yS). Taking into account {x*} = VI(§2, uF — yS), we know
that w = x*. Thus, w,(x,) = {x*}; that is, x,, — x*.

Next we prove that lim,,_, o [|x, —x*|| = 0. As a matter of fact, utilizing (3.16) with p = x*,

we get

w2

2_ .2 1-X
=
n
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+ 2)»,,%(()/ Vx* — ,u,Fx*),xml —x*) +2x,(1— an)((ny* - ,u,Fx*),xml —x*)

.L.2_y2 %2 * *
§<1_xn . )”x,,—x 12+ 2t | (¢ V = B0 | s —5°

+ 20,1 - a,,)((ny* - ,qu*),x,,+1 —x*)

2.2 2 _ .2 2
(1m0 - i -

+(1- oz,,)((ny* - /LFx*),xml - x*)] (3.42)

Since Z:O:O Ay =00 and lim,,_, oo (Y Sx* — uFx*),x* —x,,1) = 0 (due to x,, — x*), we deduce
that Y 2 A, TZ;”Z = 00, and

. 2t
Jim e [ (7 V = E)x | [ ome = | + (1= ) (3 S* = wFx*), 201 = 2] = 0.
Therefore, applying Lemma 2.12 to (3.42) we infer that lim,,_, » ||%, — x*|| = 0. This com-
pletes the proof. O

Putting M =N =1, F, =0, and F; = I" an inverse-strongly monotone mapping on C in
Algorithm 3.1, we have the following algorithm.

Algorithm 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H,
® : C x C — R be a bifunction from satisfying conditions (Al)-(A4), ¢ : C — R U {+00}
be a proper lower semicontinuous and convex function with restriction (B1) or (B2), and
A:H — H be uo-inverse-strongly monotone. Let R : C — 2/ be a maximal monotone
mapping, B: C — H be ng-inverse-strongly monotone, T': C — C be a &-strictly pseu-
docontractive mapping, S : H — H is a nonexpansive mapping and V : H — H be a
p-contraction with coefficient p € [0,1). Let I" : C — H be ¢-inverse-strongly mono-
tone, and F : H — H be «-Lipschitzian and n-strongly monotone with positive con-
stants «,n7 >0 such that 0 <y <1 and0<u<i—'2’ wheretzl—m.As—
sume that 2 := GMEP(®, ¢,A) N I(B,R) N VI(C, I') N Fix(T) # @. Let {a,}, {A,} C (0,1],
{Bu}s {¥u}s {84} C [0,1], {pu} C (0,2c], {r,} C lc,d] C (0,2u0) and {p,} C [e,f] C (0,270).
For arbitrarily given xy € H, let {x,} be a sequence generated by

O (tny) + 90) = () + (A%, y = th) + 5y = thy Uy = %) 20, ¥y € C,
Vi :]R,pn (I - )OnB)um

Yn = ,ann + ynPC(I_ VF)VVI + 6nTPC(I_ VF)Vn:

K1 = Ay (0, Vi + =) Sxy) + (L — Ayt F)y,, VYn >0,

(3.43)

where v € (0,2¢).
From Theorem 3.1, we have following result.

Corollary 3.1 In addition to assumption of Algorithm 3.2, suppose that

(i) limy—oodn =0, Y o0g Ay = 00 and lim,_ o ;—n|1 - fl| = 0
1 1 1

.o . oy . _ . 1 )"Vl—l _ .
(ii) limsup,,_, o Sk <00, lim,,_, o0 il = m| =0 and lim,,_, o, Ell - W' =0;

(iff) Timy, o0 222l = 0 and lim,, . o La=2etl = 0;
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(iv) lim,— o % =0 and lim,_, % =0;
(V) B+ Yn+ 8y =1and (yy+8,)§ < yuforalln=0;
(vi) {Bn} Cla,b] C (0,1) and liminf,_, 8, > 0.
Then
() lim,_ oo leng;xn\\ =0;
(b) ww(x,) C £2;
(c) {x,) converges strongly to a point x* € §2, which is a unique solution of HVIP (1.9),

ie.,
((,uF —yS)x*,p —x*) >0, Vpef.

Proof Since F, =0 and F; = I" a ¢-inverse-strongly monotone mapping on C, it is easy
to see that GSVI(G) = VI(C, I'). Thus, in terms of Theorem 3.1, we derive the desired
result. d

Putting I" = I — @, where @ : C — C is a &;-strictly pseudocontractive mapping on C, in
Algorithm 3.2, we obtain the following algorithm.

Algorithm 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H,
©® : C x C — R be a bifunction satisfying conditions (A1)-(A4), ¢ : C — R U {+00} be
a proper lower semicontinuous and convex function with restriction (B1) or (B2), and
A :H — H be po-inverse-strongly monotone. Let R : C — 2" be a maximal monotone
mapping, B: C — H be ny-inverse-strongly monotone, T : C — C be a &-strictly pseu-
docontractive mapping, S : H — H is a nonexpansive mapping and V : H — H be a
p-contraction with coefficient p € [0,1). Let @ : C — C be a &-strictly pseudocontrac-
tive mapping, and F : H — H be «-Lipschitzian and n-strongly monotone with positive
constants k,1 >0 suchthat 0 <y <t and 0 < u < i—g where 7 =1 - m
Assume that £2 := GMEP(®, ¢, A) N I(B,R) N Fix(®) N Fix(T) # @. Let {a,}, {*,} C (0,1],
{Bubs {yu} {84} € [0,1], {ou} C (0,2a], {ru} C [c,d] C (0,210) and {pu} C [e,f] C (0,270).
For arbitrarily given xy € H, let {x,} be a sequence generated by

O (ny) + 9(0) = () + (A%, y = thy) + 5y = thy s = %) =0, ¥y €C,
Vi = Jropu I = 0nB)thy,

Yn = Bun + Yl =v([ = @), + 8, T = v(I - P))vy,

Xns1 = rn¥ (@ Vi + (L= ) Sx) + (I = Ayt F)yn, V1> 0,

(3.44)

where v € (0,1 - &).

Corollary 3.2 [n addition to assumption of Algorithm 3.3, suppose that

. . o0 . 1 Qy—

(1) limy—oo Ay =0, -0 An = 00 and lim,_, E'l — —(;‘nl | =0;

i) 1 <7 i 1,1 _ 1 ,_ i BT EES F
(ii) limsup,_, . < 00, lim,,_, 5 e an-1| =0 and lim,,_, , o |1 = | =0;

(iff) Timy, o0 L=l = 0 and lim,, . o La=2otl = 0;

(iv) Timy, o0 22l = 0 and lim, o, 122221l = ;
(V) Bu+ Vu+8s=1and (v, +8,)6 <y foralln>0;
(vi) {Bn} C la,b] C (0,1) and liminf,_, 8, > 0.
Then

. Xp+1—%,
(a) hmnﬁoo I ngn_nH =0;

Page 32 of 35


http://www.fixedpointtheoryandapplications.com/content/2014/1/222

Ceng et al. Fixed Point Theory and Applications 2014, 2014:222 Page 33 of 35
http://www.fixedpointtheoryandapplications.com/content/2014/1/222

(b) wu(x,) C £2;
(c) {xn} converges strongly to a point x* € 2, which is a unique solution of HVIP (1.9),

iLe.,
(WF -y S)x*,p-x*)>0, Vpeg.

Proof Since @ : C — C is a &-strictly pseudocontractive mapping on C, it is well known
that for constant & € [0, 1),

1-
(®x - By,x-y) < llx—yI* - T& |t -@)—-@)|’, vxyec.

Itis clear that in this case the mapping I" = I - @ is % -inverse-strongly monotone. More-

over, we have, for v € (0,1 - &),

Yn = Buxn + VnPC(]_ V)W, + 8, TPc(I —vI)v,

= Buxy + y,,([ —v(l - 45))1/,1 + (S,,T(I— v(I - CD))V,,.

Now let us show Fix(®) = VI(C, I'). In fact, we have, for A > 0,

ueVI(C,I') <— (T'uy-u)>0, VyeC

— (u-ATu-uu-y)>0, VyeC
< u=Pc(u—-Alu)
— u=Pc(u—ru+r1®u)
— (u-ru+rPu-u,u-y)>0, VyeC
— (u-Puu-y)<0, VyeC
— u=%u
< ueFix(®).

Consequently,

2 = GMEP(®, 9, A) N 1(B,R) N VI(C, I') N Fix(T)

= GMEP(®, ¢, A) N 1(B, R) N Fix(®) N Fix(T).
Therefore, by Corollary 3.1, we derive the desired result. O

Remark 3.1 Our results generalize and improve results in [12, 20] and the references
therein.
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